CN108219397A - 一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 - Google Patents
一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 Download PDFInfo
- Publication number
- CN108219397A CN108219397A CN201711447632.2A CN201711447632A CN108219397A CN 108219397 A CN108219397 A CN 108219397A CN 201711447632 A CN201711447632 A CN 201711447632A CN 108219397 A CN108219397 A CN 108219397A
- Authority
- CN
- China
- Prior art keywords
- pet
- graphene
- carboxylicization
- substance
- crystalline rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/24—Crystallisation aids
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明属于精细化工技术领域,具体为一种提高聚对苯二甲酸乙二醇酯(PET)结晶速率的方法。本发明采用表面羧酸化的石墨烯类物质作为PET的成核剂,将其分散到PET基体中,通过熔融共混,形成PET/石墨烯复合物,从而提高PET的结晶温度,加快结晶速率。表面羧酸化的石墨烯类物质能很好地分散于PET体中促进PET结晶,可扩大PET的应用范围。
Description
技术领域
本发明属于精细化工技术领域,具体涉及提高聚对苯二甲酸乙二醇酯(PET)结晶速率的方法。
背景技术
聚对苯二甲酸乙二醇酯(PET)作为一种热塑性高分子材料,由于其良好的性能如冲击强度高、耐摩擦、耐化学性能、电绝缘性能好等,在工业上的应用十分广泛。它可分为非工程塑料级和工程塑料级。非工程塑料级主要用于纤维、饮料瓶、薄膜等领域,工程塑料级主要运用于汽车、电子电器、家用电器等领域。然而,PET也有缺点,如结晶速率慢。其原因是由于自身分子链上的C=O基团降低了链的对称性,主链上的苯环增大了PET的刚性,使得分子链段运动困难,从而降低了PET结晶速率。这就导致其在注塑成型时加工困难、所需模具温度高、生产周期长等。因此,提高PET的结晶速率成为工业界以及学术界研究的热点。
在PET加工过程中添加成核剂,操作简单,是一种常用的改善PET结晶的方法。R.Legras等人将羧酸钠作为成核剂加入到PET基体中,第一次提出PET不同于其他结晶性聚合物的成核机理—化学成核,也就是说羧酸钠在加工过程中与PET发生反应,其产物形成PET结晶的成核点,从而促进PET结晶(R. Legras et al., Nature, 1983, 304: 432)。自此便出现了很多关于制备羧酸盐类物质作为PET成核剂的工作。DuPont公司开发的乙烯和甲基丙稀酸共聚物的羧酸盐(商品名为Surlyn树脂)、Allied-Signal公司开发的乙烯丙烯酸共聚物的羧酸盐(商品名为Aclyn树脂)都是PET有效的成核剂(Ying Yu et al., Macromol.Chem. Phys. 2000, 201, 1894)。此外,也有将常见的无机纳米粒子如TiO2、SiO2等作为PET的成核剂的报道。碳材料如一维的碳纳米管、二维的石墨烯作为PET的成核剂的报道也时有出现,然而由于其表面没有反应性基团,不能很好地分散在PET基体中,成核效果不显著。为了解决这一问题,本发明制备一种表面羧酸化的石墨烯类材料,将其加入到PET基体中,发现该物质能很好地分散到PET基体中,起到成核剂作用,加快PET的结晶速率。
发明内容
本发明的目的是提出一种可有效地提高PET的结晶温度,加快结晶速率的方法。
本发明提供的提高PET结晶速率的方法,是采用表面羧酸化的石墨烯类物质作为PET的成核剂,将其分散到PET基体中,通过熔融共混,制备得到PET/石墨烯复合物。实验表明,PET/石墨烯复合物与纯PET相比,结晶速率明显加快。
本发明中,熔融共混共混的条件是:加工温度240-300℃之间,加工时间为1-30min之间。
本发明中,所述石墨烯类物质,是具有单层或寡层结构的各种碳材料,如石墨烯、氧化石墨烯、寡层石墨微片或微粉等。
本发明中,所述的寡层结构,是指该物质中大多数物质的堆积层数不多于20层。
本发明中,单层或寡层结构的各种碳材料,表面具有大量羧基,或表面各种官能团中以羧酸基团为主。
本发明中,所述的表面羧酸化的石墨烯类物质,可以是表面含有大量羧基的石墨烯、氧化石墨烯、寡层石墨微片或微粉。
本发明中,表面羧酸化的石墨烯的用量,以PET质量为基础,计为0.001-10% ,优选0.01-5% 。
本发明中,所说石墨烯类物质,可以是球磨制备的表面羧酸化的石墨烯,羧酸化处理的氧化石墨烯,或表面接枝上羧基的石墨,例如:
将石墨、干冰放入球磨罐中,通N2赶去球磨罐中的空气,锁紧盖子,放入球磨机中锁紧后球磨一段时间,待球磨结束后倒出,经过水洗、冷冻干燥得到表面羧酸化的石墨烯。
本发明通过熔融共混将该物质加入到PET基体中,制备PET/石墨烯复合物。实验发现PET/石墨烯复合物与纯PET相比,结晶速率明显加快。该石墨烯材料加入PET基体中,操作简单,促进PET结晶效果显著,有广阔的应用前景。
具体实施方式
根据本发明所述技术方案选取具体实施例进行说明如下:
实施例1
通过石墨、干冰经球磨制备的得到表面羧酸化的石墨烯微片(X射线光电子能谱分析分析表明其表面富有羧酸基团,原子力显微镜表征石墨烯平均层数约为5层。
将该石墨烯作为成核剂,利用熔融共混法制备得到PET/石墨烯复合物,共混条件为265℃、80 rpm、5 min,表面羧酸化的石墨烯与PET按质量比为0.02:100。纯PET也经过同样的加工条件作为参比样。差示扫描量热仪(DSC)分析复合物的结晶温度为205.6℃,纯PET的结晶温度为193.3 ℃。说明该羧酸化的石墨烯材料能够促进PET结晶,是一种高效的成核剂。
实施例2
实验方法同实施例1。改变表面羧酸化的石墨烯与PET的质量比,为0.05:100。通过DSC分析发现,复合物的结晶温度为208.9℃,纯PET的结晶温度为193.3℃。这说明,该表面羧酸化的石墨烯材料能够促进PET结晶,是一种高效的成核剂。
实施例3
实验方法同实施例1。改变表面羧酸化的石墨烯与PET的质量比,为0.1:100。通过DSC分析发现,复合物的结晶温度为214.9℃,纯PET的结晶温度为193.3℃。这说明,该表面羧酸化的石墨烯材料能够促进PET结晶,是一种高效的成核剂。
Claims (6)
1.一种提高聚对苯二甲酸乙二醇酯(PET)结晶速率的方法,其特征在于,采用表面羧酸化的石墨烯类物质作为PET的成核剂,将其分散到PET基体中,通过熔融共混,得到PET/石墨烯复合物,从而提高PET的结晶温度,加快结晶速率。
2.根据权利要求1所述的方法,其特征在于,熔融共混的条件是:加工温度240-300 ℃之间,加工时间为1-30 min之间。
3.根据权利要求1或2所述的方法,其特征在于,所述石墨烯类物质为具有单层或寡层结构的各种碳材料,包括石墨烯、氧化石墨烯、寡层石墨微片或微粉。
4.根据权利要求3所述的方法,其特征在于,所述的寡层结构,是指该物质中大多数物质的堆积层数不多于20层。
5.根据权利要求1、2或4所述的方法,其特征在于,所述的表面羧酸化的石墨烯类物质,是单层或寡层结构的各种碳材料的表面具有大量羧基,或表面各种官能团中以羧酸基团为主。
6.根据权利要求5所述的方法,其特征在于,表面羧酸化的石墨烯的用量,以PET质量计为0.001-10%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711447632.2A CN108219397B (zh) | 2017-12-27 | 2017-12-27 | 一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711447632.2A CN108219397B (zh) | 2017-12-27 | 2017-12-27 | 一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108219397A true CN108219397A (zh) | 2018-06-29 |
CN108219397B CN108219397B (zh) | 2020-05-26 |
Family
ID=62649152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711447632.2A Active CN108219397B (zh) | 2017-12-27 | 2017-12-27 | 一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108219397B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647178A (zh) * | 2020-04-30 | 2020-09-11 | 哈尔滨工业大学 | 改性石墨烯增强聚合物阻隔材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101987911A (zh) * | 2009-08-07 | 2011-03-23 | 骏马化纤股份有限公司 | 一种提高聚2,6-萘二甲酸乙二醇酯结晶速率的方法 |
CN104203835A (zh) * | 2012-03-16 | 2014-12-10 | 洛克希德马丁公司 | 用于去离子化的石墨烯孔的功能化 |
CN106589847A (zh) * | 2016-12-08 | 2017-04-26 | 贵州省材料产业技术研究院 | 一种高阻隔抗静电石墨烯/聚合物纳米复合片材/膜及其制备方法 |
CN107325268A (zh) * | 2017-06-26 | 2017-11-07 | 杭州高烯科技有限公司 | 一种石墨烯/pet纳米复合材料及其制备方法 |
CN108026021A (zh) * | 2015-07-08 | 2018-05-11 | 尼亚加拉装瓶有限责任公司 | 石墨烯增强的聚对苯二甲酸乙二酯 |
-
2017
- 2017-12-27 CN CN201711447632.2A patent/CN108219397B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101987911A (zh) * | 2009-08-07 | 2011-03-23 | 骏马化纤股份有限公司 | 一种提高聚2,6-萘二甲酸乙二醇酯结晶速率的方法 |
CN104203835A (zh) * | 2012-03-16 | 2014-12-10 | 洛克希德马丁公司 | 用于去离子化的石墨烯孔的功能化 |
CN108026021A (zh) * | 2015-07-08 | 2018-05-11 | 尼亚加拉装瓶有限责任公司 | 石墨烯增强的聚对苯二甲酸乙二酯 |
CN106589847A (zh) * | 2016-12-08 | 2017-04-26 | 贵州省材料产业技术研究院 | 一种高阻隔抗静电石墨烯/聚合物纳米复合片材/膜及其制备方法 |
CN107325268A (zh) * | 2017-06-26 | 2017-11-07 | 杭州高烯科技有限公司 | 一种石墨烯/pet纳米复合材料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
SHIGERU AOYAMA ET.AL: "Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes", 《POLYMER》 * |
张小诗: "石墨剥离制备石墨烯的研究进展", 《炭素技术》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647178A (zh) * | 2020-04-30 | 2020-09-11 | 哈尔滨工业大学 | 改性石墨烯增强聚合物阻隔材料的制备方法 |
CN111647178B (zh) * | 2020-04-30 | 2022-07-05 | 哈尔滨工业大学 | 改性石墨烯增强聚合物阻隔材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108219397B (zh) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry | |
Cao et al. | Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods | |
Elleithy et al. | High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties | |
Chen et al. | Poly (lactic acid)/poly (butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: Analysis of mechanical properties, morphology, and crystallization behavior | |
Nath et al. | Surface-coated fly ash used as filler in biodegradable poly (vinyl alcohol) composite films: Part 1—The modification process | |
CN106317814B (zh) | 用于快速成型的聚乳酸材料 | |
Zeng et al. | Effect of tetra-needle-shaped zinc oxide whisker (T-ZnOw) on mechanical properties and crystallization behavior of isotactic polypropylene | |
Kim et al. | Ultra-high-speed processing of nanomaterial-reinforced woven carbon fiber/polyamide 6 composites using reactive thermoplastic resin transfer molding | |
Ding et al. | Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites | |
Pedrazzoli et al. | Thermal, viscoelastic and mechanical behavior of polypropylene with synthetic boehmite alumina nanoparticles | |
Han et al. | Mechanical properties, morphology and crystallization kinetic studies of bio‐based thermoplastic composites of poly (butylene succinate) with recycled carbon fiber | |
Zhong et al. | Crystalline morphology of isotactic polypropylene (iPP) in injection molded poly (ethylene terephthalate)(PET)/iPP microfibrillar blends | |
CN104479205A (zh) | 一种石墨烯改性聚乙烯高强度复合薄型制品的注塑成型方法 | |
Hanim et al. | The effect of calcium carbonate nanofiller on the mechanical properties and crystallisation behaviour of polypropylene | |
CN101962470B (zh) | 一种可生物降解的聚碳酸亚丙酯复合材料及其制备方法 | |
Ning et al. | Effect of whiskers nucleation ability and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites | |
Petchwattana et al. | Synergistic effect of talc and titanium dioxide on poly (lactic acid) crystallization: An investigation on the injection molding cycle time reduction | |
CN108219397A (zh) | 一种提高聚对苯二甲酸乙二醇酯结晶速率的方法 | |
Wei et al. | Optimization of polyamide 1012 powder for laser powder bed fusion via complexation with metal ions | |
Su et al. | Melt blending of polypropylene‐blend‐polyamide 6‐blend‐organoclay systems | |
Qu et al. | Effect of compatibilizer and nucleation agent on the properties of poly (lactic acid)/polycarbonate (PLA/PC) blends | |
Su et al. | Orientation in high-density polyethylene/inorganic whisker composite fibers as studied via polarized Fourier transform infrared spectroscopy | |
Madhukar et al. | Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly (methyl methacrylate) blend system | |
Rocha et al. | Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties | |
Zhou et al. | Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |