CN108183038A - 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法 - Google Patents

一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法 Download PDF

Info

Publication number
CN108183038A
CN108183038A CN201711255307.6A CN201711255307A CN108183038A CN 108183038 A CN108183038 A CN 108183038A CN 201711255307 A CN201711255307 A CN 201711255307A CN 108183038 A CN108183038 A CN 108183038A
Authority
CN
China
Prior art keywords
carbon nanotube
graphene
composite material
preparation
nanotube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711255307.6A
Other languages
English (en)
Inventor
李东旭
黄艳珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201711255307.6A priority Critical patent/CN108183038A/zh
Publication of CN108183038A publication Critical patent/CN108183038A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法,包括如下步骤:(1)将氧化石墨烯溶于溶剂中超声处理20~180min,形成浓度为0.2~2g/L的棕黄色悬浮液;(2)将上述棕黄色悬浮液与还原剂混合后于50~120℃磁力搅拌1~6h;(3)将碳纳米管溶于体积比为2~4∶1的浓硫酸与浓硝酸的混合溶液中超声处理20~180min,然后依次经过滤、洗涤和冷冻干燥后备用;(4)将步骤(2)所得的物料和步骤(3)所得的物料混合后超声分散均匀,放入密闭反应釜中于150~300℃反应时间1~8h,然后冷却至室温,接着依次经过滤、洗涤、干燥和研磨得到纳米级别的所述石墨烯/碳纳米管复合材料。本发明制备的石墨烯/碳纳米管复合材料比电容值可达到200~800F/g,电荷转移电阻5~100Ω。

