CN108170024B - 一种广义智能内部模型集pid控制器设计方法 - Google Patents

一种广义智能内部模型集pid控制器设计方法 Download PDF

Info

Publication number
CN108170024B
CN108170024B CN201711358712.0A CN201711358712A CN108170024B CN 108170024 B CN108170024 B CN 108170024B CN 201711358712 A CN201711358712 A CN 201711358712A CN 108170024 B CN108170024 B CN 108170024B
Authority
CN
China
Prior art keywords
controller
value
model set
model
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711358712.0A
Other languages
English (en)
Other versions
CN108170024A (zh
Inventor
王文新
李全善
王曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING CENTURY ROBUST TECHNOLOGY CO LTD
Original Assignee
BEIJING CENTURY ROBUST TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING CENTURY ROBUST TECHNOLOGY CO LTD filed Critical BEIJING CENTURY ROBUST TECHNOLOGY CO LTD
Priority to CN201711358712.0A priority Critical patent/CN108170024B/zh
Publication of CN108170024A publication Critical patent/CN108170024A/zh
Application granted granted Critical
Publication of CN108170024B publication Critical patent/CN108170024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.

Abstract

本发明公开了一种广义智能内部模型集PID控制器设计方法,属于流程工业生产技术领域。该方法基于生产过程控制对象多时段、多工况有效内部模型集,设计适应多种工况的全局优化智能控制器,解决了常规控制器设计方法难以适应工况变化的缺陷,实现该全局优化智能控制的回路能够长期稳定运行。该方法采用先进的建模技术,对生产过程回路对象建立多时段、多工况模型,并形成有效模型集,模型集包含了回路多工况对象精准模型。在回路模型集基础上,提出了一种控制器设计方法,该方法可在不改变原有PID控制器结构的基础上直接实施解决了常规控制器设计方法难以适应工况变化的缺陷,实现控制回路长期稳定运行。

Description

一种广义智能内部模型集PID控制器设计方法
技术领域
本发明属于流程工业生产技术领域,涉及一种智能内部模型集PID控制器设计方法,该方法可以应用于流程工业生产装置控制回路多工况全局优化的控制器设计。
背景技术
在现代石油化工生产过程中,一套生产装置通常包含少则上百,多则上千的过程控制回路,且装置运行工况随着原料改变、加工需求调整或环境因素变化而变化,对于靠经验整定的单一控制器参数难以适应多工况变化的控制性能,在工况变化时,操作人员往往采用手动控制方式控制目标参数,待生产过程操作工况处于新的稳态时,原有的控制器参数难以达到有效控制,须经由工程师对相关回路控制器进行重新整定才能稳定投用,但随着控制回路的增加及工况变化,装置自动化水平和运行平稳性受到了严重影响。
发明内容
针对背景技术描述的问题,本发明提出一种新型的广义智能内部模型集PID控制器设计方法。该方法融合了先进的计算机技术、控制技术及工艺生产技术,充分利用工业大数据挖掘方法,采用先进的建模技术,对生产过程回路对象建立多时段、多工况模型,并形成有效模型集,模型集包含了回路多工况对象精准模型。在回路模型集基础上,提出了一种新型的控制器设计方法,该方法可在不改变原有PID控制器结构的基础上直接实施。将该新型的控制器设计方法与回路对象多工况模型集结合,设计出适应多种工况的全局优化智能控制器,解决了常规控制器设计方法难以适应工况变化的缺陷,实现控制回路长期稳定运行。
本发明采用的技术方案为一种广义智能内部模型集PID控制器设计方法,在石油化工实际生产过程中,当被控变量目标值改变时,往往要求平缓地过渡到新的目标值,而不需要理想的快速阶跃式跳变过渡,快速过渡容易给生产过程造成大幅度波动,且影响装置设备使用寿命。因此,本发明提出了一种控制器设计方法,达到更有利于生产装置整体平稳运行的目的,如图1所示为本方法控制回路结构图。
图1中,R(s)为回路设定值;Y(s)为被控变量输出值;
Figure BDA0001511488540000021
为PID控制器模型传递函数,K为比例系数,TI为积分时间常数;TD为微分时间常数,α为微分放大系数,取值为0.05~0.1;λ为鲁棒提升系数,具体值在控制器参数设计阶段计算求得,该鲁棒提升系数的适当取值有利于提升回路的鲁棒性能;GP(s)为过程对象传递函数;s为拉普拉斯变换算子。
将图1的控制回路进行等价转换,得如图2所示的回路结构图,由图2可见本方法结构上和内模控制原理有相似之处,故称为广义内部模型控制。
图2中,GC(s)称为广义内部模型控制器,其传递函数如下:
Figure BDA0001511488540000022
控制器设计目标为确定控制器参数K、TI、TD,使得控制回路前向通道GC(s)和GP(s)的输入输出响应等价于一阶惯性环节
Figure BDA0001511488540000023
在设定值R(s)改变后,被控变量实现比较理想的平稳过度过程。控制器参数及鲁棒提升系数设计采用随机搜索优化方法,该随机搜索优化方法具有运算速度快、精确度高、全局收敛性好等特点,最终计算结果即为设计的控制器参数。
为了使上述所设计的控制器参数能够在多种工况正常运行,本发明提出一种基于内部模型集的全局优化智能控制器设计方法,该方法在控制器设计方法的基础上,综合生产控制回路过程对象多时段、多工况的有效模型集,智能选取出适应多种工况的全局优化控制器,解决了常规控制器设计方法难以适应工况变化的缺陷,实现该控制回路能够长期稳定运行,采用该方法设计全局优化控制器回路结构图如图3所示。
图3中,(GP1(s),GP2(s),…,GPm(s))为当前控制回路过程的对象模型集;m为模型集中包含模型的数量。
在基于内部模型集的全局优化智能控制器参数的设计中,采用ITAE即时间乘误差绝对值积分作为最终最优参数确定指标,该指标计算公式如下:
Figure BDA0001511488540000031
其中,ηITAE为全局优化控制器参数性能指标;m为当前回路对象模型集包含模型数量;n为计算模型集中各模型动态响应性能选取时间段包含的数据点数;yi(tj)为模型集中第i个模型在tj时刻输出动态响应值,i为模型的序号;ri为第i个模型输入给定值;tj为第j个采样数据值的时间,j为采样数据值序号。
全局优化智能控制器即采用随机搜索优化算法,快速选取出一组智能控制器参数,直接在PID控制器实施,使得在该组控制器参数控制下,被控过程对象的输出动态响应在性能指标ηITAE的约束下,使得性能指标ηITAE取值最小,实现适应多工况的全局优化智能控制器控制目标。方法步骤如下:
S1、根据采集到的现场生产过程对象多时段、多工况的有效数据,并采用混合Box-Jenkins模型闭环辨识方法建立过程对象多工况精准模型,形成对象内部模型集;
S2、对对象内部模型集中各精准模型采用广义智能内部模型集控制器设计方法,分别采用随机搜索优化方法对各工况模型设计出相应的控制器K、TI、TD参数组;
S3、根据S2得到的控制器K、TI、TD参数组,计算出各组控制器K、TI、TD参数的平均值,作为采用随机搜索优化算法求取全局优化控制器参数的初值;
S4、采用随机搜索优化算法,以S3计算出的各组控制器K、TI、TD参数的平均值作为初值,搜索出一组智能控制器参数,使得对象模型集中各工况模型在搜索出的控制器参数控制下,性能指标ηITAE取值最小,即达到全局优化智能控制器的设计目标;
综合对基于内部模型集的新型PID控制器设计方法进行分析,与现有传统的PID控制器相比,本发明所提出的方法具有如下几个优点:
1、该方法突破了传统的PID控制器设计理念,提出了一种广义内部模型PID控制器设计方法,该方法具有设计简单,易于在实际的生产过程应用;
2、提出了一种广义内部模型集控制器设计方法,该方法基于生产过程控制对象多时段、多工况有效内部模型集,设计适应多种工况的全局优化智能控制器,解决了常规控制器设计方法难以适应工况变化的缺陷,实现该全局优化智能控制的回路能够长期稳定运行。
附图说明
图1新方法控制器设计控制回路原理图
图2转换后的新型广义内部模型控制回路结构图
图3基于内部模型集的全局优化智能控制器设计回路结构图
图4基于内部模型集的新型全局优化智能控制器控制效果图
具体实施方式
针对本发明所提出的方法,下面结合一个实例予以说明。
某炼油厂催化裂化装置工况条件随着加工量不定期变更,造成装置各单元生产工况经常变化,现场工作人员通常要对相关控制回路控制器参数重新整定,才能适应新的工况生产,对于此类常见的生产过程控制问题,设计可适应多工况的控制器,对降低工作人员劳动强度,使装置保持长期稳定运行具有重要意义。选取该装置原料进料流量回路作为实例说明,设流量对象模型传递函数如下所示:
Figure BDA0001511488540000051
其中,GPi(s)表示流量对象模型集中第i个模型;ai,ki,τi为第i个模型的参数。本发明对现场采集的数据进行分析,挖掘出的多种工况的有效建模数据,并采用混合Box-Jenkins模型闭环辨识方法对流量对象进行建模,形成有效模型集,模型参数见下表所示:
表1流量对象模型集中各模型参数
Figure BDA0001511488540000052
Figure BDA0001511488540000061
采用随机搜索优化方法求取本发明提出的新型控制器设计方法,控制器微分环节中微分放大系数α取值0.08,上述表中各模型的对应的控制器参数见下表:
表2各工况模型对应的控制器参数
Figure BDA0001511488540000062
可得各组参数平均值
Figure BDA0001511488540000063
分别为0.46、0.61、1.53,采用该平均值作为下一步采用随机搜索优化算法求取全局优化智能控制器参数的初值,最终得到全局优化智能控制器参数K、TI、TD分别为0.79、2.21、0.76。该参数即为本发明提出的基于内部模型集的新型智能控制器参数,将该参数实施到上述四种工况模型中,得到控制效果如图4所示。
由图4可见,采用本发明提出的广义内部模型集控制器设计方法设计的全局优化智能控制器适用于该流量对象的上述各种工况,且取得了较好的控制水平。

Claims (3)

1.一种广义智能内部模型集PID控制器设计方法,在石油化工实际生产过程中,当被控变量目标值改变时,往往要求平缓地过渡到新的目标值,而不需要理想的快速阶跃式跳变过渡,快速过渡容易给生产过程造成大幅度波动,且影响装置设备使用寿命;其特征在于:
本方法控制回路结构中,R(s)为回路设定值;Y(s)为被控变量输出值;
Figure FDA0002791532180000011
为PID控制器模型传递函数,K为比例系数,TI为积分时间常数;TD为微分时间常数,α为微分放大系数,取值为0.05~0.1;λ为鲁棒提升系数,具体值在控制器参数设计阶段计算求得,该鲁棒提升系数的适当取值有利于提升回路的鲁棒性能;GP(s)为过程对象传递函数;s为拉普拉斯变换算子;
将控制回路进行等价转换得回路结构,故称为广义内部模型控制;
GC(s)称为广义内部模型控制器,其传递函数如下:
Figure FDA0002791532180000012
控制器设计目标为确定控制器参数K、TI、TD,使得控制回路前向通道GC(s)和GP(s)的输入输出响应等价于一阶惯性环节
Figure FDA0002791532180000013
在设定值R(s)改变后,被控变量实现比较理想的平稳过度过程;控制器参数及鲁棒提升系数设计采用随机搜索优化方法。
2.根据权利要求1所述的一种广义智能内部模型集PID控制器设计方法,其特征在于:
为了使所设计的控制器参数能够在多种工况正常运行,本方法在控制器设计方法的基础上,综合生产控制回路过程对象多时段、多工况的有效模型集,智能选取出适应多种工况的全局优化控制器,解决了常规控制器设计方法难以适应工况变化的缺陷,实现该控制回路能够长期稳定运行;
(GP1(s),GP2(s),…,GPm(s))为当前控制回路过程的对象模型集;m为模型集中包含模型的数量;
在基于内部模型集的全局优化智能控制器参数的设计中,采用ITAE即时间乘误差绝对值积分作为最终最优参数确定指标,该指标计算公式如下:
Figure FDA0002791532180000021
其中,ηITAE为全局优化控制器参数性能指标;m为当前回路对象模型集包含模型数量;n为计算模型集中各模型动态响应性能选取时间段包含的数据点数;yi(tj)为模型集中第i个模型在tj时刻输出动态响应值,i为模型的序号;ri为第i个模型输入给定值;tj为第j个采样数据值的时间,j为采样数据值序号。
3.根据权利要求1所述的一种广义智能内部模型集PID控制器设计方法,其特征在于:
全局优化智能控制器即采用随机搜索优化算法,快速选取出一组智能控制器参数,直接在PID控制器实施,使得在该组控制器参数控制下,被控过程对象的输出动态响应在性能指标ηITAE的约束下,使得性能指标ηITAE取值最小,实现适应多工况的全局优化智能控制器控制目标;方法步骤如下:
S1、根据采集到的现场生产过程对象多时段、多工况的有效数据,并采用混合Box-Jenkins模型闭环辨识方法建立过程对象多工况精准模型,形成对象内部模型集;
S2、对对象内部模型集中各精准模型采用广义智能内部模型集控制器设计方法,分别采用随机搜索优化方法对各工况模型设计出相应的控制器K、TI、TD参数组;
S3、根据S2得到的控制器K、TI、TD参数组,计算出各组控制器K、TI、TD参数的平均值,作为采用随机搜索优化算法求取全局优化控制器参数的初值;
S4、采用随机搜索优化算法,以S3计算出的各组控制器K、TI、TD参数的平均值作为初值,搜索出一组智能控制器参数,使得对象模型集中各工况模型在搜索出的控制器参数控制下,性能指标ηITAE取值最小,即达到全局优化智能控制器的设计目标。
CN201711358712.0A 2017-12-17 2017-12-17 一种广义智能内部模型集pid控制器设计方法 Active CN108170024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711358712.0A CN108170024B (zh) 2017-12-17 2017-12-17 一种广义智能内部模型集pid控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711358712.0A CN108170024B (zh) 2017-12-17 2017-12-17 一种广义智能内部模型集pid控制器设计方法

Publications (2)

Publication Number Publication Date
CN108170024A CN108170024A (zh) 2018-06-15
CN108170024B true CN108170024B (zh) 2021-02-05

Family

ID=62522508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711358712.0A Active CN108170024B (zh) 2017-12-17 2017-12-17 一种广义智能内部模型集pid控制器设计方法

Country Status (1)

Country Link
CN (1) CN108170024B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393746A (zh) * 2001-07-02 2003-01-29 李晓枫 Pid参数模糊自适应控制器
CN101989827A (zh) * 2010-11-18 2011-03-23 东南大学 基于惯量辨识的交流伺服系统速度环控制参数自整定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1187664C (zh) * 2003-03-06 2005-02-02 上海交通大学 定量整定鲁棒性的智能比例积分微分控制方法
CN102890446B (zh) * 2012-10-08 2015-10-14 北京化工大学 一种非方时滞系统的imc-pid控制器的设计方法
RU2579987C2 (ru) * 2014-05-27 2016-04-10 Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" Адаптивный интеллектуальный логический регулятор, работающий в условиях нечетко заданной информации
CN205959054U (zh) * 2016-08-19 2017-02-15 北京世纪隆博科技有限责任公司 全流程智能控制成套系统
CN106292289B (zh) * 2016-09-22 2019-01-04 北京世纪隆博科技有限责任公司 流程工业控制回路对象的混合精英随机搜索优化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393746A (zh) * 2001-07-02 2003-01-29 李晓枫 Pid参数模糊自适应控制器
CN101989827A (zh) * 2010-11-18 2011-03-23 东南大学 基于惯量辨识的交流伺服系统速度环控制参数自整定方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Incremental Q -learning strategy for adaptive PID control of mobile robots;Ignacio Carlucho;《Expert Systems With Applications》;20170306;全文 *
Stabilization and PID tuning algorithms for second-order unstable processes with time-delays;Qiu HanSeer;《ISA Transactions》;20170201;全文 *
变参数PID控制器设计;朱建公;《西北大学学报》;20030831;全文 *
变参数PID方法在涡轮机闭环控制上的应用研究;乔宏;《鱼雷技术》;20090228;全文 *
广义通用模型自适应控制器研究;黄景;《冶金自动化》;20071231;全文 *

Also Published As

Publication number Publication date
CN108170024A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN112286043B (zh) 基于被控对象阶跃响应特性数据的pid参数整定方法
CN101286044B (zh) 一种燃煤锅炉系统蒸汽温度混合建模方法
CN106703904A (zh) 一种基于数据挖掘技术的汽轮机配汽曲线优化方法
CN106325074A (zh) 一种基于布谷鸟算法的pid控制器参数智能整定方法
CN108132596B (zh) 一种微分超前广义智能内部模型集pid控制器设计方法
CN107870567B (zh) 一种比例微分超前广义智能内部模型集pid控制器设计方法
CN108132597B (zh) 一种微分超前智能模型集pid控制器设计方法
CN103760931B (zh) 动态矩阵控制优化的油气水卧式三相分离器压力控制方法
CN108170024B (zh) 一种广义智能内部模型集pid控制器设计方法
CN108628270B (zh) 一种基于plc远程监控终端的优化网络控制装置与方法
CN108107713B (zh) 一种比例微分超前智能模型集pid控制器设计方法
US9098078B2 (en) Control algorithm based on modeling a controlled object
CN109298631A (zh) 一种基于传统pid控制器附加二次比例系数的自适应参数整定方法
CN104267600B (zh) 钢包精炼炉电极调节控制系统及其控制方法
CN108089435B (zh) 一种智能模型集pid控制器设计方法
CN105487375A (zh) 一种离散pid控制器参数整定方法
CN110262221B (zh) 一种热工过程中对象的pid控制器参数控制方法
CN104817254A (zh) 玻璃熔窑窑压智能调节方法
CN104460317A (zh) 单输入单输出化工生产过程的自适应预测函数的控制方法
CN105159097A (zh) 炼油加热炉炉膛压力的多变量预测控制pid控制方法
CN113641101B (zh) 一种基于数值仿真的多渠池控制参数寻优算法
CN110243138B (zh) 一种空气分离设备模型前馈控制系统及方法
CN110538881B (zh) 一种基于改进型内模控制器的热连轧厚度控制方法
CN103064284B (zh) 应用逆向差分抑制不可测扰动的模型预测控制器及方法
CN111538305A (zh) 基于需求诊断的火电机组给水和燃料控制智能优化方法、系统及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant