CN108188386B - 一种表面洁净的超薄Ag纳米片及其制备方法 - Google Patents

一种表面洁净的超薄Ag纳米片及其制备方法 Download PDF

Info

Publication number
CN108188386B
CN108188386B CN201711429619.4A CN201711429619A CN108188386B CN 108188386 B CN108188386 B CN 108188386B CN 201711429619 A CN201711429619 A CN 201711429619A CN 108188386 B CN108188386 B CN 108188386B
Authority
CN
China
Prior art keywords
ultra
thin
nanometer sheet
reducing agent
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711429619.4A
Other languages
English (en)
Other versions
CN108188386A (zh
Inventor
孔春才
杨志懋
马波
杨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711429619.4A priority Critical patent/CN108188386B/zh
Publication of CN108188386A publication Critical patent/CN108188386A/zh
Application granted granted Critical
Publication of CN108188386B publication Critical patent/CN108188386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Abstract

本发明提供了一种表面洁净的超薄Ag纳米片及其制备方法,所述超薄Ag纳米片表面无表面活性剂。本发明的超薄Ag纳米片的制备方法是利用了Cu比Ag具有更高的金属活性,在空心Cu壳结构中,不添加任何表面活性剂,让Ag+离子在常温常压下置换出厚度在10‑20nm左右的超薄Ag片。所述超薄Ag纳米片不仅具有10‑20nm的超薄厚度,而且具有微米级的巨大表面,应用在电化学检测过氧化氢含量时,具有较高的检测极限、较高的检测灵敏度、较好的循环性能和稳定性能。

Description

一种表面洁净的超薄Ag纳米片及其制备方法
技术领域
本发明涉及纳米银基材料技术领域,主要应用于电化学传感和表面增强拉曼光谱(SERS)等,具体涉及一种表面洁净的超薄Ag纳米片及其制备方法。
背景技术
银基材料作为最廉价的贵金属材料,包括纳米球、纳米棒、纳米带、纳米枝状等多种形貌均可以可控制备。其中二维材料银纳米片因其具有极高的表面特性,可以更快的在表面传输电子,因此Ag纳米片相较而言具有优异的电化学传感、表面增强拉曼光谱和催化性能等,广泛应用于电子、化工、医疗、生物等诸多领域。
目前的合成Ag纳米片的方式主要有两种:一种是化学沉积,一种是从含Ag+的盐溶液中置换出来。但目前文献报道的制备方法中,大都需要添加大量表面活性剂来形成较薄的纳米片,如已报道的文献中,李中春等(CN105268993A)利用利用亚铁盐溶液和硝酸银等制备的银纳米片需要加入聚乙烯吡咯烷酮、十六烷基三甲基溴化铵和十二烷基硫酸钠,鲁颖炜等(CN105127448A)室温下利用硫酸铁和硝酸银等制备的纳米银片需要加入聚乙烯吡咯烷酮,周虎等(CN105268995A) 利用硼氢化钠和硝酸银等制备的银纳米片需要加入聚乙烯吡咯烷酮,高明等 (CN103769601A)利用三氟乙酸银和金属盐在高温下制备的三角片状银纳米片需要加入聚乙烯吡咯烷酮,陈海波(CN102133645A)等利用葡萄糖和硝酸银氧化液制备的三角片状银纳米片需要加入聚乙烯基吡咯烷酮。而表面残留的表面活性剂会占据在活性位点上,影响电化学传感的极限和灵敏度。
现有技术中Ag片的制备方法(化学沉积方法和从含Ag+的盐溶液中的置换) 需要加入表明活性剂来控制形貌合成,残余在表面的活性剂使得Ag纳米片的表面优势无法充分发挥。
因此,研究出一种表面洁净的(无表面活性剂)超薄Ag纳米片的制备方法成为关键步骤。
发明内容
为解决上述背景技术中存在的问题,本发明提供了一种制备表面洁净的超薄 Ag片及其制备方法,与现有的其他方法不同,本发明利用Cu比Ag具有更高的金属活性,在空心Cu壳结构中,不添加任何表面活性剂,让Ag+离子在常温常压下置换出厚度在10-20nm左右的超薄Ag片,
本发明的一个方面提供了一种表面洁净的超薄Ag纳米片,其厚度为 10-20nm,所述超薄Ag纳米片表面无表面活性剂。
优选的,所述超薄Ag纳米片为单分散形态或花状。
本发明的另一方面提供了一种表面洁净的超薄Ag纳米片的制备方法,包括如下步骤:
(1)在一定浓度的铜盐溶液中加入碱性溶液,再加入还原剂,将Cu2+还原为Cu+,得到氧化亚铜;
(2)步骤(1)得到的氧化亚铜放入乙二醇溶液中,先后加入碱性溶液和还原剂,将Cu+还原为Cu0,得到空心Cu壳;
(3)将步骤(2)中得到的空心Cu壳放入一定量的硝酸银溶液中,常温常压下搅拌,将Ag+置换为Ag0,收集并干燥得到的灰色粉体,即可得到厚度为 10-20nm的所述超薄纳米Ag片。
本发明的另一方面还提供了所述的超薄Ag纳米片在电化学检测过氧化氢含量中的用途。
本发明取得了有益的技术效果:本发明利用Cu比Ag具有更高的金属活性,在空心Cu壳结构中,不添加任何表面活性剂,让Ag+离子在常温常压下置换出厚度在10-20nm左右的超薄Ag片。本发明的表面洁净的超薄Ag纳米片不仅具有10-20nm的超薄厚度,而且具有微米级的巨大表面,应用在电化学检测过氧化氢含量时,具有较高的检测极限、较高的检测灵敏度、较好的循环性能和稳定性能。
附图说明
图1(a)-图1(c)是本发明制备所得单分散的超薄纳米Ag片扫描电子显微镜图;
图2是本发明制备所得花状的超薄纳米Ag片扫描电子显微镜图;
图3是本发明制备所得超薄纳米Ag片X射线衍射图谱。
具体实施方式
下面结合实施例对本发明作进一步的说明。
本发明的一个方面提供了一种表面洁净的超薄Ag纳米片,所述超薄Ag纳米片厚度为10-20nm,所述超薄Ag纳米片表面的无表面活性剂。
优选的,所述超薄Ag纳米片为单分散形态或花状。
本发明的另一方面提供了一种表面洁净的超薄Ag纳米片的制备方法,包括如下步骤:
(1)在一定浓度的铜盐溶液中加入碱性溶液,再加入还原剂,将Cu2+还原为Cu+,得到氧化亚铜;
(2)步骤(1)得到的氧化亚铜放入乙二醇溶液中,先后加入碱性溶液和还原剂,将Cu+还原为Cu0,得到空心Cu壳;
(3)将步骤(2)中得到的空心Cu壳放入一定量的硝酸银溶液中,常温常压下搅拌,将Ag+置换为Ag0,收集并干燥得到的灰色粉体,即可得到厚度为 10-20nm的所述超薄Ag纳米片。
优选的,所述铜盐为氯化铜、硫酸铜或醋酸铜。
优选的,所述的碱性溶液为氢氧化钠。
更优选的,所述的碱性溶液的浓度为3-5mol/L。
优选的,所述的还原剂为葡萄糖或对苯二酚。
更优选的,步骤(1)中,相对于50mL 0.3M的铜盐溶液,所述的还原剂用量为0.5-0.6g粉末;步骤(2)中,所用的还原剂用量为50-70mL浓度为1.1mol/L 的溶液。
优选的,步骤(1)中反应温度保持在50-80℃,反应30-60分钟。
优选的,步骤(2)中的反应温度保持在40-70℃,反应1-4h。
优选的,步骤(3)中Cu和Ag摩尔比例为5∶5~5∶7。
本发明的另一方面还提供了所述的超薄Ag纳米片的用途,用于检测过氧化氢的含量。
实施例1:
(1)在50ml氯化铜溶液(0.3M)中加入30ml的氢氧化钠溶液(3M),再加入0.6g葡萄糖粉末,整个反应温度保持在70℃,将Cu2+还原为Cu+,反应 30分钟得到一种26面体的氧化亚铜。
(2)将26面体的氧化亚铜分散在180ml乙二醇溶液中,加入60ml的氢氧化钠溶液(5M),再加入60ml的葡萄糖溶液(1.1M),整个反应温度保持在 60℃,将Cu+还原为Cu0,反应120分钟得到一种空心Cu壳。
(3)将空心Cu壳放入一定量的硝酸银溶液中,其中Cu和Ag摩尔比例为 5∶7,在常温23℃下以550rpm转速搅拌,将Ag+置换为Ag0,7000rpm离心2 分钟收集并干燥得到的灰色粉体,即可得到厚度在10nm左右的单分散的超薄纳米Ag片。
所得超薄纳米Ag片的扫描电子显微镜图如附图1(a)-图1(c)所示,XRD 谱图如附图3所示。
由扫描电子显微镜图可看出,该纳米Ag片具有清晰的薄片结构,厚度为10nm 左右。由图3可知,XRD图谱中并没有出现Cu或者Cu2O等其它杂质的峰,说明所制备的产物为高纯的Ag。
实施例2
(1)在50ml氯化铜溶液(0.3M)中加入30ml的氢氧化钠溶液(3M),再加入0.5g葡萄糖粉末,整个反应温度保持在70℃,将Cu2+还原为Cu+,反应 30分钟得到一种26面体的氧化亚铜。
(2)将26面体的氧化亚铜分散在180ml乙二醇溶液中,加入60ml的氢氧化钠溶液(5M),再加入60ml的葡萄糖溶液(1.1M),整个反应温度保持在 60℃,将Cu+还原为Cu0,反应120分钟得到一种空心Cu壳。
(3)将空心Cu壳放入一定量的硝酸银溶液中,其中Cu和Ag摩尔比例为 5∶6,在常温23℃下以550rpm转速搅拌,将Ag+置换为Ag0,7000rpm离心2 分钟收集并干燥得到的灰色粉体,即可得到厚度在15nm左右的单分散的超薄纳米Ag片。
实施例3
(1)在30ml硫酸铜溶液(2mM)中加入10ml的氢氧化钠溶液(3.6M),再加入0.5g对苯二酚粉末,整个反应温度保持在55℃,将Cu2+还原为Cu+,反应 60分钟得到一种26面体的氧化亚铜。
(2)将26面体的氧化亚铜分散在180ml乙二醇溶液中,加入60ml的氢氧化钠溶液(5M),再加入60ml的葡萄糖溶液(1.1M),整个反应温度保持在 60℃,将Cu+还原为Cu0,反应120分钟得到一种空心Cu壳。
(3)将空心Cu壳放入一定量的硝酸银溶液中,其中Cu和Ag比例为5∶5,,在常温常压下以550rpm转速搅拌,将Ag+置换为Ag0,7000rpm离心2分钟收集并干燥得到的灰色粉体,即可得到厚度在15nm左右的花状的超薄纳米Ag片。
所得超薄纳米Ag片的扫描电子显微镜图如附图2所示,由扫描电子显微镜图可看出,该纳米Ag片具有花瓣状结构。
上述内容仅为本发明的较佳实施例。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其它等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (8)

1.一种表面洁净的超薄Ag纳米片的制备方法,其特征在于,包括如下步骤:
(1)在一定浓度的铜盐溶液中加入碱性溶液,再加入还原剂,将Cu2+还原为Cu+,得到氧化亚铜;
(2)步骤(1)得到的氧化亚铜放入乙二醇溶液中,先后加入碱性溶液和还原剂,将Cu+还原为Cu0,得到空心Cu壳;
(3)将步骤(2)中得到的空心Cu壳放入一定量的硝酸银溶液中,其中Cu和Ag的摩尔比为5∶5-5∶7,常温常压下搅拌,将Ag+置换为Ag0,收集并干燥得到的灰色粉体,即可得到厚度为10-20nm的所述超薄Ag纳米片;
所述超薄Ag纳米片的厚度为10-20nm,所述超薄Ag纳米片的表面无表面活性剂。
2.根据权利要求1所述的方法,其特征在于:所述铜盐为氯化铜、硫酸铜或醋酸铜。
3.根据权利要求1所述的方法,其特征在于:所述的碱性溶液为氢氧化钠。
4.根据权利要求1所述的方法,其特征在于:所述的还原剂为葡萄糖或对苯二酚。
5.根据权利要求3所述的方法,其特征在于:所述的碱性溶液的浓度为3-5mol/L。
6.根据权利要求1所述的方法,其特征在于:步骤(1)中,所述还原剂为葡萄糖,铜盐与葡萄糖的摩尔比为5∶(1~1.1);步骤(2)中,还原剂过量加入。
7.根据权利要求1所述的方法,其特征在于:步骤(1)中,所述还原剂为对苯二酚,铜盐与对苯二酚的摩尔比为2∶(1~1.1);步骤(2)中,还原剂过量加入。
8.根据权利要求1-7任一项所述的方法制备的超薄Ag纳米片的用途,其特征在于,用于检测过氧化氢的含量。
CN201711429619.4A 2017-12-25 2017-12-25 一种表面洁净的超薄Ag纳米片及其制备方法 Active CN108188386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711429619.4A CN108188386B (zh) 2017-12-25 2017-12-25 一种表面洁净的超薄Ag纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711429619.4A CN108188386B (zh) 2017-12-25 2017-12-25 一种表面洁净的超薄Ag纳米片及其制备方法

Publications (2)

Publication Number Publication Date
CN108188386A CN108188386A (zh) 2018-06-22
CN108188386B true CN108188386B (zh) 2019-10-15

Family

ID=62584146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711429619.4A Active CN108188386B (zh) 2017-12-25 2017-12-25 一种表面洁净的超薄Ag纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN108188386B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109648096B (zh) * 2019-01-09 2021-12-10 中国科学院合肥物质科学研究院 一种任意纳米锥阵列原位转化为银纳米片构筑的微/纳米结构阵列的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288909A (zh) * 2007-04-18 2008-10-22 财团法人工业技术研究院 具有空心结构的金属纳米粒子的制造方法及金属纳米粒子
CN101781759A (zh) * 2010-03-02 2010-07-21 山东大学 一种在铜材料上覆盖银纳米片的方法
CN102330080A (zh) * 2011-07-14 2012-01-25 东北师范大学 一种银纳米花薄膜的制备方法
CN104822412A (zh) * 2012-10-11 2015-08-05 纳诺康波西克斯公司 银纳米片组合物及方法
CN105268995A (zh) * 2015-12-02 2016-01-27 广东南海启明光大科技有限公司 一种纳米银片的制备方法
CN105451917A (zh) * 2013-06-14 2016-03-30 Lg化学株式会社 金属纳米片、用于制备该金属纳米片的方法、包含该金属纳米片的导电油墨组合物以及传导性薄膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240751B1 (ko) * 2010-11-25 2013-03-07 삼성전기주식회사 미세 금속 분말의 제조 방법 및 이를 이용하여 제조된 미세 금속 분말

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288909A (zh) * 2007-04-18 2008-10-22 财团法人工业技术研究院 具有空心结构的金属纳米粒子的制造方法及金属纳米粒子
CN101781759A (zh) * 2010-03-02 2010-07-21 山东大学 一种在铜材料上覆盖银纳米片的方法
CN102330080A (zh) * 2011-07-14 2012-01-25 东北师范大学 一种银纳米花薄膜的制备方法
CN104822412A (zh) * 2012-10-11 2015-08-05 纳诺康波西克斯公司 银纳米片组合物及方法
CN105451917A (zh) * 2013-06-14 2016-03-30 Lg化学株式会社 金属纳米片、用于制备该金属纳米片的方法、包含该金属纳米片的导电油墨组合物以及传导性薄膜
CN105268995A (zh) * 2015-12-02 2016-01-27 广东南海启明光大科技有限公司 一种纳米银片的制备方法

Also Published As

Publication number Publication date
CN108188386A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Vennila et al. Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications
Sharifian et al. Modification of carbon paste electrode with Fe (III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid
Khan et al. Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications
Rahi et al. Nanostructured materials in electroanalysis of pharmaceuticals
Balasubramanian et al. Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone
Manavalan et al. Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum
Rao et al. Lotus seedpods biochar decorated molybdenum disulfide for portable, flexible, outdoor and inexpensive sensing of hyperin
Zhang et al. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite
Chen et al. Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug
Manivannan et al. An effective electrochemical detection of chlorogenic acid in real samples: Flower-like ZnO surface covered on PEDOT: PSS composites modified glassy carbon electrode
Tajik et al. Hydrothermal synthesis of CuFe2O4 nanoparticles for highly sensitive electrochemical detection of sunset yellow
Zhang et al. Synthesis of single-crystal α-MnO2 nanotubes-loaded Ag@ C core–shell matrix and their application for electrochemical sensing of nonenzymatic hydrogen peroxide
Min et al. Manipulating bimetallic nanostructures with tunable localized surface plasmon resonance and their applications for sensing
Karuppusamy et al. A simple electrochemical sensor for quercetin detection based on cadmium telluride nanoparticle incorporated on boron, sulfur co-doped reduced graphene oxide composite
CN108188386B (zh) 一种表面洁净的超薄Ag纳米片及其制备方法
Manjunatha et al. Synthesis and characterization of MgO nanoparticle and their surfactant modified carbon paste electrode sensing for paracetamol
Felix et al. Synthesis of Pt decorated copper oxide nanoleaves and its electrochemical detection of glucose
Hu et al. Cu2O–Au nanocomposites for enzyme-free glucose sensing with enhanced performances
Umesh et al. Trace level electrochemical detection of mesalazine in human urine sample using poly (N-Vinyl)-2-Pyrrolidone capped Bi-EDTA complex sheets incorporated with ultrasonically exfoliated graphene oxide
Feng et al. Highly sensitive electrochemical determination of rutin based on the synergistic effect of 3D porous carbon and cobalt tungstate nanosheets
Hao et al. Monodisperse copper selenide nanoparticles for ultrasensitive and selective non-enzymatic glucose biosensor
Gao et al. A novel nonenzymatic ascorbic acid electrochemical sensor based on gold nanoparticals-chicken egg white-copper phosphate-graphene oxide hybrid nanoflowers
Arivazhagan et al. Hierarchical gold dispersed nickel oxide nanodendrites microarrays as a potential platform for the sensitive electrochemical detection of glucose and lactate in human serum and urine
Abbasi et al. An ultrasensitive and preprocessing-free electrochemical platform for the detection of doxorubicin based on tryptophan/polyethylene glycol-cobalt ferrite nanoparticles modified electrodes
Ma et al. Programming a hollow core-shell CuS@ CuSe heteromicrocubes synergizing superior multienzyme activity function as enhanced biosensing platforms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant