CN108176391A - 基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 - Google Patents
基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 Download PDFInfo
- Publication number
- CN108176391A CN108176391A CN201711375727.8A CN201711375727A CN108176391A CN 108176391 A CN108176391 A CN 108176391A CN 201711375727 A CN201711375727 A CN 201711375727A CN 108176391 A CN108176391 A CN 108176391A
- Authority
- CN
- China
- Prior art keywords
- nabio
- metal
- metal nanoparticle
- nano
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 28
- 239000002184 metal Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 13
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 44
- 238000002360 preparation method Methods 0.000 claims abstract description 24
- 239000002131 composite material Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000000243 solution Substances 0.000 claims abstract description 21
- 230000008033 biological extinction Effects 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 239000002923 metal particle Substances 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 238000012512 characterization method Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000000103 photoluminescence spectrum Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 238000001228 spectrum Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 9
- 229910052906 cristobalite Inorganic materials 0.000 claims description 9
- 235000019441 ethanol Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- PNYYBUOBTVHFDN-UHFFFAOYSA-N sodium bismuthate Chemical compound [Na+].[O-][Bi](=O)=O PNYYBUOBTVHFDN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052682 stishovite Inorganic materials 0.000 claims description 9
- 229910052905 tridymite Inorganic materials 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 5
- 239000013528 metallic particle Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000000908 ammonium hydroxide Substances 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000000416 hydrocolloid Substances 0.000 claims description 2
- 239000002086 nanomaterial Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000018044 dehydration Effects 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 claims 1
- 238000002242 deionisation method Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 238000006555 catalytic reaction Methods 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 230000004048 modification Effects 0.000 abstract description 4
- 238000012986 modification Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 230000001699 photocatalysis Effects 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000007146 photocatalysis Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- -1 metal oxide sodium bismuthate Chemical class 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/18—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/644—Arsenic, antimony or bismuth
- B01J23/6447—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/843—Arsenic, antimony or bismuth
- B01J23/8437—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J33/00—Protection of catalysts, e.g. by coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/343—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,包括NaBiO3单晶的制备、纳米金属结构的制备、纳米金属结构与NaBiO3复合材料的制备;采用热注入法制备金属纳米颗粒;将制备好的各种形貌纳米金属颗粒和结构进行表面处理;用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;同热处理方法制备NaBiO3单晶溶液。本发明的有益效果是:与传统不加任何修饰的NaBiO3光催化材料相比,这种用金属纳米颗粒增强的半导体光催化剂,不仅能够提高可见光吸收的能力和光生电子与空穴的转移能力,而且能抑制光生载流子的复合,从而综合性地提高光催化的效果。
Description
技术领域
本发明涉及一种增强传统光催化剂作用的方法,更具体说,涉及一种基于金属纳米颗粒增强铋酸钠NaBiO3可见光催化作用以及该复合材料的制备方法。
背景技术
光催化技术在解决能源问题、环境污染问题上具有广泛的应用。光催化技术能够利用光照分解水、降解有机污染物,并且具有无毒无污染、化学性质稳定等优点。目前在各种光催化材料中,二氧化钛TiO2的研究最为广泛。但TiO2材料带隙约为3.2eV,仅能吸收利用波长小于387nm的紫外光,太阳光能量利用率只有4%左右,而到达地面的可见光约占太阳能的45%。因此开发具有可见光乃至红外响应的新型光催化材料,并通过一些方法提高其光催化活性,受到人们广泛关注。
作为一种新型有效的光催化材料,钙钛矿型金属氧化物铋酸钠NaBiO3具有良好的稳定性和较强的氧化能力,且无毒无放射性,对环境无污染,其带隙仅为2.6eV,能够吸收更大范围的可见光,能级位置完全覆盖水分解反应的氧化还原电位,是较为理想的光催化污染物氧化降解和制氢的催化材料。NaBiO3材料光催化分解水制氢气的机制如图1所示:
①在光照条件下,若满足入射光能量大于等于NaBiO3带隙Eg,NaBiO3价带顶部的电子就会被激发而跃迁到导带底部,并在价带顶部留下空穴,产生光生电子-空穴对,即光生载流子。光生载流子的氧化还原能力强弱与材料的能带结构紧密相关:价带位置越低,光生空穴的氧化能力越强;导带位置越高,光生电子的还原能力越强。
②光生电子和空穴从材料内部转移到表面,只有实现有效分离并转移到表面的光生载流子才具有催化活性。与此同时,光生电子与空穴易在材料内部发生复合,并以光和热的形式释放能量,这是不利于光催化反应发生的,需要尽量抑制。
③转移到材料表面的电子和空穴分别具有强还原性和强氧化性,它们与吸附在材料表面的H2O与H+发生氧化还原反应,生成光催化反应的产物O2与H2。其反应方程式如下:
氧化反应2H2O→O2↑+4H++4-
还原反应2H++2e-→H2↑
总反应2H2O→O2↑+2H2↑
尽管NaBiO3在光催化领域具有很大的潜力,但是要获得具有应用价值的光催化剂,仍需要想方设法提高可见光吸收效率,提高光生载流子的有效分离与转移能力,抑制光生电子-空穴对的复合。
发明内容
本发明的目的是克服现有技术中的不足,提供一种具有高可见光吸收率、分解水以及污染物的新型金属纳米结构与NaBiO3复合材料的制备方法。
一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,包括如下步骤:
1).NaBiO3单晶的制备
制备NaBiO3单晶颗粒;其方法:首先,在空气中,以温度250-300℃,在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末;其次,将无水铋酸钠粉末与纯净水等比例混合制成悬浮液,以备后续使用;
2).纳米金属结构的制备
采用热注入法制备金属纳米颗粒;其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种;金属纳米粒子的形状为立方体、领结型、球型或圆柱型中的一种或几种;
3).纳米金属结构与NaBiO3复合材料的制备
在复合材料的制备过程中需要对贵金属纳米结构材料进行必要的钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化;具体的制备步骤如下:
①将制备好的各种形貌纳米金属颗粒和结构进行表面处理
需要在金属颗粒表面覆盖或包裹一层SiO2薄膜;其方法是:首先、在正硅酸四乙脂TEOS在氨NH3的作用下水解SiO2和乙醇;第二、将已经制备好的各种形貌的金属纳米结构胶体取出五等分,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟左右;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水;第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时;第五、反应完成后用乙醇和去离子水胶体洗3遍,分散在乙醇中;所使用的SiO2厚度在2-3nm之间;最后、将SiO2包裹的金属纳米颗粒进行表面修饰;
②用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;需要在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配;
③用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;
④同热处理方法制备NaBiO3单晶溶液;进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液;
⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。
所述步骤2)中:金属纳米颗粒形状尺寸应为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为40nm~60nm。
本发明的有益效果是:所提出的设计方案对是传统NaBiO3材料光催化性能的改进,也就是将金属纳米颗粒结构复合到NaBiO3纳米颗粒中。与传统不加任何修饰的NaBiO3光催化材料相比,这种用金属纳米颗粒增强的半导体光催化剂,不仅能够提高可见光吸收的能力和光生电子与空穴的转移能力,而且能抑制光生载流子的复合,从而综合性地提高光催化的效果。该发明可以为实现高效率、低成本的可见光催化制氢气、降解污染物提供可靠实用的催化材料和方法。
附图说明
图1是NaBiO3材料光催化分解水制氢气机制。
图2是本发明中用金属纳米颗粒增强的NaBiO3材料光催化分解水制氢气机制。
图3是用采用热注入法获得的金属纳米颗粒(SEM图)。
图4是金属纳米颗粒的SiO2薄膜厚度与反应量关系图。
图5是不同形状金属纳米颗粒的吸收光谱与NaBiO3发光光谱。
图6是复合材料光催化制氢反应示意图。
具体实施方式
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
本发明目的是通过金属纳米颗粒具有的等离子体共振效应、强烈的可见光吸收能力以及有效的能量转换和载流子转移能力来提高NaBiO3的催化效率,解决目前NaBiO3催化效率不高的问题。由此提出一种具有高可见光吸收率、分解水以及污染物的新型金属纳米结构与NaBiO3复合材料的制备方法。
该复合材料光催化分解水制氢气的机制如图2所示:
①外界光照射到金属纳米颗粒上产生LSPR效应,引起强烈的自由电子集体谐振,从而在金属和NaBiO3的接触面附近产生局域表面等离子共振效应。在此区域,表面等离子激元(SPE)将振荡能量传递给NaBiO3价带电子使其跃迁到导带,形成在半导体表面附近的电子-空穴对。产生共振增强的关键是金属纳米等离子体的共振频率要与NaBiO3的带隙能级相当。可以通过调节金属纳米颗粒的材料、尺寸以及形貌,可以使其的共振光谱与NaBiO3的吸收光谱接近。
②由于金属颗粒上具有大量电子,有利于俘获价带的光生空穴,同时抑制光生电子转移并把它们留在NaBiO3中,从而有效抑制光生载流子的复合。
③被俘获的光生空穴具有强氧化性,在金属纳米颗粒表面将水分子氧化为O2随后消失。而留在NaBiO3中的大量光生电子生来就靠近表面,因而能够有效地转移到半导体表面,在这里,具有强还原性的光生电子易于将与表面接触的氢离子还原,产生光催化反应的产物H2。
发明内容为具有一定结构的贵金属金属纳米与NaBiO3单晶复合材料的制备:
1.NaBiO3单晶的制备
制备具有一定大小的NaBiO3单晶颗粒。其方法:首先,在空气中,以一定温度(一般250-300℃),在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末。其次,将粉末与纯净水等比例混合制成悬浮液,以备后续使用。
2.纳米金属结构的制备
采用热注入法制备金属纳米颗粒。其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种。金属纳米粒子的形状可以为立方体、领结型、球型或是圆柱型中的一种或几种,如图3所示。可以通过finite-difference time-domain(FDTD)算法计算金属纳米等离子的消光光谱。本专利以纳米银颗粒来说明金属纳米颗粒与NaBiO3复合材料的对水的催化效率作用机制。
3.纳米金属结构与NaBiO3复合材料的制备
在复合材料的制备过程中需要对贵金属纳米结构材料进行必要的钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化。具体的制备步骤如下:
①将制备好的各种形貌纳米金属颗粒和结构进行表面处理
需要在金属颗粒表面覆盖或包裹一层SiO2薄膜。其方法是,首先、在正硅酸四乙脂(TEOS)在氨(NH3)的作用下水解SiO2和乙醇;第二,将已经制备好的各种形貌的金属纳米结构胶体取出五等分,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟左右;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水。第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时。第五、反应完成后用乙醇和去离子水胶体洗3遍,分散在乙醇中。通过大量的实验表明改变与TEOS、NH3和去离子水的大小可以调节纳米颗粒的包裹的厚度。加入反应物的量与金属纳米颗粒包裹的厚度如图4所示。所使用的SiO2厚度一般在2-3nm之间。最后、将SiO2包裹的金属纳米颗粒进行表面修饰。
②用SEM表征金属纳米颗粒的形貌(图3),将获得的样品进行消光系数的测定。一般情况下,需要在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配,如图5中的黑色曲线。
③用光致发光谱(PL)检测NaBiO3颗粒分散系的荧光发光,实验测得的荧光发光曲线如图5红色曲线所示。
④同热处理方法制备NaBiO3单晶溶液。进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液。
⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。
通过上述步骤,最终获得具有高催化效率的复合材料。
4.复合材料的制备过程中,要有效提高催化效率,金属纳米颗粒的大小、形状、颗粒间的距离的调控是关键。为了使得金属纳米颗粒的消光光谱与NaBiO3的荧光光谱相匹配的时候,提高有机物降解和水的分解效率,金属纳米颗粒形状尺寸应为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为40nm~60nm。
如图5所示,理论计算结果表明:对于领结型的纳米银颗粒,当其尖角为20°、厚度为50nm时,消光光谱比较接近NaBiO3发光光谱;对于立方体纳米银颗粒,当其边长为60nm时,消光光谱比较接近NaBiO3发光光谱;对于圆柱形的纳米银颗粒,当其高度为50nm,半径为50nm时,消光光谱比较接近NaBiO3发光光谱。以这些参数进行制备银纳米金属颗粒(如图3所示)。
金属纳米颗粒增强NaBiO3复合材料光催化分解水制氢的实验验证如图6所示。图中a是卤钨灯,b是截止滤光片,c是反应容器,d是电磁搅拌器,f是排水法收集气体的倒置玻璃量管,e是进水管,g是散热风扇。
首先将45mg复合催化材料放入装有22.5mL体积比1:2的异丙醇水溶液的反应容器中分散,以异丙醇作为阳极反应物。然后向反应容器中通入氮气30分钟以除去溶解气体,并在黑暗条件下开启磁力搅拌机以建立吸附平衡。随后用500W卤钨灯通过截止滤光片(λ>400nm)照射反应容器,同时打开功率为50W的风扇以维持环境温度。反应生成的气体通入倒置的装满水的玻璃量管,采用排水法收集,在标准大气压下测量体积。最后采用气相色谱仪对收集到的气体进行分析。在环境温度和一个标准大气压下,产生可观测到的气泡。测量结果表明,传统NaBiO3的产氢率大约在3.2mL/h左右,而金属纳米颗粒增强NaBiO3复合材料的产氢率大约在21.0mL/h。可见与没有金属纳米颗粒相比较,金属纳米颗粒与NaBiO3相结合的材料其催化效率可以显著增加。
Claims (2)
1.一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,其特征在于,包括如下步骤:
1).NaBiO3单晶的制备
制备NaBiO3单晶颗粒;其方法:首先,在空气中,以温度250-300℃,在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末;其次,将无水铋酸钠粉末与纯净水等比例混合制成悬浮液,以备后续使用;
2).纳米金属结构的制备
采用热注入法制备金属纳米颗粒;其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种;金属纳米粒子的形状为立方体、领结型、球型或圆柱型中的一种或几种;
3).纳米金属结构与NaBiO3复合材料的制备
在复合材料的制备过程中需要对贵金属纳米结构材料进行必要的钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化;具体的制备步骤如下:
①将制备好的各种形貌纳米金属颗粒和结构进行表面处理
需要在金属颗粒表面覆盖或包裹一层SiO2薄膜;其方法是:首先、在正硅酸四乙脂TEOS在氨NH3的作用下水解SiO2和乙醇;第二、将已经制备好的各种形貌的金属纳米结构胶体取出五等分,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟左右;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水;第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时;第五、反应完成后用乙醇和去离子水胶体洗3遍,分散在乙醇中;所使用的SiO2厚度在2-3nm之间;最后、将SiO2包裹的金属纳米颗粒进行表面修饰;
②用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;需要在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配;
③用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;
④同热处理方法制备NaBiO3单晶溶液;进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液;
⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。
2.根据权利要求1所述的基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,其特征在于,步骤2)中:金属纳米颗粒形状尺寸应为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为40nm~60nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711375727.8A CN108176391B (zh) | 2017-12-19 | 2017-12-19 | 基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711375727.8A CN108176391B (zh) | 2017-12-19 | 2017-12-19 | 基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108176391A true CN108176391A (zh) | 2018-06-19 |
CN108176391B CN108176391B (zh) | 2020-10-02 |
Family
ID=62546461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711375727.8A Active CN108176391B (zh) | 2017-12-19 | 2017-12-19 | 基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108176391B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012653A (zh) * | 2018-08-30 | 2018-12-18 | 南通纺织丝绸产业技术研究院 | 一种铋酸锂-氧化铋光催化材料及其制备方法 |
CN112536039A (zh) * | 2020-12-03 | 2021-03-23 | 浙江大学 | 一种阶层结构复合氧化物可见光催化材料的制备方法 |
CN118204100A (zh) * | 2024-05-17 | 2024-06-18 | 西安交通大学医学院第一附属医院 | Bi基红磷肖特基结光催化剂、合成过氧化氢的方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101711988A (zh) * | 2009-08-14 | 2010-05-26 | 清华大学 | NaBiO3/BiOCl异质结光催化剂及其制备方法 |
CN103420336A (zh) * | 2012-05-22 | 2013-12-04 | 中国科学院大连化学物理研究所 | 一种Al-NaBiO3水解制氢用复合材料及其制备 |
CN106040263A (zh) * | 2016-05-23 | 2016-10-26 | 中南大学 | 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法 |
CN106563472A (zh) * | 2016-11-07 | 2017-04-19 | 中国科学院合肥物质科学研究院 | 金‑氯氧铋纳米复合材料及其制备方法 |
-
2017
- 2017-12-19 CN CN201711375727.8A patent/CN108176391B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101711988A (zh) * | 2009-08-14 | 2010-05-26 | 清华大学 | NaBiO3/BiOCl异质结光催化剂及其制备方法 |
CN103420336A (zh) * | 2012-05-22 | 2013-12-04 | 中国科学院大连化学物理研究所 | 一种Al-NaBiO3水解制氢用复合材料及其制备 |
CN106040263A (zh) * | 2016-05-23 | 2016-10-26 | 中南大学 | 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法 |
CN106563472A (zh) * | 2016-11-07 | 2017-04-19 | 中国科学院合肥物质科学研究院 | 金‑氯氧铋纳米复合材料及其制备方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012653A (zh) * | 2018-08-30 | 2018-12-18 | 南通纺织丝绸产业技术研究院 | 一种铋酸锂-氧化铋光催化材料及其制备方法 |
CN112536039A (zh) * | 2020-12-03 | 2021-03-23 | 浙江大学 | 一种阶层结构复合氧化物可见光催化材料的制备方法 |
CN112536039B (zh) * | 2020-12-03 | 2021-09-17 | 浙江大学 | 一种阶层结构复合氧化物可见光催化材料的制备方法 |
CN118204100A (zh) * | 2024-05-17 | 2024-06-18 | 西安交通大学医学院第一附属医院 | Bi基红磷肖特基结光催化剂、合成过氧化氢的方法及装置 |
CN118204100B (zh) * | 2024-05-17 | 2024-07-12 | 西安交通大学医学院第一附属医院 | Bi基红磷肖特基结光催化剂、合成过氧化氢的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108176391B (zh) | 2020-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Photo‐electrochemical glycerol conversion over a mie scattering effect enhanced porous BiVO4 photoanode | |
Gao et al. | A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks | |
Su et al. | Decoration of TiO 2/gC 3 N 4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin | |
Kong et al. | Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis | |
Zhang et al. | Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions | |
Zhou et al. | Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics | |
Velmurugan et al. | An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light | |
Ma et al. | Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures | |
Juan et al. | Plasmonic Au nanooctahedrons enhance light harvesting and photocarrier extraction in perovskite solar cell | |
Zhang et al. | Near-infrared light-driven photocatalytic NaYF 4: Yb, Tm@ ZnO core/shell nanomaterials and their performance | |
Zhang et al. | Synthesis of ZnO doped high valence S element and study of photogenerated charges properties | |
CN105396606A (zh) | 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法 | |
Cai et al. | CdS nanocrystallites sensitized ZnO nanorods with plasmon enhanced photoelectrochemical performance | |
CN108176391A (zh) | 基于金属纳米颗粒增强NaBiO3可见光催化作用的方法 | |
CN105177522B (zh) | 具有减反射微纳结构的碳基纳米颗粒薄膜及制备方法 | |
Zhang et al. | Photoelectric properties of ZnO/Ag2S heterostructure and its photoelectric ethanol sensing characteristics | |
Qiao et al. | Generation of hydrogen under visible light irradiation with enhanced photocatalytic activity of Bi2 WO 6/Cu1. 8Se for organic pollutants under Vis‐NIR light reign | |
CN106140241B (zh) | 氧离子表面调控的纳米g-C3N4有机光催化剂及其制备方法和应用 | |
Gong et al. | Constructing 1D/2D BiOI/ZnWO4 p‐n heterojunction photocatalyst with enhanced photocatalytic removal of NO | |
Su et al. | Solution synthesis of Cu2O/TiO2 core-shell nanocomposites | |
Wang et al. | Realization of ultrathin red 2D carbon nitride sheets to significantly boost the photoelectrochemical water splitting performance of TiO2 photoanodes | |
Zhang et al. | Hydrogen evolution promotion of Au‐nanoparticles‐decorated TiO2 nanotube arrays prepared by dip‐loading approach | |
Urbiola et al. | The transformation to cadmium oxide through annealing of cadmium oxide hydroxide deposited by ammonia-free SILAR method and the photocatalytic properties | |
Pham et al. | RETRACTED: Novel photocatalytic activity of vanadium-doped tantalum nitride sensitized/protected by polyaniline for efficient visible light water splitting | |
Zheng et al. | S-defected In2S3/ZnS nanospheres for enhancing solar-light photocatalytic capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |