CN108169701A - Radio-frequency power ime-domain measuring method and calibration method - Google Patents

Radio-frequency power ime-domain measuring method and calibration method Download PDF

Info

Publication number
CN108169701A
CN108169701A CN201711489749.7A CN201711489749A CN108169701A CN 108169701 A CN108169701 A CN 108169701A CN 201711489749 A CN201711489749 A CN 201711489749A CN 108169701 A CN108169701 A CN 108169701A
Authority
CN
China
Prior art keywords
calibration
microstrip line
power
probe
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711489749.7A
Other languages
Chinese (zh)
Other versions
CN108169701B (en
Inventor
方文啸
骆成阳
贺致远
王磊
邵伟恒
张鹏南
黄云
恩云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Product Reliability and Environmental Testing Research Institute
Original Assignee
China Electronic Product Reliability and Environmental Testing Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electronic Product Reliability and Environmental Testing Research Institute filed Critical China Electronic Product Reliability and Environmental Testing Research Institute
Priority to CN201711489749.7A priority Critical patent/CN108169701B/en
Publication of CN108169701A publication Critical patent/CN108169701A/en
Application granted granted Critical
Publication of CN108169701B publication Critical patent/CN108169701B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

Abstract

The embodiment of the present invention provides a kind of radio-frequency power ime-domain measuring method and calibration method, above-mentioned radio-frequency power ime-domain measuring method include:Power probe and board under test microstrip line is staggered relatively, power probe is made to be located above board under test microstrip line and perpendicular to board under test microstrip line, and power probe hub of a spool is projected on board under test microstrip line;And power probe is connect with the first passage of oscillograph and second channel respectively with oscillograph by meeting the transmission line of test request;When meeting the measuring signal of test request to the input of board under test microstrip line, oscillograph acquires the power output signal of power probe;Computer obtains the radio-frequency power of board under test according to the power output signal of power probe.This contactless measurement can carry out the time domain measurement to radio-frequency power under conditions of system or halt system is not changed, facilitate test.

