CN108198896B - 一种MnWO4纳米板光敏场效应晶体管及其制造方法 - Google Patents

一种MnWO4纳米板光敏场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN108198896B
CN108198896B CN201711223018.8A CN201711223018A CN108198896B CN 108198896 B CN108198896 B CN 108198896B CN 201711223018 A CN201711223018 A CN 201711223018A CN 108198896 B CN108198896 B CN 108198896B
Authority
CN
China
Prior art keywords
mnwo
nano
plates
metal electrode
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711223018.8A
Other languages
English (en)
Other versions
CN108198896A (zh
Inventor
刘宝丹
张兴来
姜亚南
刘鲁生
杨文进
李晶
姜辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201711223018.8A priority Critical patent/CN108198896B/zh
Publication of CN108198896A publication Critical patent/CN108198896A/zh
Application granted granted Critical
Publication of CN108198896B publication Critical patent/CN108198896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于无机半导体纳米材料技术和器件应用领域,特别是指一种MnWO4纳米板光敏场效应晶体管及其制造方法。本发明MnWO4纳米板光敏场效应晶体管,自下至上依次包括栅极金属电极、Si衬底、SiO2绝缘层,SiO2绝缘层上设置单根MnWO4纳米板、源极金属电极和漏极金属电极,源极金属电极和漏极金属电极分别覆盖在单根MnWO4纳米板的两端,且形成欧姆接触。本发明通过利用微弧氧化方法,生长大面积、高产量和结晶质量优异的MnWO4纳米板,进而利用其制备背栅结构的MnWO4纳米板光敏场效应晶体管。本发明的方法工艺简单、成本低、可大规模生长高结晶质量的MnWO4纳米板材料,便于产业化推广。

Description

一种MnWO4纳米板光敏场效应晶体管及其制造方法
技术领域
本发明属于无机半导体纳米材料技术和器件应用领域,特别是指一种 MnWO4纳米板光敏场效应晶体管及其制造方法。
背景技术
场效应晶体管(TFT)是电压控制器件,通过改变电场控制固体材料的导电能力。场效应晶体管在大规模集成电路和显示面板中应用广泛,是模拟和数字集成电路的基础,具有集成度高、输入阻抗大、性能稳定和制备工艺成熟的优点。 1951年,Shockley首次提出了光敏场效应晶体管的概念,将半导体的光诱导效应与晶体管的场效应相结合,使其具有光电探测功能。相比于光敏二极管,工作在“关”态的光敏场效应晶体管具有更高的增益和光照/暗态电流比;且由于其制作是基于薄膜晶体管(TFT)工艺,因此更容易集成到电路中,对于实现光电探测及其阵列(图像传感器)和光电子集成电路具有重要的意义。
一维(1D)半导体材料因其很高的光抽取/吸收效率、很大的比表面积和很高的载流子迁移率等诸多优异的光电性能,被认为是构筑下一代半导体纳米芯片最有前景的基本单元。因此,利用各种1D纳米材料来制备光敏场效应晶体管也引起了人们广泛的关注,成为了目前的研究热点之一。作为一种重要的n型半导体, MnWO4由于其特殊的电学和光学特性,以及在光致发光、光催化、多铁性器件和湿度传感器等领域的重要应用,成为一种很有前景的材料。然而,由于目前大规模制备高结晶质量的1D MnWO4纳米材料还存在诸多困难,基于1D MnWO4纳米材料的高性能光敏场效应晶体管还未见报道。并且,现有的基于1D纳米材料的光敏场效应晶体管普遍存在着光响应度低、响应时间慢和阈值电压高等问题,不利于产业化应用。
发明内容
为了解决现有技术存在的上述问题,本发明的目的在于提供一种制备方法简单、成本低廉、阈值电压低、光响应时间快和光响应度高的MnWO4纳米板光敏场效应晶体管及其制造方法。
为了实现上述目的,本发明的技术方案如下:
一种MnWO4纳米板光敏场效应晶体管,自下至上依次包括栅极金属电极、 Si衬底、SiO2绝缘层,SiO2绝缘层上设置单根MnWO4纳米板、源极金属电极和漏极金属电极,源极金属电极和漏极金属电极分别覆盖在单根MnWO4纳米板的两端,且形成欧姆接触。
所述的栅极金属电极为Ag、Ti/Au或Cr/Au,栅极金属电极的厚度为10–100 nm。
所述的Si衬底厚度为500–800μm,所述的SiO2绝缘层的厚度为100–300 nm,所述的MnWO4纳米板长度为100μm–1mm、宽度为10nm–10μm、厚度为10–900nm。
所述的Si衬底为重掺杂p型或n型Si。
所述的源极金属电极和漏极金属电极为Ag、Ti/Au、Cr/Au、Ni/Au、Ti/Al/Ti/Au 或Ti/Al/Ni/Au;所述的源极金属电极和漏极金属电极厚度为20–200nm,源极金属电极和漏极金属电极的间距为100nm–1mm。
所述的MnWO4纳米板光敏场效应晶体管的制备方法,包括以下步骤:
步骤1:将用于生长MnWO4纳米板的Ti片基底用砂纸打磨,然后依次置于丙酮溶液、酒精溶液和去离子水中超声清洗,每步清洗5~15分钟,清洗后用氮气吹干;
步骤2:利用微弧氧化方法在电解液中将Ti片基底氧化一层多孔TiO2薄膜;
步骤3:将氧化有TiO2薄膜的Ti片基底迅速转移至高温管式炉的中央;然后,将高温管式炉升至MnWO4纳米板的生长温度,并恒温一段时间后停止加热,使管式炉自然冷却至室温,得到MnWO4纳米板;
步骤4:利用沉积的方法在Si衬底表面沉积一层栅极金属电极;
步骤5:利用物理剥离的方法将MnWO4纳米板从Ti片基底转移至酒精溶液,超声震荡2~5分钟;然后,利用旋涂的方法将MnWO4纳米板转移并分散至SiO2绝缘层表面;
步骤6:利用光刻和沉积的方法在单根MnWO4纳米板两端制备一层源极金属电极和漏极金属电极,形成最终的MnWO4纳米板光敏场效应晶体管。
所述的电解液包括Na3PO4·12H2O,Na2B4O7·10H2O,Na2WO4·2H2O和Mn(CH3COO)2·2H2O,Na3PO4·12H2O浓度为0.6–1.0mol/L,Na2B4O7·10H2O浓度为0.02–0.06mol/L,Na2WO4·2H2O浓度为0.01–0.04mol/L,Mn(CH3COO)2·2H2O 浓度为0.05–0.2mol/L,余量为水;电解液的温度控制在20–40℃,并且电解液持续磁力搅拌。
所述的微弧氧化施加的电流密度为0.05–0.2A/cm2,工作频率为800–12000 Hz,时间为10–20min。
所述的生长温度为850–950℃,恒温一段时间为30–120min。
所述的沉积的方法为磁控溅射、电子束蒸发或热蒸发。
与现有技术相比,本发明的MnWO4纳米板光敏场效应晶体管及其制造方法的优点及有益效果在于:
1)相比于溶胶-凝胶、水热和微波辅助等制备MnWO4纳米材料的方法,本发明提出的微弧氧化方法,工艺简单、成本低廉,可以大规模制备1D MnWO4纳米材料,并且所制备的1D MnWO4纳米板是单晶结构,有着很高的载流子迁移率,为制备高性能的光敏场效应晶体管奠定了很好的材料基础。
2)本发明的光敏场效应晶体管有着优异的栅极调控能力,显示出很高的开/ 关电流比和跨导,以及很小的阈值电压。
3)本发明的光敏场效应晶体管有着非常优异的光电转换特性,显示出很高的光响应度和比探测率,以及很快的光响应时间。
4)本发明的单根MnWO4纳米板的载流子迁移率可高达45.6cm2/V·s,光敏场效应晶体管显示出n型传输特性、优异的栅极调控能力和光电转换特性,其阈值电压仅有1V,跨导可达2.7μS,光响应度和比探测率分别高达3.21×104A/W 和4.9×1010Jones,光响应时间只有320ms。
附图说明
图1是MnWO4纳米板光敏场效应晶体管的三维结构示意图。图中,1、栅极金属电极;2、Si衬底;3、SiO2绝缘层;4、MnWO4纳米板;5、源极金属电极; 6、漏极金属电极。
图2是微弧氧化装置的示意图。图中,7、石墨阴极;8、Ti片阳极;9、电解液;10、磁子;11、磁力搅拌器。
图3是在Ti片基底上所制备的MnWO4纳米板的光学照片。
图4是MnWO4纳米板的扫描电子显微镜(SEM)图像。(a)是低倍SEM图像;(b)是高倍SEM图像。
图5(a)是MnWO4纳米板的高分辨透射电子显微镜(HRTEM)图像;图5 (b)是MnWO4纳米板的选区电子衍射(SAED)图像。
图6(a)是MnWO4纳米板的X射线衍射(XRD)图谱;图6(b)是MnWO4纳米板的成分能谱分析(EDS)。
图7是MnWO4纳米板光敏场效应晶体管俯视图的光学照片。
图8(a)是MnWO4纳米板光敏场效应晶体管在不同栅压条件下的输出特性曲线;其中,横坐标Vds代表输出电压(V),纵坐标Ids代表输出电流(μA)。图 8(b)是在不同源–漏极电压条件下的转移特性曲线;其中,横坐标Vg代表栅压 (V),纵坐标Ids代表输出电流(μA)。
图9是MnWO4纳米板光敏场效应晶体管的转移特性曲线(Vds=0.3V);其中,横坐标Vg代表栅压(V),纵坐标Ids代表输出电流(μA)。
图10是MnWO4纳米板光敏场效应晶体管在不同光照强度(白光)下的I-V 特性曲线(Vg=0);其中,横坐标Vds代表输出电压(V),纵坐标Ids代表输出电流(μA)。
图11是MnWO4纳米板光敏场效应晶体管在白光照射下的开关特性曲线;其中,横坐标为时间(s),纵坐标Ids代表输出电流(μA)。
图12是MnWO4纳米板光敏场效应晶体管在有光照和无光照条件下的转移特性曲线(Vds=0.3V);其中,横坐标Vg代表栅压(V),纵坐标Ids代表输出电流 (μA)。
具体实施方式:
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的MnWO4纳米板光敏场效应晶体管,自下至上依次包括栅极金属电极1、Si衬底2、SiO2绝缘层3,SiO2绝缘层3上设置单根MnWO4纳米板4、源极金属电极5和漏极金属电极6,源极金属电极5和漏极金属电极6 分别覆盖在单根MnWO4纳米板4的两端,且形成欧姆接触。
参照图2,本发明所采用的微弧氧化法,其装置依次有微弧氧化电源、石墨阴极7、Ti片阳极8、电解液9、磁子10、磁力搅拌器11,两个石墨阴极7相对设置于电解槽内电解液9中,Ti片阳极8设置电解液9中两个石墨阴极7之间,微弧氧化电源的正极与Ti片阳极8通过导线连接,微弧氧化电源的负极与石墨阴极7通过导线连接,磁子10、磁力搅拌器11相对设置,磁子10位于电解槽内的底部,磁力搅拌器11位于电解槽的下方。
下面,通过实施例对本发明进一步详细阐述。
实施例:
本实施例中,MnWO4纳米板光敏场效应晶体管的制造方法,具体步骤如下:
1)将用于生长MnWO4纳米板的商业Ti片基底用砂纸(2000目)打磨,去除表面的杂质和氧化层。然后,将打磨后的Ti片依次置于丙酮、酒精和去离子水中超声清洗,每步清洗10分钟以去除表面的有机物和离子杂质,清洗后用氮气吹干备用。
2)利用微弧氧化方法在电解液中将Ti片上制备一层含有Mn2+和W6+离子的多孔TiO2薄膜,多孔TiO2薄膜的孔隙率为~37%、平均孔径为1μm,多孔TiO2薄膜的厚度为~20μm。首先,配备含有0.8mol/L Na3PO4·12H2O、0.04mol/L Na2B4O7·10H2O、0.02mol/L Na2WO4·2H2O、0.1mol/L Mn(CH3COO)2·2H2O和余量水的电解液用来产生电弧和生成含有Mn2+、W6+离子的多孔TiO2薄膜。然后,将 Ti片连接至电源的正极作为微弧氧化的阳极,导电石墨连接至电源的负极作为微弧氧化的阴极。微弧氧化的时间设置为15min,施加的电流密度为0.1A/cm2,工作频率为1000Hz。在微弧氧化过程中,在电解液中放入冰块使电解液的温度控制在20–40℃,同时利用持续磁力搅拌来均匀搅拌电解液以便于形成均匀的多孔TiO2薄膜,微弧氧化装置见图2。
3)在微弧氧化过程后,将表面生长含有Mn2+、W6+离子多孔TiO2薄膜的Ti 片迅速转移至单温区管式炉中,在850℃下加热60min。加热结束后,使管式炉自然降温至室温。这时,在TiO2薄膜表面得到大面积、均匀的MnWO4纳米板。
4)利用电子束蒸发的方法在Si衬底表面沉积一层Ti/Au金属,作为光敏场效应晶体管的栅极金属电极;栅极金属电极中,Ti的厚度为30nm,Au的厚度为 50nm,Si衬底的厚度为600μm。
5)将MnWO4纳米板从TiO2薄膜表面剥落后转移至酒精溶液中,并超声振荡3min。然后,利用旋涂的方法将MnWO4纳米板转移至SiO2绝缘层的表面。其中,SiO2绝缘层的厚度为300nm。
6)利用光学显微镜,在SiO2绝缘层上找到单根MnWO4纳米板,利用传统的光刻方法在MnWO4纳米板两端光刻出电极图形。然后,结合电子束蒸发的方法在MnWO4纳米板两端沉积一层Ti/Au金属,一端作为光敏场效应晶体管的源极,另一端作为光敏场效应晶体管的的漏极,形成最终的MnWO4纳米板光敏场效应晶体管;源极金属电极5和漏极金属电极6中,Ti的厚度为10nm,Au的厚度为50nm,源极金属电极5和漏极金属电极6的间距为5μm,MnWO4纳米板的长度为~100μm、宽度为~900nm、厚度为~200nm。
参照图3,从在Ti片基底上利用微弧氧化法制备MnWO4纳米板的光学照片可以看出,该方法可以制备大尺寸、产量高的1D MnWO4纳米板。
参照图4,从MnWO4纳米板的SEM图像可以看出,本发明的MnWO4纳米板表面光滑、尺寸均一、形貌整齐、可重复性高。
参照图5,从MnWO4纳米板的HRTEM图像(a)可以看出,本发明的MnWO4纳米板有着很好的晶体质量,且沿着[0001]方向择优生长。从SAED图像(b)可以看出,MnWO4纳米板为单晶。
参照图6,从MnWO4纳米板的XRD(a)图谱可以看出,本发明的MnWO4纳米板为单斜结构,除了来自基底TiO2的衍射峰外(图中用*号标注),所有其他衍射峰都来自于单斜结构的MnWO4,说明其很高的相纯度。从MnWO4纳米板的EDS分析(b)可以看出,本发明的MnWO4纳米板仅包含Mn、W和O元素,并且各元素之间的原子比例为1:1:4,显示出优异的化学纯度。
参照图7,从MnWO4纳米板光敏场效应晶体管俯视图的光学照片可以看出,源极金属电极和漏极金属电极分别沉积在MnWO4纳米板的两端,且紧密接触。
参照图8,从MnWO4纳米板敏场效应晶体管的的输出特性曲线(a)和转移特性曲线(b)可以看出,本发明所制备的MnWO4纳米板表现出典型的n型半导体特性,并且利用晶体管的栅压(Vg)可以有效调节源–漏电极之间的输出电流 (Ids),显示出优异的栅极调控性能。
参照图9,从MnWO4纳米板光敏场效应晶体管的转移特性曲线(Vds=0.3V) 可以计算出,本发明的MnWO4纳米板的载流子迁移率为45.6cm2/V·s,MnWO4纳米板敏场效应晶体管的跨导为2.7μS,阈值电压仅有1V,电流开关比可达4.8×102
参照图10,从MnWO4纳米板光敏场效应晶体管在不同光照强度(白光)下的I-V特性曲线(Vg=0)可以看出,随着入射光强度的增加光电流也逐渐增加,显示出很好的光敏感特性。通过计算,本发明的MnWO4纳米板光敏场效应晶体管的光响应度高达3.2×104A/W,比探测率为4.9×1010Jones。
参照图11,从MnWO4纳米板光敏场效应晶体管在白光照射下的开关特性曲线可以看出,本发明的光敏场效应晶体管的光、暗电流稳定、响应时间快(320ms)、开光重复性高,显示出极其优异的光电信号转换特性和开关特性。
参照图12,从MnWO4纳米板光敏场效应晶体管在有光照和无光照条件下的转移特性曲线可以看出,入射光可以很好的调控光敏场效应晶体管的电学性能。
实施例结果表明,相比于传统的光敏场效应晶体管,本发明的MnWO4纳米板光敏场效应晶体管阈值电压低、跨导大、光响应度和比探测率高,以及很光响应速度快。其制作工艺简单、成本低、有利于在纳米器件领域广泛应用。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种MnWO4纳米板光敏场效应晶体管,其特征在于,自下至上依次包括栅极金属电极、Si衬底、SiO2绝缘层,SiO2绝缘层上设置单根MnWO4纳米板、源极金属电极和漏极金属电极,源极金属电极和漏极金属电极分别覆盖在单根MnWO4纳米板的两端,且形成欧姆接触。
2.根据权利要求1所述的MnWO4纳米板光敏场效应晶体管,其特征在于,所述的栅极金属电极为Ag、Ti/Au或Cr/Au,栅极金属电极的厚度为10 – 100 nm。
3.根据权利要求1所述的MnWO4纳米板光敏场效应晶体管,其特征在于,所述的Si衬底厚度为500 – 800 μm,所述的SiO2绝缘层的厚度为100 – 300 nm,所述的MnWO4纳米板长度为100 μm – 1 mm、宽度为10 nm – 10 μm、厚度为10 – 900 nm。
4.根据权利要求1所述的MnWO4纳米板光敏场效应晶体管,其特征在于,所述的Si衬底为重掺杂p型或n型Si。
5.根据权利要求1所述的MnWO4纳米板光敏场效应晶体管,其特征在于,所述的源极金属电极和漏极金属电极为Ag、Ti/Au、Cr/Au、Ni/Au、Ti/Al/Ti/Au或Ti/Al/Ni/Au;所述的源极金属电极和漏极金属电极厚度为20 – 200 nm,源极金属电极和漏极金属电极的间距为100nm – 1 mm。
6.一种权利要求1至5之一所述的MnWO4纳米板光敏场效应晶体管的制备方法,其特征在于,包括以下步骤:
步骤1:将用于生长MnWO4纳米板的Ti片基底用砂纸打磨,然后依次置于丙酮溶液、酒精溶液和去离子水中超声清洗,每步清洗5~15分钟,清洗后用氮气吹干;
步骤2:利用微弧氧化方法在电解液中将Ti片上制备一层含有Mn2+和W6+离子的多孔TiO2薄膜;
步骤3:将氧化有TiO2薄膜的Ti片基底迅速转移至高温管式炉的中央;然后,将高温管式炉升至MnWO4纳米板的生长温度,并恒温一段时间后停止加热,使管式炉自然冷却至室温,得到MnWO4纳米板;
步骤4:利用沉积的方法在Si衬底表面沉积一层栅极金属电极;
步骤5:利用物理剥离的方法将MnWO4纳米板从Ti片基底转移至酒精溶液,超声震荡2~5分钟;然后,利用旋涂的方法将MnWO4纳米板转移并分散至SiO2绝缘层表面;
步骤6:利用光刻和沉积的方法在单根MnWO4纳米板两端制备一层源极金属电极和漏极金属电极,形成最终的MnWO4纳米板光敏场效应晶体管。
7.根据权利要求6所述的MnWO4纳米板光敏场效应晶体管的制备方法,其特征在于,所述的电解液包括Na3PO4·12H2O,Na2B4O7·10H2O,Na2WO4·2H2O和Mn(CH3COO)2·2H2O,Na3PO4·12H2O浓度为0.6 – 1.0 mol/L,Na2B4O7·10H2O浓度为0.02 – 0.06 mol/L,Na2WO4·2H2O浓度为0.01 – 0.04 mol/L,Mn(CH3COO)2·2H2O浓度为0.05 – 0.2 mol/L,余量为水;电解液的温度控制在20 – 40 ℃,并且电解液持续磁力搅拌。
8.根据权利要求6所述的MnWO4纳米板光敏场效应晶体管的制备方法,其特征在于,所述的微弧氧化施加的电流密度为0.05 – 0.2 A/cm2,工作频率为800 – 12000 Hz,时间为10– 20 min。
9.根据权利要求6所述的MnWO4纳米板光敏场效应晶体管的制备方法,其特征在于:所述的生长温度为850 – 950℃,恒温一段时间为30 – 120 min。
10.根据权利要求6所述的MnWO4纳米板光敏场效应晶体管的制备方法,其特征在于,所述的沉积的方法为磁控溅射、电子束蒸发或热蒸发。
CN201711223018.8A 2017-11-29 2017-11-29 一种MnWO4纳米板光敏场效应晶体管及其制造方法 Active CN108198896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711223018.8A CN108198896B (zh) 2017-11-29 2017-11-29 一种MnWO4纳米板光敏场效应晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711223018.8A CN108198896B (zh) 2017-11-29 2017-11-29 一种MnWO4纳米板光敏场效应晶体管及其制造方法

Publications (2)

Publication Number Publication Date
CN108198896A CN108198896A (zh) 2018-06-22
CN108198896B true CN108198896B (zh) 2019-08-16

Family

ID=62573237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711223018.8A Active CN108198896B (zh) 2017-11-29 2017-11-29 一种MnWO4纳米板光敏场效应晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN108198896B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549314A (zh) * 2003-05-14 2004-11-24 中国科学院物理研究所 一种高性能纳米晶体管的制备方法
CN106129135A (zh) * 2016-07-20 2016-11-16 电子科技大学 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549314A (zh) * 2003-05-14 2004-11-24 中国科学院物理研究所 一种高性能纳米晶体管的制备方法
CN106129135A (zh) * 2016-07-20 2016-11-16 电子科技大学 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法

Also Published As

Publication number Publication date