Description

一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法
技术领域
本发明属于石墨烯复合材料技术领域,具体涉及一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法。
背景技术
随着社会经济的不断发展,生态环境及能源问题越来越引起人们的关注,超级电容器作为一种新型储能装置,由于其使用寿命长、充电时间短、节约能源和绿色环保等优点受到人们的广泛重视。石墨烯的比表面积较大,导电性较好,是制备超级电容器的理想材料。
石墨烯是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜。碳纳米管具有特殊的准一维中空管状结构,其中的碳原子以sp2杂化。石墨烯和碳纳米管分别是优良的二维和一维碳材料,它们分别体现了二维和一维的各向异性,二者在电性能、热性能和力学性能方面有相似之处。为了结合二者的优点,人们将石墨烯和碳纳米管共同用于复合材料。通过二者的协同效应,复合材料表现出比单一材料更为优异的导电性、导热性、三维空间微孔网格等,使石墨烯/碳纳米管复合物广泛应用于超级电容器、太阳能电池、传感器、锂离子电池等方面。
虽然石墨烯/碳纳米管复合材料具有许多优良性质,但制约其产业化的关键在于工艺复杂、合成产率低、成本高等。目前,制备石墨烯/碳纳米管材料的主要方法有化学气相沉积法、水热法、真空抽滤法等,并在不同的制备条件下,制备出三维石墨烯/碳纳米管材料、类三明治的层状石墨烯/碳纳米管材料、绒毛状石墨烯/碳纳米管材料,并广泛应用在各个领域。
随着技术的不断发展,开发一种反应条件温和、工艺简单、成本低且性能优异的合成方法制备石墨烯/碳纳米管材料显得尤为重要。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法。
本发明的技术方案如下:
一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法,包括如下步骤:
(1)将氧化石墨烯溶于溶剂中超声处理20~180min,形成浓度为0.2~2g/L的棕黄色悬浮液,上述氧化石墨烯的直径为10~25μm,厚度为0.8~1.2nm;
(2)将上述棕黄色悬浮液与还原剂混合后于50~120℃磁力搅拌1~6h;
(3)将碳纳米管溶于体积比为2~4∶1的浓硫酸与浓硝酸的混合溶液中超声处理20~180min,然后依次经过滤、洗涤和冷冻干燥后备用;
(4)将步骤(2)所得的物料和步骤(3)所得的物料混合后超声分散均匀,放入密闭反应釜中于150~300℃反应时间1~8h,然后冷却至室温,接着依次经过滤、洗涤、干燥和研磨得到纳米级别的所述石墨烯/碳纳米管复合材料,该石墨烯/碳纳米管复合材料的形貌为碳纳米管水平负载在石墨烯片层间或插层穿过石墨烯片,其比电容为200~800F/g,电荷转移电阻5~100Ω。
在本发明的一个优选实施方案中,所述步骤(1)的溶剂包括水和乙二胺。
在本发明的一个优选实施方案中,所述还原剂包括硼氢化钠和乙二胺。
在本发明的一个优选实施方案中,所述碳纳米管为单壁碳纳米管或多壁碳纳米管,该碳纳米管的直径为60~100nm,长度>5μm。
在本发明的一个优选实施方案中,所述步骤(3)中的混合溶液中的浓硫酸与浓硝酸的体积比为3∶1。
在本发明的一个优选实施方案中,所述步骤(4)的干燥为鼓风干燥箱干燥、真空干燥、自然干燥或冷冻干燥。
本发明的有益效果是:
1.本发明的制备方法简单且造价低;
2.本发明的制备方法未使用表面活性剂等,制得的产物较纯;
3.本发明的制备方法制备的石墨烯/碳纳米管复合材料中碳纳米管有效地阻止了石墨烯片层的堆叠,在电化学应用中有助于电子的流通;
4.本发明制备的石墨烯/碳纳米管复合材料比电容值可达到200~800F/g,电荷转移电阻5~100Ω。
附图说明
图1为本发明实施例1制备的石墨烯/碳纳米管复合材料的扫描电镜照片。
图2为本发明实施例1制备的石墨烯/碳纳米管复合材料的循环伏安曲线。
图3为本发明实施例1制备的石墨烯/碳纳米管复合材料的充放电曲线。
图4为本发明实施例1制备的石墨烯/碳纳米管复合材料的阻抗曲线。
图5为本发明实施例2制备的石墨烯/碳纳米管复合材料的充放电曲线。
图6为本发明实施例3制备的石墨烯/碳纳米管复合材料的充放电曲线。
图7为本发明实施例4制备的石墨烯/碳纳米管复合材料的充放电曲线。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。下述实施例中,氧化石墨烯购自上海久艾生物科技有限公司,直径为10~25μm,厚度为0.8~1.2nm,碳纳米管购自深圳纳米港有限公司,直径为60~100nm,长度>5μm。
实施例1
一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法,包括如下步骤:
(1)将0.03g氧化石墨烯溶于18mL蒸馏水中超声30min,形成棕黄色悬浮液;
(2)用5%碳酸钠将上述悬浮液调pH 9~10,加入硼氢化钠,超声10min,在80℃磁力搅拌2h,氧化石墨烯与硼氢化钠的质量比为1∶8;
(3)用75mL浓硫酸,25mL浓硝酸,二者混合;取0.2g碳纳米管溶于上述混酸,超声30min,过滤、洗涤、冷冻干燥、充分研磨备用;称0.004g酸化后的碳纳米管溶于42mL蒸馏水中超声20min;
(4)将步骤(2)所得的物料和步骤(3)所得的物料混合后超声分散均匀5min,放入体积为100mL的密闭反应釜,反应温度260℃,反应时间3h,冷却至室温,过滤、洗涤、鼓风干燥箱中干燥、研磨得到石墨烯/碳纳米管复合物。
用X射线粉末衍射仪(Rigaku MiniFlex 600)对比了氧化石墨烯和石墨烯/碳纳米管复合物的谱图,表明氧化石墨烯的成功还原。
请参看图1,在扫描电子显微镜(Hitachi~SU8000)上观察本实施例样品,可以看到碳纳米管垂直插层于石墨烯片。
请参看图2、图3和图4,用电化学工作站(CHI660E)测试本实施例样品的比电容,如图所示,充放电曲线呈现三角对称性,是双电层超级电容器的特征,具有良好的可逆性。用公式Cm=I·Δt/m·Δv计算得出,在0.5A/g时比电容为382.38F/g;电荷转移电阻<10Ω。
实施例2
本实施例与实施例1的区别在于:将水热反应的溶剂体积改为50mL,其它条件不变,得到石墨烯/碳纳米管复合材料。请参看图5,用电化学工作站(CHI660E)测试本实施例样品的比电容,如图所示,用公式Cm=I·Δt/m·Δv计算得出,在0.5A/g时比电容为305F/g。在同一电流密度下,相比于实施例1中的比电容降低,分析原因可能是:适当增加溶剂量,有助于石墨烯和碳纳米管的均匀分散,从而提高材料比电容。
实施例3
本实施例与实施例1的区别在于:将步骤(2)中氧化石墨烯的还原温度改为70℃,其它条件不变,得到石墨烯/碳纳米管复合材料。请参看图6,用电化学工作站(CHI660E)测试本实施例样品的比电容,如图所示,用公式Cm=I·Δt/m.Δv计算得出,在0.5A/g时比电容为233.07F/g。在同一电流密度下,相比于实施例1中的比电容降低,分析原因可能是:氧化石墨烯导电性较差,实施例1中的条件更有利于氧化石墨烯的还原,从而提高复合材料的比电容。
实施例4
(1)将0.02g氧化石墨烯溶于16mL蒸馏水中超声30min,形成棕黄色悬浮液;
(2)用75mL浓硫酸,25mL浓硝酸,二者混合;取0.2g碳纳米管溶于上述混酸,超声30min,过滤、洗涤、冷冻干燥、充分研磨备用;称0.004g酸化后的碳纳米管溶于16mL蒸馏水中超声20min;
(3)将步骤(1)所得的物料和步骤(2)所得的物料混合,再加入17mL乙二胺,超声5min,放入体积为100mL的密闭反应釜,反应温度180℃,反应时间12h,冷却至室温,过滤、洗涤、鼓风干燥箱中干燥、研磨得到石墨烯/碳纳米管复合物。请参看图7,用电化学工作站(CHI660E)测试本实施例样品的比电容,如图7所示,用公式Cm=I·Δt/m·Δv计算得出,在0.5A/g时比电容为249.02F/g。在同一电流密度下,相比于实施例1中的比电容降低,分析原因可能是:一是碳纳米管的比电容比石墨烯的小,增加碳纳米管的含量,不利于增加比电容;二是在一定条件下,乙二胺对氧化石墨烯的还原效果不如硼氢化钠。
本领域普通技术人员可知,本发明的技术方案在下述范围内变化时,仍然能够得到与上述实施例相同或相近的技术效果,仍然属于本发明的保护范围:
一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法,包括如下步骤:
(1)将氧化石墨烯溶于溶剂中超声处理20~180min,形成浓度为0.2~2g/L的棕黄色悬浮液,上述氧化石墨烯的直径为10~25μm,厚度为0.8~1.2nm;
(2)将上述棕黄色悬浮液与还原剂混合后于50~120℃磁力搅拌1~6h;
(3)将碳纳米管溶于体积比为2~4:1的浓硫酸与浓硝酸的混合溶液中超声处理20~180min,然后依次经过滤、洗涤和冷冻干燥后备用;
(4)将步骤(2)所得的物料和步骤(3)所得的物料混合后超声分散均匀,放入密闭反应釜中于150~300℃反应时间1~8h,然后冷却至室温,接着依次经过滤、洗涤、干燥和研磨得到纳米级别的所述石墨烯/碳纳米管复合材料,该石墨烯/碳纳米管复合材料的形貌为碳纳米管水平负载在石墨烯片层间或插层穿过石墨烯片,其比电容为200~800F/g,电荷转移电阻5~100Ω。
。所述碳纳米管为单壁碳纳米管或多壁碳纳米管,该碳纳米管的直径为60~100nn,长度>5μm。所述步骤(3)中的混合溶液中的浓硫酸与浓硝酸的体积比为3∶1。所述步骤(4)的干燥为鼓风干燥箱干燥、真空干燥、自然干燥或冷冻干燥。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (6)

1.一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法,其特征在于:包括如下步骤:
(1)将氧化石墨烯溶于溶剂中超声处理20~180min,形成浓度为0.2~2g/L的棕黄色悬浮液,上述氧化石墨烯的直径为10~25μm,厚度为0.8~1.2nm;
(2)将上述棕黄色悬浮液与还原剂混合后于50~120℃磁力搅拌1~6h;
(3)将碳纳米管溶于体积比为2~4∶1的浓硫酸与浓硝酸的混合溶液中超声处理20~180min,然后依次经过滤、洗涤和冷冻干燥后备用;
(4)将步骤(2)所得的物料和步骤(3)所得的物料混合后超声分散均匀,放入密闭反应釜中于150~300℃反应时间1~8h,然后冷却至室温,接着依次经过滤、洗涤、干燥和研磨得到纳米级别的所述石墨烯/碳纳米管复合材料,该石墨烯/碳纳米管复合材料的形貌为碳纳米管水平负载在石墨烯片层间或插层穿过石墨烯片,其比电容为200~800F/g,电荷转移电阻5~100Ω。
2.如权利要求1所述的制备方法,其特征在于:所述步骤(1)的溶剂包括水和乙二胺和乙醇。
3.如权利要求1所述的制备方法,其特征在于:所述还原剂包括硼氢化钠和乙二胺。
4.如权利要求1所述的制备方法,其特征在于:所述碳纳米管为单壁碳纳米管或多壁碳纳米管,该碳纳米管的直径为60~100nm,长度>5μm。
5.如权利要求1所述的制备方法,其特征在于:所述步骤(3)中的混合溶液中的浓硫酸与浓硝酸的体积比为3∶1。
6.如权利要求1所述的制备方法,其特征在于:所述步骤(4)的干燥为鼓风干燥箱干燥、真空干燥、自然干燥或冷冻干燥。
CN201711255307.6A 2017-12-01 2017-12-01 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法 Pending CN108183038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711255307.6A CN108183038A (zh) 2017-12-01 2017-12-01 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711255307.6A CN108183038A (zh) 2017-12-01 2017-12-01 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108183038A true CN108183038A (zh) 2018-06-19

Family

ID=62545531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711255307.6A Pending CN108183038A (zh) 2017-12-01 2017-12-01 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108183038A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437159A (zh) * 2018-11-07 2019-03-08 西北工业大学 一种石墨烯-碳纳米管双组份悬浮液的制备方法
CN110885079A (zh) * 2018-09-11 2020-03-17 天津大学 一种新型石墨烯—碳纳米管复合材料的制备方法
CN112271286A (zh) * 2020-11-03 2021-01-26 西安瑟福能源科技有限公司 一种三维石墨烯/cnt包覆硅碳材料的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896240A (zh) * 2012-12-26 2014-07-02 海洋王照明科技股份有限公司 一种石墨烯/碳纳米管复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896240A (zh) * 2012-12-26 2014-07-02 海洋王照明科技股份有限公司 一种石墨烯/碳纳米管复合材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885079A (zh) * 2018-09-11 2020-03-17 天津大学 一种新型石墨烯—碳纳米管复合材料的制备方法
CN109437159A (zh) * 2018-11-07 2019-03-08 西北工业大学 一种石墨烯-碳纳米管双组份悬浮液的制备方法
CN109437159B (zh) * 2018-11-07 2022-03-01 西北工业大学 一种石墨烯-碳纳米管双组份悬浮液的制备方法
CN112271286A (zh) * 2020-11-03 2021-01-26 西安瑟福能源科技有限公司 一种三维石墨烯/cnt包覆硅碳材料的制备方法及应用

Similar Documents

Publication Publication Date Title
Velmurugan et al. Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications
Aadil et al. Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities
Wang et al. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective
Xie et al. Self‐Assembled 3D Graphene‐Based Aerogel with Co3O4 Nanoparticles as High‐Performance Asymmetric Supercapacitor Electrode
CN107393725B (zh) 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
CN109671576A (zh) 碳纳米管-MXene复合三维多孔碳材料及其制备方法
Zhang et al. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors
Zhang et al. Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications
Li et al. Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials
Xiong et al. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors
Du et al. Yeasts-derived nitrogen-doped porous carbon microcapsule prepared by silica-confined activation for supercapacitor
CN106783230B (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Zhao et al. Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide
Wang et al. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks
Wang et al. Poplar branch bio-template synthesis of mesoporous hollow Co3O4 hierarchical architecture as an anode for long-life lithium ion batteries
CN106784706B (zh) 一种炭微球作为过渡层碳化钛原位生长CNTs三维复合材料及其制备方法
CN106024410A (zh) 一种高容量石墨烯基超级电容器电极材料及其制备方法
CN108654659B (zh) 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN108183038A (zh) 一种高比电容低阻抗石墨烯/碳纳米管复合材料的制备方法
Zhu et al. In situ synthesis of porous Co 3 O 4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors
Dai et al. High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance
CN106057498A (zh) 一种二硫化钼/聚吡咯超级电容器电极材料的制备方法和应用
CN107240508A (zh) 一种石墨烯/铁氧体纳米复合电极材料的制备方法
Fan et al. Hollow carbon microspheres/MnO 2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180619

RJ01 Rejection of invention patent application after publication