Description

Radio-frequency power ime-domain measuring method and calibration method
Technical field
The present invention relates to radio-frequency power frequency domain measurement technical field, more particularly to a kind of radio-frequency power ime-domain measuring method And calibration method.
Background technology
Power time domain measurement refers to and measures power parameter and change with time data.At present, mostly using contact type measurement system Power time domain measurement is carried out, but inventor has found that at least there are following defects for traditional technology during realization:Traditional test System is because that need to be in direct contact measured point, so to fully consider nonintervention system under test (SUT), need modification system or halt system more Power waving map is carried out, test is inconvenient.With the increasingly complexity of test object, it is desirable to not change system or stop system The time domain measurement to radio-frequency power is carried out under conditions of system.
Invention content
Based on this, it is necessary to which, for testing the problem of inconvenient, on the one hand the embodiment of the present invention, provides a kind of radio-frequency power Ime-domain measuring method, including:
Power probe and board under test microstrip line is staggered relatively, it is located at power probe above board under test microstrip line and vertical In board under test microstrip line, and power probe hub of a spool is projected on board under test microstrip line;
Power probe is connected respectively by meeting the transmission line of test request and is led to the first passage of oscillograph and second Road;
When meeting the measuring signal of test request to the input of board under test microstrip line, oscillograph acquires the power of power probe Output signal;
Computer obtains the radio-frequency power of board under test according to the power output signal of power probe.
The power output signal of power probe includes the first output voltage and the second output electricity in one of the embodiments, Pressure;
The process of the power output signal of oscillograph acquisition power probe includes step:
By the voltage probe of the current probe of power probe and power probe respectively by meeting the transmission line of test request Connect the first passage and second channel of oscillograph;
Oscillograph acquires the first output voltage by first passage, and oscillograph passes through second channel acquisition the second output electricity Pressure;
The process that computer obtains the radio-frequency power of board under test according to power output signal includes step:
Computer obtains the radio-frequency power of board under test according to the first output voltage and the second output voltage.
Power probe and board under test microstrip line process staggered relatively are included into step in one of the embodiments,:
Power probe is fixed on fixture, and the fixture for being mounted with power probe is fixed on stent, visits power Head is perpendicular to sample stage;
Board under test microstrip line is fixed on sample stage.
It is in one of the embodiments, that power probe and board under test microstrip line is staggered relatively, it is located at power probe and treats Above drafting board microstrip line and perpendicular to board under test microstrip line, and power probe hub of a spool is projected in the mistake on board under test microstrip line Journey includes step:
Power probe hub of a spool is projected at the center of board under test microstrip line.
It is a kind of to radio-frequency power time domain measurement calibration method, including:
Power probe and calibration microstrip line is staggered relatively, power probe is made to be located above calibration microstrip line and perpendicular to school Quasi- microstrip line, and power probe hub of a spool is projected on calibration microstrip line;Calibration microstrip line connection is loaded, the resistance value of load It is matched with calibration microstrip line characteristic impedance;
Calibrating measuring device is believed to calibration microstrip line input measurement signal, the output of power probe acquisition calibration microstrip line Number;
Calibrating measuring device obtains the output signal of power probe acquisition and is sent to computer;
The output signal that computer is sent according to calibrating measuring device obtains calibration parameter, wherein, calibration parameter for pair The radio-frequency power to be measured of board under test measures calibration.
Calibrating measuring device includes Network Analyzer in one of the embodiments, and calibration parameter includes calibration factor;
Calibrating measuring device calibrates the output signal of microstrip line to calibration microstrip line input measurement signal, power probe acquisition Process include step:
Port one to the port four of Network Analyzer is connected to the voltage probe of power probe respectively, calibrates the two of microstrip line End and the current probe of power probe;
Network Analyzer to calibration microstrip line input measurement signal;
Calibrating measuring device obtain power probe acquisition output signal and be sent to computer process include step:
Network Analyzer obtains network transmission parameter and is sent to computer;
The process that computer obtains calibration parameter according to the output signal that calibrating measuring device is sent includes step:
Computer obtains the calibration of power factor according to the network transmission parameter that Network Analyzer is sent.
Calibrated tester further includes signal generator in one of the embodiments, and calibration parameter further includes test frequency Rate;
Calibrating measuring device calibrates the output signal of microstrip line to calibration microstrip line input measurement signal, power probe acquisition Process include step:
Signal generator is connect to one end of calibration microstrip line, and another terminating load that will calibrate microstrip line;
Signal generator to calibration microstrip line input measurement signal;
Calibrating measuring device obtain power probe acquisition output signal and be sent to computer process include step:
Oscillograph acquires the first output voltage by second channel, and the second output voltage is acquired by third channel;
First output voltage and the second output voltage are sent to computer by oscillograph;
The process that computer obtains calibration parameter according to output signal includes step:
Computer obtains the waveform delay time according to the first output voltage and the second output voltage, if the waveform delay time exists Then it is the test frequency for meeting test request by the frequency record of measuring signal in the range of preset delay time.
Calibration parameter further includes linear electrical parameter in one of the embodiments,;
The process of signal generator to calibration microstrip line input measurement signal includes step:
Signal generator meets the measuring signal of test frequency to calibration microstrip line input;
The process that computer obtains calibration parameter according to output signal includes step:
Computer obtains the waveform delay time according to the first output voltage and the second output voltage, if the waveform delay time exists Then it is to meet the linear electrical parameter of test request by the reference record of transmission line in the range of preset delay time.
Calibrating measuring device further includes arbitrary waveform generator in one of the embodiments,;
The output signal sent in computer according to calibrating measuring device further includes step after obtaining calibration parameter step:
By the first port of arbitrary waveform generator and second port respectively with calibrating one end and the oscillograph of microstrip line First passage connects, and the other end for calibrating microstrip line is connected load;
The output terminal of power probe is connect respectively with the second channel of oscillograph and third channel;
Arbitrary waveform generator inputs random waveform by first port to calibration microstrip line;
Oscillograph acquires the first of the calibration microstrip line of the second port output of arbitrary waveform generator by first passage Calibration verification electric signal;
Oscillograph acquires the second calibration verification electric signal of calibration microstrip line by power probe;
Computer verifies calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal.
The second calibration verification electric signal includes the first output voltage and the second output voltage in one of the embodiments,;
The process of second calibration verification electric signal of oscillograph acquisition calibration microstrip line includes step:
Oscillograph acquires the first output voltage, and acquire the second output voltage by third channel by third channel;
Computer verifies calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal Process includes step:
Computer compares the first calibration verification electric signal with the first output voltage, the second output voltage respectively, with Calibration parameter is verified.
The embodiment of the present invention at least has the advantages that:Power probe and board under test microstrip line is staggered relatively, make Power probe is located above board under test microstrip line and perpendicular to board under test microstrip line, and power probe hub of a spool be projected in it is to be measured On plate microstrip line;And by power probe and oscillograph by meet the transmission line of test request respectively with the first passage of oscillograph It is connected with second channel;When meeting the measuring signal of test request to the input of board under test microstrip line, oscillograph acquisition power is visited The power output signal of head;Computer obtains the radio-frequency power of board under test according to the power output signal of power probe.It is this non- Contact measurement method can carry out the time domain measurement to radio-frequency power under conditions of system or halt system is not changed, Facilitate test.
Description of the drawings
Fig. 1 is the first structure schematic diagram of radio-frequency power time domain measurement system embodiment of the present invention;
Fig. 2 is the board under test microstrip line schematic diagram of radio-frequency power time domain measurement system embodiment of the present invention;
Fig. 3 is the second structure diagram of radio-frequency power time domain measurement system embodiment of the present invention;
Fig. 4 is the first pass schematic diagram of radio-frequency power ime-domain measuring method embodiment of the present invention;
Fig. 5 is the second procedure schematic diagram of radio-frequency power ime-domain measuring method embodiment of the present invention;
Fig. 6 is the first structure schematic diagram of radio-frequency power time domain measurement calibration system embodiment of the present invention;
Fig. 7 is the second structure diagram of radio-frequency power time domain measurement calibration system embodiment of the present invention;
Fig. 8 is the third structure diagram of radio-frequency power time domain measurement calibration system embodiment of the present invention;
Fig. 9 is the first pass schematic diagram of radio-frequency power time domain measurement calibration method embodiment of the present invention;
Figure 10 is the second procedure schematic diagram of radio-frequency power time domain measurement calibration method embodiment of the present invention;
Figure 11 is the third flow diagram of radio-frequency power time domain measurement calibration method embodiment of the present invention;
Figure 12 is the structure diagram of calibration verification system embodiment of the present invention;
Figure 13 is the 4th flow diagram of radio-frequency power time domain measurement calibration method embodiment of the present invention.
Specific embodiment
For the ease of understanding the present invention, the present invention is described more fully below with reference to relevant drawings.In attached drawing Give the preferred embodiment of the present invention.But the present invention can realize in many different forms, however it is not limited to this paper institutes The embodiment of description.On the contrary, the purpose for providing these embodiments is made to the disclosure more thorough and comprehensive.
It should be noted that when an element is considered as " connection " another element, it can be directly to separately One element simultaneously in combination is integrated or may be simultaneously present centering elements.Term as used herein " installation ", " one End ", " other end " and similar statement are for illustrative purposes only.
Unless otherwise defined, all of technologies and scientific terms used here by the article is with belonging to technical field of the invention The normally understood meaning of technical staff is identical.Term used in the description of the invention herein is intended merely to description tool The purpose of the embodiment of body, it is not intended that in the limitation present invention.Term as used herein " and/or " including one or more phases The arbitrary and all combination of the Listed Items of pass.
As shown in Figure 1, the embodiment of the present invention provides a kind of radio-frequency power time domain measurement system, including:
Oscillograph 10, computer, board under test microstrip line 31 and power probe 20;
Power probe 20 and board under test microstrip line 31 are staggered relatively, and power probe 20 is located at 31 top of board under test microstrip line simultaneously Perpendicular to board under test microstrip line 31, and 20 hub of a spool of power probe is projected on board under test microstrip line 31;
Power probe 20 is logical with the first passage of oscillograph 10 11 and second respectively by the transmission line for meeting test request Road 12 connects;Oscillograph 10 is used to acquire work(when inputting the measuring signal for meeting test frequency requirement to board under test microstrip line 31 The power output signal of rate probe 20;
Computer is connected with the output terminal of oscillograph 10, and computer is used to obtain board under test 30 according to power output signal Radio-frequency power.
Wherein, the magnetic field and utilize electricity that power probe 20 detects radio-frequency current generation using Faraday's electromagnetic induction law Field couples the electric field to detect radio-frequency voltage generation;The first passage 11 and second channel 12 of oscillograph 10 are visited for connecting power First 20, and the collected output waveform of probe institute is read, optionally, the terminal impedance of oscillograph 10 can be set as 50 Europe;It calculates Machine is used to implement between the master control of radio-frequency power time domain measurement system and data processing, with oscillograph 10 and connects, optionally, even The mode of connecing can be connected by modes such as LAN or GPIB or between computer and oscillograph 10 by long-range nothing Line connects.Meet the transmission line of test request, refer to the wave of the power output signal of the power probe 20 acquired to oscillograph 10 The transmission line of the no-delay influence of shape;The measuring signal for meeting test frequency requirement refers to power output signal to power probe 20 The no-delay influence of waveform certain frequency in the range of measuring signal.Optionally, 31 1 terminating load 50 of board under test microstrip line, Load 50 can be 50 Europe.
Specifically, power probe 20 and board under test microstrip line 31 it is staggered relatively it is good after so that coil plane is micro- with board under test Band line 31 is parallel, and coil is projected on board under test microstrip line 31, and power probe 20 is located above board under test microstrip line 31 and vertical In board under test microstrip line 31.At this point, the magnetic field of electric current generation, electric field are most strong in board under test microstrip line 31, it is suitble to power probe 20 Acquire the power output signal of board under test microstrip line 31.Oscillograph 10 passes through first passage 11 and second channel 12 and power probe 20 connections, obtain the power output signal that power probe 20 acquires, and radio frequency work(is calculated according to power output signal in computer Rate.
Radio-frequency power time domain measurement system in one of the embodiments, further includes fixture, stent and sample stage;
Board under test microstrip line 31 is fixed on sample stage;
Fixture is rack-mount, and for constant power probe 20, makes power probe 20 perpendicular to board under test microstrip line 31, and 20 coil of power probe is made to be projected on board under test microstrip line 31.
Wherein, sample stage refers to the testing stand for placing board under test 30, specifically, after securing board under test microstrip line 31, Power probe 20 is fixed on fixture, and the fixture for being mounted with power probe 20 is fixed on stent, fixture is fixed on branch After on frame can random rotational angle, to adjust the position of fixture so that power probe 20 is located on board under test microstrip line 31 Just and perpendicular to board under test microstrip line 31, and 20 hub of a spool of power probe is projected on board under test microstrip line 31, so as to Preferably measure the radio-frequency power of board under test 30.Optionally, fixture can be connected on stent or fixture is socketed in stent On.
Radio-frequency power time domain measurement system further includes mobile station in one of the embodiments, and the mobile station is used to put Put board under test microstrip line 31 and microstrip line.Wherein it is possible to the coordinate of X, Y, Z, R axis four dimensions by adjusting mobile station, real Now to the adjustment of 30 position of board under test.R axis is the shaft centered on Z axis.
20 coil plane of power probe is parallel with board under test microstrip line 31 in one of the embodiments, power probe 20 Hub of a spool is projected at the center of board under test microstrip line 31.Optionally, 20 hub of a spool of power probe and board under test microstrip line The distance on 31 surfaces can be 1mm.
In one of the embodiments, as shown in Fig. 2, 31 both ends of board under test microstrip line are welded on board under test by SMA32 On 30;
31 one end of board under test microstrip line connection load 50, the other end meet the measurement letter of test frequency requirement for receiving Number.
In one of the embodiments, as shown in figure 3, power probe 20 includes voltage probe 22 and current probe 21;Electricity Stream probe 21 and voltage probe 22 are respectively by meeting the transmission line of test request and the first passage 11 and second of oscillograph 10 Channel 12 connects.
Current probe 21 includes sampling coil and the first SMA radio frequency connectors in one of the embodiments, samples line Circle is connect by the first SMA radio frequency connectors with the first passage 11 of oscillograph 10, and sampling coil is micro- for acquiring board under test The first output voltage with line 31;
Voltage probe 22 includes monopole detecting structure and the 2nd SMA radio frequency connectors, monopole detecting structure pass through 2nd SMA radio frequency connectors are connect with the second channel 12 of oscillograph 10, and monopole detecting structure is micro- for acquiring board under test The second output voltage with line 31.
21 measuring principle of current probe is that the magnetic field B of radio-frequency current generation is detected using Faraday's electromagnetic induction law. Radio-frequency current I generates magnetic flux in coil, which is alternation, so as to induce the first output electricity in sampling coil It presses, the sampling coil on probe is connect with SMA radio frequency connectors, and the first output voltage that sampling coil senses formation passes through SMA are transmitted toward oscillographs 10, normally, there are the first output voltage is directly proportional to magnetic field intensity, and magnetic field intensity and Radio-frequency current is directly proportional, therefore the signal by acquiring the first output voltage can deduce radio-frequency current.
22 measuring principle of voltage probe is to detect radio-frequency voltage on tested board under test microstrip line 31 by field coupling to produce Raw electric field, tested radio-frequency voltage generate alternating electric field in space, and voltage probe 22 is induced using field coupling by this friendship The electromotive force that changed electric field generates, the inner wire of voltage probe 22 are connect with SMA, are sensed the second induced electromotive force formed and are led to The monopole detecting structure of overvoltage probe 22 and SMA are transmitted toward oscillographs 10, normally, the second induced electromotive force and Electric field strength is directly proportional, and electric field strength absolute value is directly proportional to radio-frequency voltage.Therefore by acquiring the second induced electromotive force Signal can deduce tested voltage.
Wherein, the first passage 11 of oscillograph 10 connects current probe 21, and the second channel 12 of oscillograph 10 connects voltage probe 22, when inputting the measuring signal for meeting test frequency requirement to board under test microstrip line 31,10 first passage 11 of oscillograph exports First output voltage, 10 second channel 12 of oscillograph export the second output voltage, wherein, the first output voltage refers to current probe 21 acquisition output voltage signals, the second output voltage refer to voltage probe 22 acquire output voltage signal, computer according to The first output voltage and the second output voltage that oscillograph 10 exports obtain radio-frequency power.
As shown in figure 4, the embodiment of the present invention also provides a kind of radio-frequency power ime-domain measuring method, including:
S110:Power probe 20 and board under test microstrip line 31 is staggered relatively, power probe 20 is made to be located at board under test micro-strip Above line 31 and perpendicular to board under test microstrip line 31, and 20 hub of a spool of power probe is projected on board under test microstrip line 31;
S120:Power probe 20 is connected into first passage with oscillograph 10 respectively by meeting the transmission line of test request 11 and second channel 12;
S130:When meeting the measuring signal of test request to the input of board under test microstrip line 31, oscillograph 10 acquires power The power output signal of probe 20;
S140:Computer obtains the radio-frequency power of board under test 30 according to the power output signal of power probe 20.
Wherein, radio-frequency power time domain measurement system is with consistent in above-mentioned radio-frequency power time domain measurement system embodiment, herein It does not repeat.
Specifically, power probe 20 and board under test microstrip line 31 is staggered relatively, power probe 20 is made to be located at board under test micro- Above band line 31 and perpendicular to board under test microstrip line 31, and 20 hub of a spool of power probe is projected on board under test microstrip line 31, The electric field strength for the board under test microstrip line 31 that power probe 20 acquires is most strong at this time, conducive to the radio-frequency power realized to board under test 30 Time domain measurement.The measuring signal for meeting test request is inputted to board under test microstrip line 31, microstrip line is powered at this time, flows through electric current, Power probe 20 acquires electric field strength and magnetic field intensity in board under test microstrip line 31, power probe according to electromagnetic induction principle 20 output signal to oscillograph 10, and computer obtains the radio-frequency power of board under test 30 according to the output signal of oscillograph 10.It is optional , 31 1 terminating load 50 of board under test microstrip line, load 50 can be 50 Europe.
Such as Fig. 5 in one of the embodiments, by power probe 20 and board under test microstrip line 31 process packet staggered relatively Include step:
S111:Power probe 20 is fixed on fixture, and the fixture for being mounted with power probe 20 is fixed on stent, Make power probe 20 perpendicular to sample stage.
S112:Board under test microstrip line 31 is fixed on sample stage.
In order to ensure in measurement process, power probe 20 is fixed on fixture by the stability of probe, which fixes On stent, board under test microstrip line 31 is fixed on sample stage, wherein, the connection between fixture and stent can be that buckle connects It connects or fixture includes an annulus, stent includes pillar, and the annulus matching of fixture is socketed on the pillar of stent, presss from both sides After tool is fixed on stent, can random rotational angle, but want the power probe 20 on holding jig perpendicular to sample stage.
It is in one of the embodiments, as shown in figure 5, power probe 20 and board under test microstrip line 31 is staggered relatively, make Power probe 20 is located at 31 top of board under test microstrip line and perpendicular to board under test microstrip line 31, and 20 hub of a spool of power probe is thrown Process of the shadow on board under test microstrip line 31 includes step:
S113:20 hub of a spool of power probe is projected at the center of board under test microstrip line 31, and makes power probe 20 The distance on hub of a spool and 31 surface of board under test microstrip line is 1mm.Specifically, power probe 20 and 31 surface of board under test microstrip line 1mm distances are kept, at this time the electric field conducive to the acquisition board under test of power probe 20 microstrip line 31, magnetic field, the line in power probe 20 The magnetic field mutual inductance that circle generates after being powered with board under test microstrip line 31, the field coupling with generation obtain board under test microstrip line 31 Electromotive force is exported, the radio-frequency power of board under test 30 is calculated according to electromotive force and voltage, current relationship in computer.
In one of the embodiments, as shown in figure 5, the power output signal of power probe 20 includes the first output voltage With the second output voltage;
The process that oscillograph 10 acquires the power output signal of power probe 20 includes step:
S131:By the voltage probe 22 of the current probe 21 of power probe 20 and power probe 20 respectively by meeting test It is required that the transmission line connection first passage 11 of oscillograph 10 and second channel 12;
S132:Oscillograph 10 acquires the first output voltage by first passage 11, and oscillograph 10 passes through second channel 12 Acquire the second output voltage;
The process that computer obtains the radio-frequency power of board under test 30 according to power output signal includes step:
S141:Computer obtains the radio-frequency power of board under test 30 according to the first output voltage and the second output voltage.
Optionally, computer obtains radio-frequency power and can be calculated by following:
Calculating current 21 output currents of probe:
IMK(t)=IFFT [FMK(ω)]
Wherein,
FM(ω)=FFT [vM(t)]
Wherein, IMK(t) it is the radio-frequency current of board under test 30, FFT represents Fourier transformation, and IFFT represents that anti-Fourier becomes It changes, vM(t) electricity of the first output voltage for the output of the first passage 11 of oscillograph 10, the i.e. acquisition of current probe 21 output Pressure;KI(ω) is the correcting current factor.
Then, 22 output voltage of voltage probe is calculated:
vPK(t)=IFFT [FPK(ω)]
Wherein,
FP(ω)=FFT [vP(t)]
Wherein, vPK(t) it is the radio-frequency voltage of board under test 30, FFT represents Fourier transformation, and IFFT represents that anti-Fourier becomes It changes, KV(ω) be voltage calibration factor, vP(t) the second output voltage for the output of the second channel 12 of oscillograph 10, i.e. voltage The voltage of 22 acquisition output of probe.
The realization of specific power time domain waveform needs to consider the phase problem of two probe measurements, and only phase corresponds to consistent When, gained power waveform is just correct.Time domain time delay or the factor of frequency domain phase problem can be generated in entire experimental system Mainly have:Connect the parameter of two transmission lines of 20 output terminal of oscillograph 10 and power probe, such as material and length difference etc.; The influence of measuring signal frequency.When being calibrated to radio-frequency power time domain measurement system, find to board under test microstrip line 31 When inputting the measuring signal in certain frequency band, the time domain delay of 20 output terminal waveform of basic negligible power probe, by calibrating, It was found that meet the transmission line of test request and meet the measuring signal of test frequency requirement.It is micro- to board under test in the present embodiment The measuring signal for meeting test request is inputted with line 31, and connects oscillograph 10 with the transmission line for meeting test request and is visited with power First 20, time domain delay can be ignored at this time, radio-frequency power is as follows:
Prec(t)=vPK(t)·IMK(t)
Wherein, Prec(t) it is 31 radio-frequency power of board under test microstrip line.
As shown in fig. 6, on the other hand the embodiment of the present invention additionally provides a kind of radio-frequency power time domain measurement calibration system, wrap It includes:
Calibrating measuring device 40 and above-mentioned radio-frequency power time domain measurement system;
Calibrating measuring device 40 connects power probe 20 and calibration microstrip line 71 respectively, and calibrating measuring device 40 is used for as calibration Microstrip line 71 provides measuring signal and obtains the calibration parameter of calibration microstrip line 71, wherein, calibration parameter is used for board under test 30 Radio-frequency power to be measured measure calibration.
Specifically, calibrating measuring device 40 connects power probe 20 and calibration microstrip line 71, survey is passed through to calibration microstrip line 71 Signal is measured, then acquires the output of calibration microstrip line 71, the calibration parameter of calibration microstrip line 71 is obtained according to output, with realization pair The calibration of radio-frequency power time domain measurement system.Optionally, 20 hub of a spool of power probe of radio-frequency power time domain measurement system is thrown Shadow is at the center of tested calibration microstrip line 71, at this point, the magnetic field of electric current generation, electric field are most strong in calibration microstrip line 71, is suitble to use Probe in calibration electric current, voltage detection part.Wherein, calibration microstrip line 71 be located on calibration plate 70, calibrate microstrip line 71 and Connection relation and connection mode between calibration plate 70 are the same as in above-described embodiment between board under test microstrip line 31 and board under test 30 Connection relation is identical with connection mode, and this will not be repeated here.
The connector (such as SMA32) of microstrip line both ends connection standard in one of the embodiments, one end are used to input Measuring signal.Wherein, calibration microstrip line 71 can be prepared by various ways such as PCB technology, LTCC techniques.
In one of the embodiments, as shown in fig. 7, calibrated tester includes signal generator 41, power probe 20 Including voltage probe 22 and current probe 21;
Signal generator 41 connects one end of calibration microstrip line 71, calibrates another terminating load 50 of microstrip line 71;Signal is sent out Raw device 41 is used for calibration 71 input measurement signal of microstrip line;
Oscillograph 10 by transmission line respectively with the output terminal of current probe 21, the output terminal of voltage probe 22 and calibration The both ends connection of microstrip line 71.
Wherein, the impedance matching of calibration microstrip line 71 and oscillograph 10, for example, the impedance design of calibration microstrip line 71 is 50 Europe, 10 impedance of oscillograph are also 50 Europe, and impedance matching is formed with oscillograph 10, ensure signal in transmission process not by anti- It penetrates, so as to ensure the accuracy of calibration.
In one of the embodiments, as shown in figure 8, calibrated tester includes Network Analyzer 42, power probe 20 Including voltage probe 22 and current probe 21;
The Network Analyzer 42 connects the voltage probe 22, the current probe 21 and the calibration microstrip line 71 respectively Both ends;
The computer connects the Network Analyzer 42.
Specifically, Network Analyzer 42 by current probe 21, voltage probe 22 and calibrates 71 groups of microstrip line for measurement Into network system transmission characteristic, so as to obtain calibration factor.To calibrate microstrip line 71 as input terminal (port 1), electricity Stream probe 21 and voltage probe 22 are output terminal (port 2 422 and port 3 423), calibrate another terminal network of microstrip line 71 The port 4 424 of analyzer 42 utilizes the amplitude attenuation situation and phase change feelings of the transmission of 42 measuring signal of Network Analyzer Condition, the pattern of measurement is frequency scanning, i.e., by the frequency for the measuring signal for changing input terminal, and detects the same frequency of output terminal Rate signal strength and phase change.
As shown in figure 9, the embodiment of the present invention provides a kind of radio-frequency power time domain measurement calibration method, including:
S210:The power probe 20 and the calibration microstrip line 71 is staggered relatively, it is located at the power probe 20 Simultaneously microstrip line 71 is calibrated, and 20 hub of a spool of the power probe is projected in institute perpendicular to described in 71 top of calibration microstrip line It states on calibration microstrip line 71, the calibration microstrip line 71 is connected into load 50, the resistance value and the calibration micro-strip of the load 50 71 characteristic impedance of line matches.
S220:Calibrating measuring device 40 calibrates micro-strip to calibration 71 input measurement signal of microstrip line, the acquisition of power probe 20 The output signal of line 71;
S230:Calibrating measuring device 40 obtains the output signal that power probe 20 acquires and is sent to computer;
S240:Computer obtains calibration parameter according to the output signal that calibrating measuring device 40 is sent, wherein, calibration parameter Calibration is measured for the radio-frequency power to be measured to board under test 30.
It should be noted that the realization of radio-frequency power time domain measurement calibration method is calibrated with above-mentioned radio-frequency power time domain measurement Realization in system embodiment is consistent, and the radio-frequency power time domain measurement system of required dependence is also penetrated with above-mentioned in calibration process It is consistent in frequency power time domain measurement system embodiment, suitable for the present embodiment.
In one of the embodiments, as shown in Figure 10, calibrating measuring device 40 includes Network Analyzer 42, calibration parameter Including calibration factor;
Calibrating measuring device 40 calibrates microstrip line 71 to calibration 71 input measurement signal of microstrip line, the acquisition of power probe 20 The process of output signal includes step:
S221:Port 1 to the port 4 424 of Network Analyzer 42 is connected to the voltage probe of power probe 20 respectively 22nd, the current probe 21 of the both ends of calibration microstrip line 71 and power probe 20;
S222:Network Analyzer 42 to calibration 71 input measurement signal of microstrip line;
Calibrating measuring device 40 obtains the output signal that power probe 20 acquires and is sent to the process of computer including walking Suddenly:
S231:Network Analyzer 42 obtains network transmission parameter and is sent to computer;
The process that computer obtains calibration parameter according to the output signal that calibrating measuring device 40 is sent includes step:
S241:Computer obtains the calibration of power factor according to the network transmission parameter that Network Analyzer 42 is sent.
Specifically, the voltage that port 1 to the port 4 424 of Network Analyzer 42 is connected to power probe 20 respectively is visited First 22, the current probe 21 of the both ends of calibration microstrip line 71 and power probe 20, Network Analyzer 42 are defeated to calibration microstrip line 71 Enter measuring signal, Network Analyzer 42 exports network transmission parameter to computer, and computer obtains school according to network transmission parameter Quasi-divisor.
Optionally, calibration factor includes voltage calibration factor and the correcting current factor, and computer is according to Network Analyzer 42 The voltage network configured transmission of output and current network configured transmission obtain voltage calibration factor and the correcting current factor.It is optional , computer, which obtains calibration factor process, to be:The calibration factor K of 22 part of voltage probeV(ω)=S13, current probe 21 Partial calibration factor KI(ω)=S12Z0, wherein, S13For voltage network configured transmission (42 port of Network Analyzer, one 421 He Transmission coefficient between port 3 423), S12For current network configured transmission (42 port 1 of Network Analyzer and port two Transmission coefficient between 422), Z0It is calibration 71 impedance value of microstrip line.
In one of the embodiments, as shown in figure 11, calibrated tester further includes signal generator 41, calibration parameter Further include test frequency;
Calibrating measuring device 40 calibrates microstrip line 71 to calibration 71 input measurement signal of microstrip line, the acquisition of power probe 20 The process of output signal includes step:
S223:Signal generator 41 is connect to one end of calibration microstrip line 71, and another termination for calibrating microstrip line 71 is born Carry 50;
S224:Signal generator 41 to calibration 71 input measurement signal of microstrip line;
Calibrating measuring device 40 obtains the output signal that power probe 20 acquires and is sent to the process of computer including walking Suddenly:
S232:Oscillograph 10 acquires the first output voltage by second channel 12, defeated by the acquisition second of third channel 13 Go out voltage;
S233:First output voltage and the second output voltage are sent to computer by oscillograph 10;
The process that computer obtains calibration parameter according to power output signal includes step:
S242:Computer obtains the waveform delay time according to the first output voltage and the second output voltage, if waveform delay The frequency record of measuring signal is the test frequency for meeting test request in the range of preset delay time, then by the time.
Wherein, preset delay time is to influence negligible delay time to rf power measurement.For example, when measuring When signal is pulse signal, width W, then when Δ t is less than W/20, it is believed that the delay time can be ignored;If measure letter When number being cyclical signal, period T, then when Δ t is less than T/20, it is believed that the delay time can be ignored;Delay time exists When in preset delay time, radio-frequency power time domain measurement can be by respectively obtaining radio-frequency current and radio-frequency voltage Afterwards, multiplication is calculated.Specifically, signal generator 41 is calibrated at this time to calibration 71 input terminal input measurement signal of microstrip line Microstrip line 71 is powered, and the first output voltage and the second output voltage of the acquisition calibration microstrip line 71 of power probe 20 simultaneously pass through oscillography Device 10 is transmitted to computer, and computer obtains the delay time of waveform according to the first output voltage and the second output voltage, judges Whether delay time is in the range of preset delay time, if thinking that time delay is to radio-frequency power time domain measurement at this time Influence can ignore, then it is assumed that meet test request during the corresponding test frequency of test signal at this time.
Optionally, the step of computer obtains the waveform delay time according to the first output voltage and the second output voltage can be with Including:
Establish phase difference calculating model:
φ is phase difference in above formula, wherein
AndU1 (k), u2 (k) are respectively oscillograph 10 first Channel 11 and second channel 12 are exported to the trigonometric function waveform of computer.
It solves
According toSolve delay time Δ t:
Calibration parameter further includes linear electrical parameter in one of the embodiments,;
The process of signal generator 41 to calibration 71 input measurement signal of microstrip line includes step:
Signal generator 41 inputs the measuring signal for meeting test frequency to calibration microstrip line 71;
The process that computer obtains calibration parameter according to output signal includes step:
Computer obtains the waveform delay time according to the first output voltage and the second output voltage, if the waveform delay time exists Then it is to meet the linear electrical parameter of test request by the reference record of transmission line in the range of preset delay time.
Specifically, in above-described embodiment, by signal generator 41 to calibration microstrip line 71 in input measurement believe Number, computer obtains the first output voltage and the second output voltage by oscillograph 10, is then obtained according to the waveform of output voltage Delay time is obtained, if the waveform delay time is in the range of preset delay time, then it is assumed that the parameter of current transmission line is to meet Measurement request, if the waveform delay time is not in the range of preset delay time, then it is assumed that the parameter of current transmission line is not inconsistent Measurement request is closed, the waveform delay time is obtained again after adjusting the parameter of transmission line, until the waveform delay time is in preset delay In time range, the parameter of the transmission line of record coincidence measurement requirement, in case with reference to use when carrying out radio-frequency power time domain measurement.
Calibrating measuring device 40 further includes power amplifier in one of the embodiments, and power amplifier is sent out with signal Raw device 41 connects, and power amplifier is used to input to calibration micro-strip after being amplified the measuring signal that signal generator 41 is sent out Line 71.When the signal that signal generator 41 generates is too small, power probe 20 is insufficient to allow to detect signal, by adjusting power The measuring signal that signal generator 41 exports is amplified by amplifier, it can be ensured that power probe 20 can be very good acquisition school The radio-frequency power of quasi- microstrip line 71.
As shown in figure 12, the embodiment of the present invention also provides a kind of calibration to above-mentioned radio-frequency power time domain measurement calibration system Verification system, including:
Arbitrary waveform generator 60 and above-mentioned radio-frequency power time domain measurement system;
The first port 61 and second port 62 of arbitrary waveform generator 60 are respectively with calibrating one end of microstrip line 71 and showing The first passage 11 of wave device 10 connects, and calibrates the other end connection load 50 of microstrip line 71;Wherein, arbitrary waveform generator 60 For inputting random waveform to calibration microstrip line 71;
The output terminal of power probe 20 is connect respectively with the second channel of oscillograph 10 12 and third channel 13.
Wherein, arbitrary waveform generator 60 can export such as square wave, triangular wave or sawtooth wave waveform, to calibrate micro-strip Line 71 inputs random waveform, obtains 10 first passage 11 of oscillograph to the output signal of third channel 13, computer is according to oscillography The output signal of device 10 first passage 11 to third channel 13 verifies calibration parameter.It optionally, can be by random waveform The output of the first port 61 and second port 62 of generator 60 synchronizes.
In one of the embodiments, as shown in figure 12, the first passage 11 and second channel 12 of oscillograph 10 are used respectively In connection current probe 21 and voltage probe 22, and read the 22 collected voltage waveform of institute of current probe 21 and voltage probe. Optionally, the first passage 11 of oscillograph 10 and the terminal impedance of second channel 12 can be 50 Europe, and the first of oscillograph 10 is logical Road 11 or the connection of second channel 12 load 50, monitoring load 50 sections of voltage, each moment of the voltage waveform correspond to amplitude divided by Resistance, can obtain the current waveform of signal on calibration microstrip line 71, and the voltage waveform and current waveform can be used for verification to calibrate The correctness of the factor.The load 50 in 50 Europe of termination of microstrip line 71 is calibrated, to ensure and 10 impedance matching of oscillograph.
As shown in figure 13, in radio-frequency power time domain measurement calibration method in one embodiment, calibrating measuring device 40 further include arbitrary waveform generator 60;
The output signal sent in computer according to calibrating measuring device 40 further includes step after obtaining calibration parameter step Suddenly:
S250:By the first port of arbitrary waveform generator and second port respectively with calibrate microstrip line one end and oscillography The first passage connection of device, and the other end for calibrating microstrip line is connected into load;
S260:The output terminal of power probe is connect respectively with the second channel of oscillograph and third channel;
S270:Arbitrary waveform generator 60 inputs random waveform by first port 61 to calibration microstrip line 71;
S280:Oscillograph 10 acquires the school of the output of second port 62 of the arbitrary waveform generator by first passage 11 First calibration verification electric signal of quasi- microstrip line 71;
S290:Oscillograph 10 acquires the second calibration verification electric signal of calibration microstrip line 71 by power probe 20;
S291:Computer tests calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal Card.
It should be noted that the embodiment of calibration method herein corresponds to the calibration of radio-frequency power time domain measurement calibration system Verification system.
The second calibration verification electric signal includes the first output voltage and the second output voltage in one of the embodiments,;
The process of second calibration verification electric signal of the acquisition calibration microstrip line 71 of oscillograph 10 includes step:
Oscillograph 10 acquires the first output voltage by third channel 13, and passes through the acquisition of third channel 13 second output electricity Pressure;
Computer verifies calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal Process includes step:
Computer compares the first calibration verification electric signal with the first output voltage, the second output voltage respectively, with Calibration parameter is verified.
Optionally, calibration factor includes the correcting current factor and voltage calibration factor, computer to the correcting current factor and The step of voltage calibration factor is verified can be:
Obtain the output signal v of 10 first passage 11 of oscillographL(t):
Obtain the first output voltage v of 10 second channel 12 of oscillographPI(t), i.e., the signal that current probe 21 acquires;
According to the electric current I to be measured of 21 acquisition of the first output voltage calculating current probePIK(t):
FPI(ω)=FFT [vPI(t)]
IPIK(t)=IFFT [FPIK(ω)]
Obtain the second output voltage v of 10 third channel 13 of oscillographPV(t), i.e., the signal that voltage probe 22 acquires;
The voltage v to be measured of the acquisition of voltage probe 22 is calculated according to the second output voltagePVK(t):
FPV(ω)=FFT [vPV(t)]
vPVK(t)=IFFT [FPVK(ω)]
Wherein, FFT represents Fourier transform, and IFFT represents inverse-Fourier transform.
By IPIK(t) and IL(t) it is compared, when the two is basically identical, it is believed that verification calibration factor KI(ω) is correct 's;Simultaneously by vPVK(t) and VL(t) it is compared, when the two is basically identical, it is believed that verification calibration factor KV(ω) is correct 's.It should be noted that radio-frequency power time domain measurement system fixes the position of power probe 20 and board under test microstrip line 31, it should Position should be with consistent in calibration system, and consistency is better, and verification is more accurate.
Embodiment described above only expresses the several embodiments of the present invention, and description is more specific and detailed, but simultaneously Cannot the limitation to the scope of the claims of the present invention therefore be interpreted as.It should be pointed out that for those of ordinary skill in the art For, without departing from the inventive concept of the premise, various modifications and improvements can be made, these belong to the guarantor of the present invention Protect range.Therefore, the protection domain of patent of the present invention should be determined by the appended claims.

Claims (10)

1. a kind of radio-frequency power ime-domain measuring method, which is characterized in that including:
The power probe and the board under test microstrip line is staggered relatively, the power probe is made to be located at the board under test micro-strip Above line and perpendicular to the board under test microstrip line, and the power probe hub of a spool is projected in the board under test microstrip line On;
The power probe is connected and the first passage of the oscillograph and respectively by meeting the transmission line of test request Two channels;
When meeting the measuring signal of test request to board under test microstrip line input, the oscillograph acquires the power and visits The power output signal of head;
The computer obtains the radio-frequency power of the board under test according to the power output signal of the power probe.
2. radio-frequency power ime-domain measuring method according to claim 1, which is characterized in that the power of the power probe is defeated Go out signal and include the first output voltage and the second output voltage;
The process that the oscillograph acquires the power output signal of the power probe includes step:
By the voltage probe of the current probe of the power probe and the power probe respectively by meeting the biography of test request Defeated line connects the first passage and second channel of the oscillograph;
The oscillograph acquires the first output voltage by first passage, and the oscillograph is defeated by second channel acquisition second Go out voltage;
The process that the computer obtains the radio-frequency power of the board under test according to power output signal includes step:
The computer obtains the radio-frequency power of the board under test according to the first output voltage and the second output voltage.
3. radio-frequency power time domain measurement system according to claim 2, which is characterized in that described by power probe and to be measured Plate microstrip line process staggered relatively includes step:
The power probe is fixed on fixture, and the fixture for being mounted with the power probe is fixed on stent, Make the power probe perpendicular to sample stage;
The board under test microstrip line is fixed on the sample stage.
4. the radio-frequency power ime-domain measuring method according to any one in claim 3, which is characterized in that described by described in Power probe and the board under test microstrip line are staggered relatively, and the power probe is made to be located above the board under test microstrip line and is hung down Directly in the board under test microstrip line, and the process that the power probe hub of a spool is projected on the board under test microstrip line includes Step:
The power probe hub of a spool is projected at the center of the board under test microstrip line.
It is 5. a kind of to radio-frequency power time domain measurement calibration method, which is characterized in that including:
The power probe and the calibration microstrip line is staggered relatively, the power probe is made to be located on the calibration microstrip line Just and perpendicular to the calibration microstrip line, and the power probe hub of a spool is projected on the calibration microstrip line;
For calibrating measuring device to the calibration microstrip line input measurement signal, the power probe acquires the calibration microstrip line Output signal;
The calibrating measuring device obtains the output signal of the power probe acquisition and is sent to the computer;
The computer obtains calibration parameter according to the output signal that the calibrating measuring device is sent, wherein, the school Quasi- parameter is used to measure calibration to the radio-frequency power to be measured of the board under test.
It is 6. according to claim 5 to radio-frequency power time domain measurement calibration method, which is characterized in that the calibration measurement dress It puts including Network Analyzer, the calibration parameter includes calibration factor;
The calibrating measuring device acquires the calibration micro-strip to the calibration microstrip line input measurement signal, the power probe The process of the output signal of line includes step:
By port one to the port four of the Network Analyzer connect respectively the power probe voltage probe, it is described calibration it is micro- Both ends with line and the current probe of the power probe;
The Network Analyzer calibrates microstrip line input measurement signal to described;
The calibrating measuring device obtains the output signal of the power probe acquisition and is sent to the process packet of the computer Include step:
The Network Analyzer obtains network transmission parameter and is sent to the computer;
The process that the computer obtains calibration parameter according to the output signal that the calibrating measuring device is sent includes step:
The computer obtains the calibration of power factor according to the network transmission parameter that the Network Analyzer is sent.
It is 7. according to claim 6 to radio-frequency power time domain measurement calibration method, which is characterized in that the calibration test dress It puts and further includes signal generator, the calibration parameter further includes test frequency;
Calibrating measuring device calibrates the mistake of the output signal of microstrip line to calibration microstrip line input measurement signal, power probe acquisition Journey includes step:
Signal generator is connect to one end of calibration microstrip line, and another terminating load that will calibrate microstrip line;
Signal generator to calibration microstrip line input measurement signal;
Calibrating measuring device obtain power probe acquisition output signal and be sent to computer process include step:
Oscillograph acquires the first output voltage by second channel, and the second output voltage is acquired by third channel;
First output voltage and the second output voltage are sent to computer by oscillograph;
The process that computer obtains calibration parameter according to output signal includes step:
Computer obtains the waveform delay time according to the first output voltage and the second output voltage, if the waveform delay time is default Delay time in the range of, then be the test frequency for meeting test request by the frequency record of measuring signal.
It is 8. according to claim 7 to radio-frequency power time domain measurement calibration method, which is characterized in that the calibration parameter is also Including linear electrical parameter;
The process of the signal generator to the calibration microstrip line input measurement signal includes step:
The signal generator meets the measuring signal of test frequency to the calibration microstrip line input;
The process that the computer obtains calibration parameter according to output signal includes step:
The computer obtains the waveform delay time according to the first output voltage and the second output voltage, if the waveform delay time exists Then it is to meet the linear electrical parameter of test request by the reference record of the transmission line in the range of preset delay time.
It is 9. according to claim 5 to radio-frequency power time domain measurement calibration method, which is characterized in that the calibration measurement dress It puts and further includes arbitrary waveform generator;
The output signal sent in the computer according to the calibrating measuring device further includes after obtaining calibration parameter step Step:
By the first port of the arbitrary waveform generator and second port respectively with described calibration one end of microstrip line and described The first passage connection of oscillograph, and the other end of the calibration microstrip line is connected into load;
The output terminal of the power probe is connect respectively with the second channel of the oscillograph and third channel;
The arbitrary waveform generator inputs random waveform by first port to the calibration microstrip line;
The oscillograph acquires the calibration micro-strip of the second port output of the arbitrary waveform generator by first passage First calibration verification electric signal of line;
The oscillograph acquires the second calibration verification electric signal of the calibration microstrip line by the power probe;
The computer verifies calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal.
It is 10. according to claim 9 to radio-frequency power time domain measurement calibration method, which is characterized in that second calibration Verify that electric signal includes the first output voltage and the second output voltage;
The process of second calibration verification electric signal of the oscillograph acquisition calibration microstrip line includes step:
The oscillograph acquires the first output voltage, and acquire the second output voltage by third channel by third channel;
The computer verifies calibration parameter according to the first calibration verification electric signal and the second calibration verification electric signal Process includes step:
The computer compares the first calibration verification electric signal with the first output voltage, the second output voltage respectively, with Calibration parameter is verified.
CN201711489749.7A 2017-12-30 2017-12-30 Radio frequency power time domain measuring method and calibration method Active CN108169701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711489749.7A CN108169701B (en) 2017-12-30 2017-12-30 Radio frequency power time domain measuring method and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711489749.7A CN108169701B (en) 2017-12-30 2017-12-30 Radio frequency power time domain measuring method and calibration method

Publications (2)

Publication Number Publication Date
CN108169701A true CN108169701A (en) 2018-06-15
CN108169701B CN108169701B (en) 2021-02-23

Family

ID=62516752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711489749.7A Active CN108169701B (en) 2017-12-30 2017-12-30 Radio frequency power time domain measuring method and calibration method

Country Status (1)

Country Link
CN (1) CN108169701B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948445A (en) * 2020-08-26 2020-11-17 南方电网数字电网研究院有限公司 Power measurement circuit, method and device
CN112702127A (en) * 2020-12-07 2021-04-23 北京无线电计量测试研究所 T-type network measuring method and system
CN113497657A (en) * 2020-03-18 2021-10-12 华为技术有限公司 Radio frequency index detection device and method
CN113900058A (en) * 2021-09-14 2022-01-07 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Near-field probe calibration method, device, system, equipment and storage medium
CN117250386A (en) * 2023-11-17 2023-12-19 深圳青铜剑技术有限公司 Method and device for correcting delay of voltage and current probe of oscilloscope

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019314A (en) * 2004-08-06 2007-08-15 皇家飞利浦电子股份有限公司 RF power sensing circuit
WO2009088642A2 (en) * 2007-12-31 2009-07-16 Advanced Energy Industries, Inc. System, method and apparatus for monitoring characteristics of rf power
CN101977085A (en) * 2010-09-02 2011-02-16 湖北众友科技实业股份有限公司 Method and system for controlling and calibrating TD-LTE terminal automatic frequency
CN201811992U (en) * 2010-09-02 2011-04-27 武汉滨湖电子有限责任公司 Radio frequency power tester
CN103454489A (en) * 2013-09-12 2013-12-18 清华大学 Method and system for calibrating loss power of matching network
CN104459395A (en) * 2014-12-04 2015-03-25 中国电子科技集团公司第四十一研究所 Calibration frequency mixer scaling method based on time-frequency double domains
CN104569888A (en) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 System and method for correcting correction factors of near field probe by utilizing microstrip line method
CN105093148A (en) * 2014-05-20 2015-11-25 中国人民解放军63973部队 Time-domain calibration method for electromagnetic pulse magnetic-field probe
CN105372475A (en) * 2015-11-30 2016-03-02 工业和信息化部电子第五研究所 Time domain measurement method, time domain measurement calibration method and time domain measurement calibration validation method of board-level radio-frequency current
CN106361333A (en) * 2016-08-30 2017-02-01 苏州品诺维新医疗科技有限公司 Voltage waveform processing equipment, voltage waveform processing method and voltage waveform processing system
CN106453170A (en) * 2016-09-27 2017-02-22 工业和信息化部电信研究院 Signal nonlinear time-domain measurement and simulation method and application
CN106814341A (en) * 2016-11-17 2017-06-09 佛山市尚好门窗有限责任公司 A kind of power carrier test system
CN106850498A (en) * 2017-02-05 2017-06-13 苏州维特比信息技术有限公司 Digital front-end device and signal processing method
CN106885935A (en) * 2017-04-19 2017-06-23 中国电子产品可靠性与环境试验研究所 Time domain voltage measuring method, measurement calibration method and measurement calibration verification method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019314A (en) * 2004-08-06 2007-08-15 皇家飞利浦电子股份有限公司 RF power sensing circuit
WO2009088642A2 (en) * 2007-12-31 2009-07-16 Advanced Energy Industries, Inc. System, method and apparatus for monitoring characteristics of rf power
CN101977085A (en) * 2010-09-02 2011-02-16 湖北众友科技实业股份有限公司 Method and system for controlling and calibrating TD-LTE terminal automatic frequency
CN201811992U (en) * 2010-09-02 2011-04-27 武汉滨湖电子有限责任公司 Radio frequency power tester
CN103454489A (en) * 2013-09-12 2013-12-18 清华大学 Method and system for calibrating loss power of matching network
CN105093148A (en) * 2014-05-20 2015-11-25 中国人民解放军63973部队 Time-domain calibration method for electromagnetic pulse magnetic-field probe
CN104459395A (en) * 2014-12-04 2015-03-25 中国电子科技集团公司第四十一研究所 Calibration frequency mixer scaling method based on time-frequency double domains
CN104569888A (en) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 System and method for correcting correction factors of near field probe by utilizing microstrip line method
CN105372475A (en) * 2015-11-30 2016-03-02 工业和信息化部电子第五研究所 Time domain measurement method, time domain measurement calibration method and time domain measurement calibration validation method of board-level radio-frequency current
CN106361333A (en) * 2016-08-30 2017-02-01 苏州品诺维新医疗科技有限公司 Voltage waveform processing equipment, voltage waveform processing method and voltage waveform processing system
CN106453170A (en) * 2016-09-27 2017-02-22 工业和信息化部电信研究院 Signal nonlinear time-domain measurement and simulation method and application
CN106814341A (en) * 2016-11-17 2017-06-09 佛山市尚好门窗有限责任公司 A kind of power carrier test system
CN106850498A (en) * 2017-02-05 2017-06-13 苏州维特比信息技术有限公司 Digital front-end device and signal processing method
CN106885935A (en) * 2017-04-19 2017-06-23 中国电子产品可靠性与环境试验研究所 Time domain voltage measuring method, measurement calibration method and measurement calibration verification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGYANG LUO: "Collocated and Simultaneous Measurements of RF Current and Voltage on a Trace in a Noncontact Manner", 《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497657A (en) * 2020-03-18 2021-10-12 华为技术有限公司 Radio frequency index detection device and method
CN113497657B (en) * 2020-03-18 2022-10-04 华为技术有限公司 Radio frequency index detection device and method
CN111948445A (en) * 2020-08-26 2020-11-17 南方电网数字电网研究院有限公司 Power measurement circuit, method and device
CN111948445B (en) * 2020-08-26 2022-10-04 南方电网数字电网研究院有限公司 Power measurement circuit, method and device
CN112702127A (en) * 2020-12-07 2021-04-23 北京无线电计量测试研究所 T-type network measuring method and system
CN112702127B (en) * 2020-12-07 2022-10-25 北京无线电计量测试研究所 T-type network measuring method and system
CN113900058A (en) * 2021-09-14 2022-01-07 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Near-field probe calibration method, device, system, equipment and storage medium
CN117250386A (en) * 2023-11-17 2023-12-19 深圳青铜剑技术有限公司 Method and device for correcting delay of voltage and current probe of oscilloscope
CN117250386B (en) * 2023-11-17 2024-01-09 深圳青铜剑技术有限公司 Method and device for correcting delay of voltage and current probe of oscilloscope

Also Published As

Publication number Publication date
CN108169701B (en) 2021-02-23

Similar Documents

Publication Publication Date Title
CN108152575A (en) Radio-frequency power time domain measurement system measures calibration system and calibration verification system
CN108169701A (en) Radio-frequency power ime-domain measuring method and calibration method
CN104569888B (en) A kind of utilization micro-strip collimation method calibrates the system and method for near field probes modifying factor
US9291644B2 (en) Contactless measuring system for contactless decoupling of a signal running on a signal waveguide
CN107328980A (en) Multicore cable noninvasive current measurement method and measurement apparatus
CN106546938A (en) A kind of anti-DC component of current transformer and test even system
Cataliotti et al. Improvement of Hall effect current transducer metrological performances in the presence of harmonic distortion
CN107656226B (en) HFCT electrical parameter test device and test method based on transmission coefficient
US6225810B1 (en) Loop resistance tester (LRT) for cable shield integrity
CN102597791B (en) Instrument and method for measuring the loss factor of an electrical apparatus
CN105425014A (en) Time domain measurement system, time domain measurement calibration system and time domain measurement calibration verification system for board-level radio frequency current
CN104502998B (en) Characteristic parameter tester and testing method for seismic detector
Shao et al. Asymmetric calibration and characterization for diff-port magnetic field probing system
CN109342515A (en) Concrete mix moisture percentage measuring device and its measurement method based on TDT with phase bit comparison
CN104678339B (en) Calibration device, system and method for probe type microwave voltage measurement system
CA2536083A1 (en) Method and apparatus for measuring impedance of electrical component under high interference conditions
CN110441646B (en) GIL conducting rod connection evaluation system and method based on resistive potential difference ratio
CN112629728A (en) Aluminum alloy residual stress testing device and method based on eddy current
CN208969228U (en) A kind of Magnetic Sensor static and dynamic performance caliberating device charging straight wire surrounding magnetic field
CN103983933B (en) Plate level RF current probe frequency demarcating method and system and device
CN102707118B (en) Baric flow mutual inductor and measuring system thereof
CN206248817U (en) A kind of on-site testing device of current conversion station electronic mutual inductor
CN213600270U (en) Aluminum alloy residual stress testing arrangement based on vortex
CN109557166A (en) A kind of Magnetic memory testing probe apparatus of differential type
Oppermann et al. Proof-of-concept of a method for Contactless Vector Network Analysis Using impedance probes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 511300 No.78, west of Zhucun Avenue, Zhucun street, Zengcheng District, Guangzhou City, Guangdong Province

Applicant after: CHINA ELECTRONIC PRODUCT RELIABILITY AND ENVIRONMENTAL TESTING Research Institute

Address before: 510610 No. 110 Zhuang Road, Tianhe District, Guangdong, Guangzhou, Dongguan

Applicant before: CHINA ELECTRONIC PRODUCT RELIABILITY AND ENVIRONMENTAL TESTING Research Institute

GR01 Patent grant
GR01 Patent grant