CN108198896A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Guo et al. Self-powered solar-blind photodetectors based on α/β phase junction of Ga 2 O 3
CN106601857B (zh) 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
CN108122999B (zh) 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法
Hou et al. Facile synthesize VO2 (M1) nanorods for a low-cost infrared photodetector application
CN106960883A (zh) 一种全无机钙钛矿太阳能电池及其制备方法
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
CN103579415A (zh) 一种氧化锌纳米线阵列紫外光电探测器的制备方法
Wang et al. Improvement in piezoelectric performance of a ZnO nanogenerator by modulating interface engineering of CuO-ZnO heterojunction
Zhao et al. A facile one-step synthesis of p-CuO/n-ZnO nanowire heterojunctions by thermal oxidation route
Chu et al. Fabrication and application of different nanostructured ZnO in ultraviolet photodetectors: a review
Zhang et al. Sm doped BiFeO3 nanofibers for improved photovoltaic devices
Luo et al. A self-powered ultraviolet photodetector with van der Waals Schottky junction based on TiO2 nanorod arrays/Au-modulated V2CTx MXene
Ameer et al. A theoretical and experimental formalism of electronic structure of BFO: Cr thin films and modulation of their electrical properties upon visible light illumination
CN108198896B (zh) 一种MnWO4纳米板光敏场效应晶体管及其制造方法
KR101218381B1 (ko) 금속산화물 나노와이어-월 전도막의 제조방법 및 이를 포함하는 유기태양전지
Inguva et al. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates
Wu et al. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
Wang et al. One-pot synthesis of branched CuInSe2 nanowires based on solution-liquid-solid method and their implementation in photovoltaic devices
Wang et al. Vertically aligned CdTe nanorods array for novel three-dimensional heterojunction solar cells on Ni substrates
Nie et al. Electrochemical synthesis of p-Cu 2 O/n-ZnO heterojuncion for enhanced piezoelectric nanogenerators
CN102629632B (zh) 一种cigs纳米结构薄膜光伏电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant