CN108247061A - 一种镁基可再生多孔纳米复合材料的连续挤压制备方法 - Google Patents

一种镁基可再生多孔纳米复合材料的连续挤压制备方法 Download PDF

Info

Publication number
CN108247061A
CN108247061A CN201810114047.9A CN201810114047A CN108247061A CN 108247061 A CN108247061 A CN 108247061A CN 201810114047 A CN201810114047 A CN 201810114047A CN 108247061 A CN108247061 A CN 108247061A
Authority
CN
China
Prior art keywords
magnesium
continuously extruded
titanium
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810114047.9A
Other languages
English (en)
Other versions
CN108247061B (zh
Inventor
徐淑波
张在超
刘鹏
史传伟
景财年
任国成
李阳
范小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201810114047.9A priority Critical patent/CN108247061B/zh
Publication of CN108247061A publication Critical patent/CN108247061A/zh
Application granted granted Critical
Publication of CN108247061B publication Critical patent/CN108247061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/114Making porous workpieces or articles the porous products being formed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

一种镁基可再生多孔纳米复合材料的连续挤压制备方法,混合粉末混合物浆料通过基于连续挤压‑等径角挤压技术的剧烈塑性变形制备获得具有纳米晶粒组织的镁基复合材料,避免了传统金属烧结过程会产生有毒物质的缺点;将形成的纳米材料置于碱中腐蚀以形成具有高度开放的多孔结构的纳米材料,获得的材料具有良好的生物活性、人体亲和性、可降解、且力学性能接近人骨,能使骨组织向内生长,同时植入骨骼和人体骨组织能产生愈合。

Description

一种镁基可再生多孔纳米复合材料的连续挤压制备方法
技术领域
本发明涉及一种可降解具有人体亲和性且力学性能接近人骨的纳米合金的制备方法,具体来说是一种镁基可再生多孔纳米复合材料的连续挤压制备方法,应用于医疗植入领域。
背景技术
目前用于医学的金属以及合金主要有医用不锈钢、医用钴基合金、医用钛及其合金、医用镁合金等金属及合金,传统的医用金属及合金存在易腐蚀、溶出离子可能诱发疾病、引起细胞和组织坏死,力学性能差、无生物活性、耐磨性差、疲劳和断裂韧性不甚理想等缺点。且传统植入物刚度过高,由于这种应力遮挡,大且刚性的股骨假体,不建议骨密度低患者使用,2%的患者患有中度或严重的骨骼流失。传统医用材料和人体亲和性和可降解这涉及到一个应力遮挡引起的骨骼吸收和骨骼流失。临床试验中,在植入物两年内,骨组织不能向内生长,不能和人体骨骼愈合。
金属多孔材料是20世纪80年代后期国际上迅速发展起来的,是具有优异的物理特性和良好的机械性能的新型工程材料,日益受到人们的关注。专利号:201510915866.X的一种多孔镁合金的制备方法,给出了通过3D自动打印获得多孔镁合金坯体,完成后再进行加热,其工艺流程长,需要反复加热,造价昂贵;专利号:201310518895.3给出了一种生物医用多孔钛合金的制备方法,采用粉末冶金方法进行钛合金的制备,过程需要真空脱脂,反复加温烧结。本发明对镁基粉末材料采用连续侧向挤压的方式进行大塑性变形,不需要3D打印或高温烧结,可以低成本的以=制备镁基超细晶多孔材料。本发明把连续挤压技术和ECAP技术结合起来应用于金属晶粒超细化变形,即连续等径角挤压变形(Continuousequal channelangular pressing,Continuous ECAP),它是除带料连续剪切成形(Continuous confined strip shearing,CCSS)工艺之外的又一项新技术。本发明基于连续挤压技术的等径角挤压具有独特的优越性:1)工艺简单,可连续操作。连续等径角挤压变形是靠旋转的挤压轮对坯料的摩擦来驱动的,其操作不受最大行程的限制,可以不问断地连续成形;2)传统的ECAP工艺中若加热坯料需要用电炉,而连续等径角挤压变形是通过坯料与导料板的摩擦生热来控制金属的变形温度,大大降低了能耗;3)产品的长度不受限制,既可以加工用于组织和性能研究的试样,也可以生产线材产品。
参考文献:
1.徐丽萍、张二林、杨柯,医用可降解镁合金体外体内的降解,中国材料研究学会2006年会;
2.于国宁、张二林、徐丽萍,骨组织对镁合金植入材料的骨反应,中国材料研究学会2006 年会;
3.郝刚领,镁基多孔材料制备工艺的研究,中国科学院合肥物质科学研究院, 2008全国功能材料科技与产业高层论坛论文集。
发明内容
本发明专利的目的是针对现在用于医学领域的合金的不足,为了减少植入体与周围骨组织的不匹配,实现人工植入物转移到相邻的骨骼的刚度优化加载,提供了一种具有良好的生物活性、可降解、且力学性能接近人骨具有高度开放的多孔结构的纳米材料,具有人体亲和性且力学性能接近人骨。
本发明是通过如下技术方案来实现:
本发明提供的镁基可再生多孔纳米复合材料的原材料以镁、钛、硅、钒、锌、银为组元,还有TiC-SiC-ZrC晶须颗粒添加物,其中镁为主要元素,构成复合材料的基本的骨架,其组成可用aMg-bTi-cSi-dV-eZn-fAg-g(TiC-SiC-ZrC) 表示,其中a=65,b=2,c=30,d=1,e=1,f=0.5,g=0.5且a+b+c+d+e+f+g=100;最终通过化学去除法获得高强度纳米Mg-2Ti-1V-1Zn-0.5Ag-0.5(TiC-SiC-ZrC)钛基多孔复合材料。具有纳米晶粒组织的多孔镁基复合材料,其优点及特殊之处在于:采用将钛、镁、硅、钒、银颗粒通过异丙醇粘合后连续挤压成形块体,克服传统金属烧结产生有毒物质这以缺点,用镁、钛、硅、钒、锌、银为基本组元及添加TiC-SiC-ZrC晶须颗粒,其中镁具有良好的可降解性,在植入人体后可以自动缓慢分解,锌是我们人体必须的元素对身体有益,硅可以在形成样品时用碱腐蚀后可以形成高度开放的多孔结构,钛、钒和TiC-SiC-ZrC晶须的存在使其具有可靠的硬度和强度条件,从而使多孔的镁基复合材料又能使其具有与人体骨骼相近的力学性能,孔的存在和镁在人体内的降解为骨组织向内生长提供可能,银元素的存在可以起到抗菌杀毒的作用,钒可以和钛很好的结合,使材料具有良好的综合性能;将形成的纳米材料置于碱中腐蚀以形成具有高度开放的多孔结构的纳米材料,获得的材料具有良好的生物活性、人体亲和性、可降解、且力学性能接近人骨,能使骨组织向内生长,同时植入骨骼和人体骨组织能产生愈合。
本发明提供了一种钛镁基可再生多孔纳米抗菌复合材料的制备方法,包括如下步骤:
(1)配料制坯:取CP Ti粉末(纯度为99.9%),Mg颗粒(纯度为99.3%),Si颗粒(纯度99.7%)、V颗粒、Zn颗粒和Ag颗粒和TiC-SiC-ZrC晶须颗粒,将在密封容器中将粉末混合,然后与重量比为1%的异丙醇混合并搅拌5分钟。随后,将该元素粉末混合物浆料从密封容器中的手套箱中取出并倒入连续挤压装置的料斗。
(2)获得纳米组织:混合粉末混合物浆料从放入料斗1,将粉末材料倒入料斗1,原料经通道进入机架内部的挤压装置。在电动机的带动下压实轮3顺时针旋转,挤压轮5逆时针转动,挤压轮和压实轮共同挤压原料,通过摩擦力以及挤压生热,使原料的温度达到500~800摄氏度。在高温下粉末材料发生融合。扇形夹紧块4的覆盖角度是160°,在挤压轮工作时,扇形夹紧块使原材料与之紧密贴合,保证产生足够的摩擦力。原料经过挤压通道进入模具6,完成等通道转角挤压。原材料经过模具后棒料在两通道交汇处产生近似理想的纯剪切变形,挤压前后棒料的横截面积和横截面的形状保持不变,可以获得足够的应变,来达到破碎晶粒、增加储能的目的。
(3)形成具有高度开放的多孔结构的材料:将获得的块体棒状试样纳米材料在65℃的5L氢氧化钠(MgOH)水溶液中浸泡12小时以除去Si,洗涤并用蒸馏的温水超声波清洁,用于除去Si的反应: Si(s) + 2NaOH(aq) + H2O(aq) = Na2SiO3(aq) + 2H2(g)
上述步骤(1)中碳化钛-碳化硅-碳化锆晶须颗粒的制备工艺为:氧化钛-碳化硅-碳化锆晶须前驱体材料化学成分及重量百分比为:ZrO2:25.4~28.2%,Ti:19.6~19.8%,SiO2:25.4~28.2%,C:20.2~22.6%,Mn:0.1~0.9%,NaCl:1.0~8.1%。将按比例配制的能够生成碳化钛-碳化硅-碳化锆晶须的先驱体复合粉末加无水乙醇于球磨机中进行机械化球磨48小时,获得具有200-600nm晶粒尺寸超细先驱体复合粉末,将粉末装入石墨容器中,在氩气气氛保护和1550℃-1800℃的温度条件下,保温90min-180min合成。
SiO2+2C=(加热)Si+2CO↑
Si+C=(加热)SiC
ZrO2+3C=(加热)ZrC+2CO↑
Ti+C =(加热)TiC
本发明采用了碳化钛-碳化硅-碳化锆增强镁基可再生多孔纳米复合材料,其特征在于:该材料沿挤压流线形成定向排列的碳化钛-碳化硅-碳化锆晶须和钛基复合材料基体材料组成,晶须直径为200-800nm。
本发明提供了一种高强度纳米医用可降解钛镁合金的制备方法与现存医用合金相比其优点在于:
1.首先是配方上创新:采用镁、钛、硅、钒、锌、银以一定比例混合,其中选CP Ti,而不是常用的钛,是因为它不会在体内释放XIC合金元素,且钛是一种能通过放射一致的波长使细胞电离调节人体电流的元素,从而产生对人体有益的生理作用,钛具有优异的力学性能、耐蚀性和生物相容性,能够提供足够的机械强度,通过形成高度开放的多孔结构,使材料具有与人体骨骼相近的力学性能;Mg和Zn是人体必需的微量元素,钒可以很好的和钛相结合;Si粉作为空间材料, 无论是镁还是硅都不会引起细胞毒性,并且镁具有温和、可吸收、生物相容性好等优点,硅后期可用碱腐蚀掉以形成具有高度开放的多孔结构的材料, 银元素的存在可以起到抗菌杀毒的作用,镁的降解行为使它成为生物可降解植入材料,植入后可在人体内自行降解,为骨组织向内生长,以及置入骨骼与人体骨组织愈合提供可能。
2.其次是制作工艺流程的创新:采用连续挤压-等径角挤压技术的剧烈塑性变形,无需取件即可完成反复挤压使试样发生剧烈塑性变形,工艺简单,可连续操作,连续等径角挤压变形是靠旋转的挤压轮对坯料的摩擦来驱动的,其操作不受最大行程的限制,可以不间断地连续成形;连续挤压-等径角挤压技术的剧烈塑性变形是一种局部变形,所需扭矩低,可以在很低的扭矩下实现镁基复合材料的制备,同时连续挤压-等径角挤压技术的剧烈塑性变形是通过坯料与导料板的摩擦生热来控制金属的变形温度,大大降低了能耗;可以将粉末材料通过连续等径角挤压变形制备成块体材料,提高了粉末材料剧烈塑性变形的自动化程度;产品的长度不受限制,既可以加工用于组织和性能研究的试样,也可以生产线材产品。
3.形成材料形态结构的创新:将加工形成的纳米材料加入碱腐蚀掉硅,以形成具有高度开放的多孔结构的纳米材料,使材料具有与人体相近的力学性能,并且镁在植入人体后可缓慢自行降解,为身体原有骨组织向内生长提供可能,促进植入材料与身体原有骨组织的愈合。
4.本发明所需的制备方法工艺简单,可在简单的连续挤压金属加工设备进行加工,易于批量化生产,可用在医学植入领域做骨骼替换材料。
附图说明
下面是结合附图和实施例对本发明的具体实施方案进行详细地说明。
图1为实施案例步骤图解图。
图2为单轮槽连续等通道转角挤压装置示意图;上述图中的标记为:1.料斗,2.粉末材料,3.压实轮,4.扇形夹紧块,5.挤压轮 ,6.等通道转角挤压模具,7.成品,8.机架。
料斗下方是供粉末材料流动的通道,通道为矩形。挤压轮安装于机架中央,工作时按逆时针旋转,挤压轮中央有矩形凹槽。挤压轮左侧安装压实轮,由于粉末材料不具有连续性,在挤压成型时难以产生足够的摩擦力,无法产生足够的热量,粉末材料难以达到其熔点,导致无法成型。所以压实轮采用齿轮状结构。工作时按顺时针旋转。扇形夹紧块安装于挤压轮下方。等通道转角挤压模具安装于机架右上方,模具通道处的转角角度是90°。
具体实施方式:
实施例一:一种镁基可再生多孔纳米复合材料的连续挤压制备方法
将CP Ti粉末(纯度为99.9%),Mg颗粒(纯度为99.3%),Si颗粒(纯度99.7%)、V颗粒、Zn颗粒和Ag颗粒和TiC-SiC-ZrC晶须颗粒,将在密封容器中将粉末混合,然后与重量比为1%的异丙醇混合并搅拌5分钟。随后,将该元素粉末混合物浆料从密封容器中的手套箱中取出并倒入连续挤压装置的料斗1,原料经通道进入机架内部的挤压装置。在电动机的带动下压实轮3顺时针旋转,挤压轮5逆时针转动,挤压轮和压实轮共同挤压原料,通过摩擦力以及挤压生热,使原料的温度达到500~800摄氏度。在高温下粉末材料发生融合。扇形夹紧块4的覆盖角度是160°,在挤压轮工作时,扇形夹紧块使原材料与之紧密贴合,保证产生足够的摩擦力。原料经过挤压通道进入模具6,完成等通道转角挤压。原材料经过模具后棒料在两通道交汇处产生近似理想的纯剪切变形,挤压前后棒料的横截面积和横截面的形状保持不变,可以获得足够的应变,来达到破碎晶粒、增加储能的目的。将获得的块体棒状试样纳米材料在65℃的5L氢氧化钠(MgOH)水溶液中浸泡12小时以除去Si,洗涤并用蒸馏的温水超声波清洁。本发明提供的具有纳米晶粒组织的Mg-2Ti-1V-1Zn-0.5Ag-0.5(TiC-SiC-ZrC)钛基多孔复合材料沿连续挤压流线形成定向排列的碳化钛-碳化硅-碳化钒晶须和镁基体材料组成,晶须直径为200-800nm,可采用简单的连续挤压设备,获得的多孔纳米材料具有和人体骨骼相近的力学性能、具有可靠的机械硬度和强度以及良好的韧性、并且具有良好的可降解性和抗菌性能,因此,本发明材料具有潜在的应用价值,可用于医学植入领域。

Claims (7)

1.一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:混合粉末混合物浆料通过基于连续挤压-等径角挤压技术的剧烈塑性变形制备获得具有纳米晶粒组织的镁基复合材料,避免了传统金属烧结过程会产生有毒物质的缺点;将形成的纳米材料置于碱中腐蚀以形成具有高度开放的多孔结构的纳米材料,获得的材料具有良好的生物活性、人体亲和性、可降解、且力学性能接近人骨,能使骨组织向内生长,同时植入骨骼和人体骨组织能产生愈合,上述材料的制备方法,包括如下步骤:
配料制坯:取CP Ti粉末(纯度为99.9%),Mg颗粒(纯度为99.3%),Si颗粒(纯度99.7%)、V颗粒、Zn颗粒和Ag颗粒和TiC-SiC-ZrC晶须颗粒,将在密封容器中将粉末混合,然后与重量比为1%的异丙醇混合并搅拌5分钟;随后,将该元素粉末混合物浆料从密封容器中的手套箱中取出并倒入连续挤压装置的料斗;获得纳米组织:混合粉末混合物浆料从放入料斗1,将粉末材料倒入料斗1,原料经通道进入机架内部的挤压装置;在电动机的带动下压实轮3顺时针旋转,挤压轮5逆时针转动,挤压轮和压实轮共同挤压原料,通过摩擦力以及挤压生热,使原料的温度达到500~800摄氏度;在高温下粉末材料发生融合;扇形夹紧块4的覆盖角度是160°,在挤压轮工作时,扇形夹紧块使原材料与之紧密贴合,保证产生足够的摩擦力;原料经过挤压通道进入模具6,完成等通道转角挤压;原材料经过模具后棒料在两通道交汇处产生近似理想的纯剪切变形,挤压前后棒料的横截面积和横截面的形状保持不变,可以获得足够的应变,来达到破碎晶粒、增加储能的目的;
形成具有高度开放的多孔结构的材料:将获得的块体棒状试样纳米材料在65℃的5L氢氧化钠(MgOH)水溶液中浸泡12小时以除去Si,洗涤并用蒸馏的温水超声波清洁,用于除去Si的反应: Si(s) + 2NaOH(aq) + H2O(aq) = Na2SiO3(aq) + 2H2(g)
2.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:本发明提供的镁基可再生多孔纳米复合材料的原材料以镁、钛、硅、钒、锌、银为组元,还有TiC-SiC-ZrC晶须颗粒添加物,其中镁为主要元素,构成复合材料的基本的骨架,其组成可用aMg-bTi-cSi-dV-eZn-fAg-g(TiC-SiC-ZrC) 表示,其中a=65,b=2,c=30,d=1,e=1,f=0.5,g=0.5且a+b+c+d+e+f+g=100;最终通过化学去除法获得高强度纳米Mg-2Ti-1V-1Zn-0.5Ag-0.5(TiC-SiC-ZrC)钛基多孔复合材料。
3.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:采用将钛、镁、硅、钒、银颗粒通过异丙醇粘合后连续挤压成形块体,克服传统金属烧结产生有毒物质这以缺点,用镁、钛、硅、钒、锌、银为基本组元及添加TiC-SiC-ZrC晶须颗粒,其中镁具有良好的可降解性,在植入人体后可以自动缓慢分解,锌是我们人体必须的元素对身体有益,硅可以在形成样品时用碱腐蚀后可以形成高度开放的多孔结构,钛、钒和TiC-SiC-ZrC晶须的存在使其具有可靠的硬度和强度条件,从而使多孔的镁基复合材料又能使其具有与人体骨骼相近的力学性能,孔的存在和镁在人体内的降解为骨组织向内生长提供可能,银元素的存在可以起到抗菌杀毒的作用,钒可以和钛很好的结合,使材料具有良好的综合性能。
4.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:采用连续挤压-等径角挤压技术的剧烈塑性变形,无需取件即可完成反复挤压使试样发生剧烈塑性变形,工艺简单,可连续操作,连续等径角挤压变形是靠旋转的挤压轮对坯料的摩擦来驱动的,其操作不受最大行程的限制,可以不间断地连续成形;连续挤压-等径角挤压技术的剧烈塑性变形是一种局部变形,所需扭矩低,可以在很低的扭矩下实现镁基复合材料的制备,同时连续挤压-等径角挤压技术的剧烈塑性变形是通过坯料与导料板的摩擦生热来控制金属的变形温度,大大降低了能耗;可以将粉末材料通过连续等径角挤压变形制备成块体材料,提高了粉末材料剧烈塑性变形的自动化程度;产品的长度不受限制,既可以加工用于组织和性能研究的试样,也可以生产线材产品。
5.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:发明所需的制备方法工艺简单,可在简单的连续挤压金属加工设备进行加工,易于批量化生产,可用在医学植入领域做骨骼替换材料。
6.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征是:所述碳化钛-碳化硅-碳化钒晶须颗粒的制备工艺为:氧化钛-碳化硅-碳化钒晶须前驱体材料化学成分及重量百分比为:V2O5:25.4~28.2%,Ti:19.6~19.8%,SiO2:25.4~28.2%,C:20.2~22.6%,Mn:0.1~0.9%,NaCl:1.0~8.1%,将按比例配制的能够生成碳化钛-碳化硅-碳化钒晶须的先驱体复合粉末加无水乙醇于球磨机中进行机械化球磨48小时,获得具有200-600nm晶粒尺寸超细先驱体复合粉末,将粉末装入石墨容器中,在氩气气氛保护和1550℃-1800℃的温度条件下,保温90min-180min合成。
7.如权利要求1所述的一种镁基可再生多孔纳米复合材料的连续挤压制备方法,其特征在于本发明提供的具有纳米晶粒组织的Mg-2Ti-1V-1Zn-0.5Ag-0.5(TiC-SiC-ZrC)钛基多孔复合材料沿连续挤压流线形成定向排列的碳化钛-碳化硅-碳化钒晶须和镁基体材料组成,晶须直径为200-800nm。
CN201810114047.9A 2018-02-05 2018-02-05 一种镁基可再生多孔纳米复合材料的连续挤压制备方法 Active CN108247061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810114047.9A CN108247061B (zh) 2018-02-05 2018-02-05 一种镁基可再生多孔纳米复合材料的连续挤压制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810114047.9A CN108247061B (zh) 2018-02-05 2018-02-05 一种镁基可再生多孔纳米复合材料的连续挤压制备方法

Publications (2)

Publication Number Publication Date
CN108247061A true CN108247061A (zh) 2018-07-06
CN108247061B CN108247061B (zh) 2023-11-24

Family

ID=62744204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810114047.9A Active CN108247061B (zh) 2018-02-05 2018-02-05 一种镁基可再生多孔纳米复合材料的连续挤压制备方法

Country Status (1)

Country Link
CN (1) CN108247061B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022843A (zh) * 2018-08-01 2018-12-18 郑州大学第附属医院 一种医用植入可降解复合棒材及其制备方法
CN110076197A (zh) * 2019-04-24 2019-08-02 上海电机学院 废弃钛合金切屑连续反复多级轧制-转角挤压再制造方法
CN111676384A (zh) * 2020-07-06 2020-09-18 南阳师范学院 一种增强镁基复合材料及其制备方法
CN111719060A (zh) * 2020-05-19 2020-09-29 山东源航超轻材料研究院有限公司 一种Mg-Li基复合材料用增强体表面改性及其预制体制备方法
CN111730059A (zh) * 2020-05-19 2020-10-02 山东源航超轻材料研究院有限公司 一种高体积分数超细颗粒增强Mg-Li基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0412125D0 (en) * 2004-05-29 2004-06-30 Univ Liverpool Porous metallic materials and method of production thereof
ITVR20090154A1 (it) * 2009-09-30 2011-04-01 Biocoatings S R L Procedimento per la realizzazione di protesi biologicamente compatibili
CN103624509A (zh) * 2013-11-27 2014-03-12 山东建筑大学 一种获得钛合金低温超塑性的大塑性变形方法
CN106011514A (zh) * 2016-06-21 2016-10-12 山东建筑大学 45°拐角等通道反复挤压制备超高强度钛基复合材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0412125D0 (en) * 2004-05-29 2004-06-30 Univ Liverpool Porous metallic materials and method of production thereof
ITVR20090154A1 (it) * 2009-09-30 2011-04-01 Biocoatings S R L Procedimento per la realizzazione di protesi biologicamente compatibili
CN103624509A (zh) * 2013-11-27 2014-03-12 山东建筑大学 一种获得钛合金低温超塑性的大塑性变形方法
CN106011514A (zh) * 2016-06-21 2016-10-12 山东建筑大学 45°拐角等通道反复挤压制备超高强度钛基复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴玉锋;杜文博;聂祚仁;曹林锋;左铁镛;: "颗粒增强镁基复合材料研究进展" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022843A (zh) * 2018-08-01 2018-12-18 郑州大学第附属医院 一种医用植入可降解复合棒材及其制备方法
CN110076197A (zh) * 2019-04-24 2019-08-02 上海电机学院 废弃钛合金切屑连续反复多级轧制-转角挤压再制造方法
CN110076197B (zh) * 2019-04-24 2020-10-09 上海电机学院 废弃钛合金切屑连续反复多级轧制-转角挤压再制造方法
CN111719060A (zh) * 2020-05-19 2020-09-29 山东源航超轻材料研究院有限公司 一种Mg-Li基复合材料用增强体表面改性及其预制体制备方法
CN111730059A (zh) * 2020-05-19 2020-10-02 山东源航超轻材料研究院有限公司 一种高体积分数超细颗粒增强Mg-Li基复合材料及其制备方法
CN111676384A (zh) * 2020-07-06 2020-09-18 南阳师范学院 一种增强镁基复合材料及其制备方法
CN111676384B (zh) * 2020-07-06 2021-12-14 南阳师范学院 一种增强镁基复合材料及其制备方法

Also Published As

Publication number Publication date
CN108247061B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN108247061A (zh) 一种镁基可再生多孔纳米复合材料的连续挤压制备方法
CN104480330B (zh) 一种孪晶变形镁合金超细晶型材、其制备方法和用途
Luo et al. High oxygen-content titanium and titanium alloys made from powder
CN103184379B (zh) 生物可降解Mg-Gd-Zn-Ag-Zr系镁合金及其制备方法
CN108193071A (zh) 一种钛基可再生多孔纳米复合材料的连续挤压制备方法
CN103184380B (zh) 生物可降解Mg-Gd-Zn-Sr-Zr系镁合金及其制备方法
CN101603160B (zh) 羟基磷灰石晶须/镁金属基复合材料及其制备方法
CN103305709B (zh) 医用镁基非晶材料的制备方法
CN101003868A (zh) 一种具有梯度孔隙率镍钛形状记忆合金的制备方法
CN106119742B (zh) 一种氧化钛‑碳化钛晶须增韧镁合金生物医用材料
Sharma et al. The effect of reinforcements on the mechanical properties of AZ31 composites prepared by powder metallurgy: An overview
Nasiri-Tabrizi et al. Synthesis and characterization of fluorapatite–zirconia composite nanopowders
Kumar et al. Statistical modelling of mechanical properties and bio-corrosion behaviour of Mg3Zn1Ca15Nb fabricated using microwave sintering
CN102258806A (zh) 一种可降解镁基骨科植入生物医用材料及制备方法
CN108165811A (zh) 一种高强度可降解纳米医用多孔钛镁复合材料的制备方法
CN105838910A (zh) 一种生物医疗用抗菌钛合金制造方法
CN107974567A (zh) 一种可控的医用降解镁合金的制备工艺与方法
JPS60224727A (ja) Ti−Zr系焼結合金
CN113234983A (zh) 一种NbTaTiZr双相等原子比高熵合金及其制备方法
CN104694848A (zh) 一种生物可降解四元铁基合金材料及其制备方法
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
CN112276093B (zh) 一种超高纯镁棒的制备方法
CN108393493A (zh) 一种高强度可降解纳米医用多孔钛基复合材料的制备方法
Dolukhanyan et al. Production of Alloys Based on Ti–Nb–Zr, Promising for the Production of Implants
CN108179318B (zh) 一种高强度可降解纳米医用钛镁硅复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant