CN108178328B - 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法 - Google Patents

一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法 Download PDF

Info

Publication number
CN108178328B
CN108178328B CN201711434786.8A CN201711434786A CN108178328B CN 108178328 B CN108178328 B CN 108178328B CN 201711434786 A CN201711434786 A CN 201711434786A CN 108178328 B CN108178328 B CN 108178328B
Authority
CN
China
Prior art keywords
cathode
chamber
anode
anode chamber
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711434786.8A
Other languages
English (en)
Other versions
CN108178328A (zh
Inventor
刘玉香
杨婷
李亚青
袁鑫
梁涛
李文英
任玉莹
张琪
李宵宵
樊璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201711434786.8A priority Critical patent/CN108178328B/zh
Publication of CN108178328A publication Critical patent/CN108178328A/zh
Application granted granted Critical
Publication of CN108178328B publication Critical patent/CN108178328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明属微生物燃料电池与水处理技术领域,为解决现有微生物燃料电池的生物阴极在低C/N比时,阴极硝氮去除率低,输出电压低的问题,提供一种处理低C/N比污废水的生物阴极电化学系统及其处理废水的方法。阳极室和阴极室的电极为碳刷,阳极室内接种大肠杆菌,阴极室内接种不动杆菌属Acinetobacter sp.Y1,阴阳极室还设置有饱和甘共参比电极,阳极导电电极和阴极导电电极由外接电阻连接成完整电路,外接电阻上并联电压数据采集器。本发明构建的反应器阳极消耗有机物脱碳提供电子,同时氨盐发生硝化反应,阴极发生反硝化反应,试验证明,本发明构建的生物阴极BES能够实现同步硝化反硝化和脱碳产电的效果。

Description

一种处理低C/N比污废水的生物阴极电化学系统及其处理废 水的方法
技术领域
本发明属于微生物燃料电池与水处理技术领域,具体涉及一种处理低C/N比污废水的生物阴极电化学系统及其处理废水的方法,以异养硝化-好氧反硝化菌Acinetobacter sp.Y1作为生物阴极接种菌株,阴极室加入含硝氮盐废水,构建生物阴极微生物燃料电池进行反硝化,并以恒电势器控制阴极电势时实现了低C/N比条件下的高效反硝化。
背景技术
异养硝化-好氧反硝化菌具有繁殖速率快、可同时脱碳除氮、硝化和反硝化能同时发生、不需外加碳源、适应性强等优点,在污水处理方面具有一定的研究价值,但其C/N比较高(8以上)。
微生物电化学系统(Bioelectrochemical System, BES)根据在整个过程中是净输出电能还是净输入电能可以划分为微生物燃料电池(Microbial fuel cell, MFC)和微生物电解池(Microbial electrolysis cell, MEC),而近年来学者在对微生物进行研究时为了使其电化学环境更稳定,开发出了利用恒电位仪将阳极或阴极电势精确控制在恒定水平的微生物三电极体系(Microbial three electrode Cell, M3C)。
MFC是一种利用产电微生物作为催化剂通过降解污染物将化学能转换为电能的装置。阴极是制约MFC性能的主要因素之一,包括生物阴极MFC和非生物阴极MFC。与非生物阴极MFC相比,生物阴极MFC具有可持续、可循环、可再生、无二次污染、运行成本低等优势,因此近年来在水污染控制领域、资源化领域、新能源开发领域、材料开发领域受到广泛关注。近几年利用混菌生物阴极MFC进行阴极脱氮的研究较多,尽管能够得到高的脱氮效率与电能输出,但存在电子传递效率低和产电过程机理不明的问题。
发明内容
本发明针对目前异养硝化好氧反硝化菌和混菌生物阴极MFC的诸多缺陷,提供了一种处理低C/N比污废水的生物阴极电化学系统及其处理废水的方法,利用异养硝化-好氧反硝化菌Acinetobacter sp.Y1作为生物阴极接种菌株构建了生物阴极MFC,在此基础上通过电化学工作站将阴极电位控制在一个恒定水平,构建了BES,实现了高效硝化反硝化。
本发明由如下技术方案实现的:一种处理低C/N比污废水的生物阴极电化学系统,包括固定连接的阳极室和阴极室,阳极室和阴极室之间由阳离子交换膜分隔,阳极室和阴极室侧壁顶部设置进水口,底部设置出水口;所述阳极室和阴极室的电极为碳刷,阳极室内接种大肠杆菌,阴极室内接种异养硝化好氧反硝化菌不动杆菌属Acinetobacter sp.Y1,阳极室和阴极室还设置有饱和甘汞参比电极SCE,所述阳极导电电极和阴极导电电极由外接电阻连接成完整电路,外接电阻上并联电压数据采集器。
所述阳极室内大肠杆菌的培养液为C/N比为14的含氨氮有机培养液,所述阴极室不动杆菌属Acinetobacter sp.Y1的培养液分别为C/N比为8、2或0的含硝氮培养液。
所述阳极室和阴极室的电极碳刷在置于阴极室和阳极室前进行预处理:1M盐酸中浸泡24h,去离子水中煮沸30min,然后在1M氢氧化钠中浸泡24h,去离子水中煮沸30min,然后120℃灭菌20min;预处理完成后进行挂膜,具体方法为:将碳刷置于1%的培养基中,摇床120r/min,30℃挂膜3个周期,然后将其静置在恒温培养箱中30℃挂膜3个周期,每个周期为2d;摇床挂膜时每次更换新鲜培养基并接种1%的菌液。所述碳刷置于阴极室和阳极室后进行在线驯化挂膜,具体方法为:阳极室和阴极室内分别加入体积比为1:1的培养基和菌液,外接电阻形成闭合回路,驯化3个周期,每个周期以输出电压低于20mV为结束指标。
所述阳极室内的培养液配方为:CH3COONa 4.103g、(NH4)2SO4 0.472g、MgSO4﹒7H2O0.05g、K2HPO4 0.2g、NaCl 0.12g、MnSO4﹒7H2O 0.01g、FeSO4﹒7H2O 0.01g、CoCl2·6H2O 0.1g、CaCl2 0.1 g、ZnSO4·7H2O 0.1 g、CuSO4·5H2O 0.01 g、Na2MoO4·2H2O 0.01 g,定容至1L;所述阴极室内的培养液配方为:NaNO3 0.607g、MgSO4﹒7H2O 0.05g、K2HPO4 0.2g、NaCl0.12g、MnSO4﹒7H2O 0.01g、FeSO4﹒7H2O 0.01g、CoCl2·6H2O 0.1 g、CaCl2 0.1 g、ZnSO4·7H2O 0.1g、CuSO4·5H2O 0.01g、Na2MoO4·2H2O 0.01g,C/N=8时,CH3COONa2.3445g,C/N=2时,CH3COONa0.5861g,C/N=0时,CH3COONa 0g,定容至1L。
本发明阴极所采用的异养硝化-好氧反硝化细菌Acinetobacter sp.Y1为专利CN201210525461.1中所述的不动杆菌属(Acinetobacter),从太原煤气化公司焦化废水厂污水处理车间的第一和第二曝气池活性污泥中经过富集、分离、纯化和筛选得到,该菌株于2012年9月14日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCCNO.6563,地址为:北京市朝阳区北辰西路1号院3号中国科学院微生物研究所。该菌株基本特征:乳黄色、不透明、圆形、表面光滑;边缘呈锯齿状,短杆状、无芽孢、无荚膜,直径0.5~0.52μm,长度0.8~1.1μm 左右;为革兰氏阴性菌;可利用柠檬酸三钠、乙酸钠、草酸钠、葡萄糖、乙醇和蔗糖等底物,不仅可快速将氨氮去除,而且可在亚硝酸盐和硝酸盐为唯一氮源条件下生长,并且在C/N比为20以上可将亚硝酸盐氮和硝酸盐氮有效去除。
同步硝化反硝化和脱碳产电的原理:阳极区醋酸盐作为电子供体,氨盐作为氮源,与碳刷上生物膜作用发生硝化反应,产生质子、电子和代谢产物;电子通过外电路传输到阴极碳刷上,同时质子和阳离子通过阳离子交换膜进入阴极区;阴极硝酸盐氮作为电子受体,利用碳刷上的生物膜从电极上获得电子用于反硝化反应,同时阴极有机物底物为阴极反硝化提供了电子供体。
本发明构建的反应器阳极消耗有机物脱碳提供电子,同时氨盐发生硝化反应,阴极发生反硝化反应,试验证明,本发明构建的生物阴极BES能够实现同步硝化反硝化和脱碳产电的效果。
对阴极施加特定电位时,阴极所需电子不仅可以从阳极和阴极底物获得,也可以从外加电压获得,因此能够提高阴极的反硝化速率,实现高效反硝化。
本发明的有益效果:本发明构建的生物阴极BES阴极无需曝气,阳极无需除氧,节省了能源。
在阴极C/N分别为8、2、0时,最大输出电压分别为156、185、225mv;最大电流密度分别为144、159、605mA/m3;最大功率密度分别为21.1、22.1、105.4mW/m3;NO3 --N降解率分别为98.77%、83.12%、45.34%,TN降解率分别为90.74%、44.66%、28.61%。而王清萍等[1]以脱氮副球菌YF1构建的纯种生物阴极微生物燃料电池(MFC),发现在C/N比为12和20时,阴极硝氮去除率均能达到100%,最大输出电压均能达到150mv;在C/N比在4时,阴极硝氮去除率仅能达到50%,输出电压一直小于50mv。
C/N比为0时硝氮和总氮的降解表明阴极菌株Y1可以从碳刷电极材料上获得电子,也证明了异养硝化好氧反硝化菌株Y1作为阴极接种菌构建生物阴极BES进行反硝化脱氮并同时产电是可行的,同时这也是菌株Y1第一次在BES中的脱氮应用。
宋等[2]在传统摇床实验中C/N比为10时硝氮去除率为76%,本发明构建的BES在C/N比为8时硝氮和总氮的去除均比传统的摇床摇瓶实验的降解效果好,因此证明了本发明构建的BES能够实现低C/N比条件下的高效反硝化。
在阴极C/N分别为8,2,0时,阳极COD降解率分别为79.8%、88.38%、79.16%,阴阳极总氨氮降解率分别为91.53%、89.21%、80.86%,证明本发明构建的BES能够进行高效硝化和同时脱碳产电的效果。
在C/N比为2时总氮降解率比硝氮降解率低,主要是由于其阴极有大量中间产物亚硝氮的积累,为降低亚硝氮的积累,提高总氮的去除率,利用恒电势器对阴极控制不同电势,分别对阴极施加不同电位(+0.2、+0.1、0、-0.1V.vs.SCE),发现在阴极施加电位小于等于0.1v时,阴极反硝化脱氮效率明显提高。而Wang等[3]以异养硝化好氧反硝化菌Alcaligenes faecalis作为生物阴极接种菌株,阴极控制电位为-0.15、-0.06V时,硝酸盐还原率仅为52.4%、30.4%。
表1:阴极不同C/N比条件下BES的最大功率密度及电流密度
Figure 72781DEST_PATH_IMAGE002
附图说明
图1为本发明所述处理低C/N比污废水的生物阴极电化学系统结构示意图。
图中:1-阳极室;2-阴极室;3-阳离子交换膜;4-进水口;5-出水口;6-碳刷;7-饱和甘汞参比电极SCE;8-外接电阻;9-电压数据采集器。
具体实施方式
一种处理低C/N比污废水的生物阴极电化学系统,包括固定连接的阳极室1和阴极室2,阳极室1和阴极室2之间由阳离子交换膜3分隔,阳极室1和阴极室2侧壁顶部设置进水口4,底部设置出水口5;所述阳极室1和阴极室2的电极为碳刷6,阳极室内接种大肠杆菌,阴极室内接种异养硝化好氧反硝化菌不动杆菌属Acinetobacter sp.Y1,阳极室1和阴极室2还设置有饱和甘汞参比电极SCE 7,所述阳极导电电极和阴极导电电极由外接电阻8连接成完整电路,外接电阻上并联电压数据采集器9。
本发明以大肠杆菌为阳极产电菌,以异养硝化好氧反硝化菌Acinetobacter sp.Y1为阴极接种菌。阳极室内大肠杆菌的培养液为C/N比为14的含氨氮有机培养液,所述阴极室不动杆菌属Acinetobacter sp.Y1的培养液分别为C/N比为8、2或0的含硝氮培养液。
阳极室和阴极室的电极碳刷在置于阴极室和阳极室前进行预处理:1M盐酸中浸泡24h,去离子水中煮沸30min,然后在1M氢氧化钠中浸泡24h,去离子水中煮沸30min,然后120℃灭菌20min;预处理完成后进行挂膜,具体方法为:将灭菌后的碳刷置于1%的培养基中,摇床120r/min,30℃挂膜3个周期,然后将其静置在恒温培养箱中30℃挂膜3个周期,每个周期为2d;摇床挂膜时每次更换新鲜培养基并接种1%的菌液。
表2阳极室培养液驯化阶段和实验阶段配方:
Figure 989921DEST_PATH_IMAGE004
表3阴极室驯化阶段和实验阶段培养液配方:
Figure DEST_PATH_IMAGE006
碳刷置于阴极室和阳极室后进行在线驯化挂膜,具体方法为:阳极室和阴极室内分别加入体积比为1:1的培养基和菌液,外接电阻形成闭合回路,驯化3个周期,每个周期以输出电压低于20mV为结束指标。
外加电压实验操作:阳极培养液C/N比为14,阴极培养液C/N比为2,电化学工作站的工作电极连接阴极碳刷,对电极连接阳极碳刷,参比电极连接阴极室的饱和甘汞参比电极,利用电化学工作站i-t功能将阴极电位控制在某一特定电位上。
极化曲线测量:电池稳定运行三个周期后更换阴阳极培养液,待输出电压稳定在最大电压左右时开路运行1h,之后外电阻从50000、40000、30000、20000、10000、8000、5000、2000、1000、500Ω依次更换,每个电阻下运行25min,记录5组数据,取其平均值,依据公式计算其功率密度和电流密度,以电流密度为横坐标,功率密度为纵坐标绘制极化曲线图。
参考文献:
1.王清萍, 刘培文, 翁秀兰, 陈祖亮. 脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电. 环境工程学报 2014,8:3277-3282.
2.宋宇杰, 李屹, 刘玉香, 和文龙. 碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响. 环境科学学报 2013,33:2491-2497.
3.Wang X, Yu P, Zeng C, Ding H, Li Y, Wang C, et al. EnhancedAlcaligenes faecalis Denitrification Rate with Electrodes as the ElectronDonor. Applied & Environmental Microbiology 2015,81:5387-5394.

Claims (2)

1.一种处理低C/N比污废水的生物阴极电化学系统,包括固定连接的阳极室(1)和阴极室(2),阳极室(1)和阴极室(2)之间由阳离子交换膜(3)分隔,阳极室(1)和阴极室(2)侧壁顶部设置进水口(4),底部设置出水口(5);其特征在于:所述阳极室(1)和阴极室(2)的电极为碳刷(6),阳极室内接种大肠杆菌,阴极室内接种异养硝化好氧反硝化菌不动杆菌属Acinetobacter sp.Y1,阳极室(1)和阴极室(2)还设置有饱和甘汞参比电极SCE(7),所述阳极导电电极和阴极导电电极由外接电阻(8)连接成完整电路,外接电阻上并联电压数据采集器(9);
所述阳极室内大肠杆菌的培养液为C/N比为14的含氨氮有机培养液,所述阴极室不动杆菌属Acinetobacter sp.Y1的培养液为C/N比为8、2或0的含硝氮培养液;
所述阳极室和阴极室的电极碳刷在置于阴极室和阳极室前进行预处理:1M盐酸中浸泡24h,去离子水中煮沸30min,然后在1M氢氧化钠中浸泡24h,去离子水中煮沸30min,然后120℃灭菌20min;预处理完成后进行挂膜,具体方法为:将碳刷置于1%的培养基中,摇床120r/min,30℃挂膜3个周期,然后将其静置在恒温培养箱中30℃挂膜3个周期,每个周期为2d;摇床挂膜时每次更换新鲜培养基并接种1%的菌液;
所述阳极室内的培养液配方为:CH3COONa 4.103g、(NH4)2SO4 0.472g、MgSO4﹒7H2O0.05g、K2HPO4 0.2g、NaCl 0.12g、MnSO4﹒7H2O 0.01g、FeSO4﹒7H2O 0.01g、CoCl2·6H2O 0.1g、CaCl2 0.1 g、ZnSO4·7H2O 0.1 g、CuSO4·5H2O 0.01 g、Na2MoO4·2H2O 0.01 g,定容至1L;所述阴极室内的培养液配方为:NaNO3 0.607g、MgSO4﹒7H2O 0.05g、K2HPO4 0.2g、NaCl0.12g、MnSO4﹒7H2O 0.01g、FeSO4﹒7H2O 0.01g、CoCl2·6H2O 0.1 g、CaCl2 0.1 g、ZnSO4·7H2O 0.1g、CuSO4·5H2O 0.01g、Na2MoO4·2H2O 0.01g,C/N=8时,CH3COONa2.3445g,C/N=2时,CH3COONa0.5861g,C/N=0时,CH3COONa 0g,定容至1L。
2.根据权利要求1所述的一种处理低C/N比污废水的生物阴极电化学系统,其特征在于:所述碳刷置于阴极室和阳极室后进行在线驯化挂膜,具体方法为:阳极室和阴极室内分别加入体积比为1:1的培养基和菌液,外接电阻形成闭合回路,驯化3个周期,每个周期以输出电压低于20mV为结束指标。
CN201711434786.8A 2017-12-26 2017-12-26 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法 Active CN108178328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711434786.8A CN108178328B (zh) 2017-12-26 2017-12-26 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711434786.8A CN108178328B (zh) 2017-12-26 2017-12-26 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法

Publications (2)

Publication Number Publication Date
CN108178328A CN108178328A (zh) 2018-06-19
CN108178328B true CN108178328B (zh) 2021-05-07

Family

ID=62547255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711434786.8A Active CN108178328B (zh) 2017-12-26 2017-12-26 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法

Country Status (1)

Country Link
CN (1) CN108178328B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292959B (zh) * 2018-10-24 2021-04-30 成都友益佳环保设备工程有限公司 一种强化低cn比废水阴极反硝化的方法
CN110776097A (zh) * 2019-11-28 2020-02-11 天津工业大学 用于废水脱氮除碳的反硝化生物阴极-电催化膜反应器
CN113003702B (zh) * 2021-03-15 2023-01-20 南京理工大学 一种利用电化学调控硫循环强化厌氧还原硝基苯的方法
CN113087124B (zh) * 2021-04-14 2022-11-04 东南大学 一种阴、阳极同步降解水相中氯酚的生物电化学装置
CN113471501B (zh) * 2021-06-28 2022-07-08 太原理工大学 一种串联连续流微生物燃料电池系统及其制备方法和在降解硝基苯废水中的应用
CN114538704A (zh) * 2022-02-17 2022-05-27 广州昭合环保科技有限公司 一种基于同步硝化反硝化技术的水处理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176437B1 (ko) * 2011-01-06 2012-08-30 한국원자력연구원 암모니아 및 유기물의 동시제거를 위한 생물전기화학적 폐수처리 장치 및 이를 이용한 폐수처리 방법
WO2013009797A1 (en) * 2011-07-11 2013-01-17 Uwm Research Foundation, Inc. Osmotic bioelectrochemical systems
CN103013872B (zh) * 2012-12-07 2014-03-12 太原理工大学 一种异养硝化好氧反硝化细菌及其培养和应用
CN103613206B (zh) * 2013-12-04 2015-04-15 江南大学 一种生物产氢强化的微生物电化学脱氮方法
CN103872368B (zh) * 2014-01-24 2016-06-22 河海大学 交互式三室生物燃料电池装置及其应用于废水脱氮的方法
CN103979688B (zh) * 2014-05-26 2015-07-29 东南大学 一种微生物燃料电池耦合电极生物膜除磷脱氮系统及应用
CN106602101A (zh) * 2016-11-30 2017-04-26 湖南大学 一种自养型反硝化生物阴极型的微生物燃料电池

Also Published As

Publication number Publication date
CN108178328A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
CN108178328B (zh) 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法
CN108183251B (zh) 一种处理低c/n废水的微生物燃料电池bcs1-mfc系统及其处理废水的方法
CN101270368B (zh) 有机废水梯级利用生物产氢的方法
CN102557272B (zh) 微生物燃料电池三级连续式废水脱氮处理方法及装置
CN101570731A (zh) 一种电化学驯化、分离产电微生物的方法
CN109179860A (zh) 一种同步催化氧化二级出水中难降解污染物与降解剩余污泥的方法
WO2022121550A1 (zh) 一种利用电极生物载体强化低碳氮比污水脱氮的工艺方法
CN102276064A (zh) 厌氧-好氧一体的微生物燃料电池废水处理系统
CN103956510A (zh) 一种同步脱氮除磷双室微生物燃料电池
CN106207208A (zh) 一种微生物燃料电池及其在废水脱氮中的应用
CN108569757B (zh) 一种利用电化学装置处理磺胺类废水并同步制氢的方法
CN109292959B (zh) 一种强化低cn比废水阴极反硝化的方法
CN111170599A (zh) 一种污泥mfc-厌氧消化耦合系统及其性能强化方法
CN203871429U (zh) 一种同步脱氮除磷双室微生物燃料电池
CN108285881B (zh) 一种具有同步产电和反硝化活性的分支杆菌及其应用
CN106430568B (zh) 一种厌氧氨氧化生物膜的电化学富集培养方法
JP7359309B2 (ja) エンサイファおよびその生物発電における用途
Bélafi-Bako et al. Study on operation of a microbial fuel cell using mesophilic anaerobic sludge
Zhang et al. A new technology of microbial fuel cell for treating both sewage and wastewater of heavy metal
CN107311294B (zh) 一种用于电镀工业园区同时处理园区污泥和电镀废水的装置和方法
Pratiwi et al. Improvement of biohydrogen production by reduction of methanogenesis at optimum electrode spacing in microbial electrolysis cell system
CN100578851C (zh) 产气肠杆菌在微生物发电方面的应用及其发电方法
Luo et al. Model reference adaptive control for microbial fuel cell (MFC)
Zhao et al. Simultaneous carbon and nitrogen removal using a litre-scale upflow microbial fuel cell
CN103337652B (zh) 一种燃料电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant