CN108168544B - 北斗增强惯导高效融合车道级定位工作方法及系统装置 - Google Patents

北斗增强惯导高效融合车道级定位工作方法及系统装置 Download PDF

Info

Publication number
CN108168544B
CN108168544B CN201711253618.9A CN201711253618A CN108168544B CN 108168544 B CN108168544 B CN 108168544B CN 201711253618 A CN201711253618 A CN 201711253618A CN 108168544 B CN108168544 B CN 108168544B
Authority
CN
China
Prior art keywords
beidou
vehicle
navigation
positioning
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711253618.9A
Other languages
English (en)
Other versions
CN108168544A (zh
Inventor
邢建平
李程帅
董沛鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
CERNET Corp
Original Assignee
Shandong University
CERNET Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, CERNET Corp filed Critical Shandong University
Priority to CN201711253618.9A priority Critical patent/CN108168544B/zh
Publication of CN108168544A publication Critical patent/CN108168544A/zh
Application granted granted Critical
Publication of CN108168544B publication Critical patent/CN108168544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种北斗增强惯导高效融合车道级定位工作方法,包括如下步骤:1)通过北斗接收机进行北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位的测量值;中央处理器进行北斗格网差分定位;2)惯性传感器根据步骤1)所述测量值获得车辆运动状态;3)通过中央处理器对惯性导航系统与北斗定位系统进行组合导航。本发明能够实现北斗电磁波信号在诸如隧道、桥下等自然障碍物遮挡而中断或削弱,及各种电磁波无意或故意的电磁波干扰、阻塞的情况下仍能对车辆进行车道级精准定位的目标。

Description

北斗增强惯导高效融合车道级定位工作方法及系统装置
技术领域
本发明涉及一种北斗增强惯导高效融合车道级定位工作方法及系统装置,属于高精度定位智能交通的技术领域。
背景技术
随着我国城市规模不断扩大,人口在城市中大量聚集,机动车数量快速增长,车路矛盾日益严重,带来了严重的交通拥堵问题。然而现如今我国对于交通拥堵激励治堵还缺乏一个系统、科学、前瞻性的考虑,智能交通系统与交通治堵方法还远远不够完善。因此,基于北斗的高效融合车道级定位工作方法及系统装置的发展势在必行。现如今利用惯导系统(INS)与北斗定位系统功能特点上的互补性,通过二者组合导航尚可实现车道级定位,然而,当北斗电磁波信号处于诸如隧道、桥下等自然障碍物遮挡而中断或削弱,及各种电磁波无意或故意的电磁波干扰、阻塞的情况下时,惯性导航系统的测量误差会随着时间的推移而积累成越来越大的定位误差,现有技术又很难实现拥堵路况下高效的车辆变更车道状态检测。
发明内容
针对现有技术的不足,本发明提供一种北斗增强惯导高效融合车道级定位工作方法。
本发明又提供一种实现上述工作方法的系统装置。
本发明的技术方案如下:
一种北斗增强惯导高效融合车道级定位工作方法,包括如下步骤:
1)通过北斗接收机进行北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位的测量值;中央处理器进行北斗格网差分定位;
2)惯性传感器根据步骤1)所述测量值获得车辆运动状态;
3)通过中央处理器对惯性导航系统与北斗定位系统进行组合导航;
4)通过中央处理器分析图像,实现道路标线的识别;
5)由中央处理器对所检测出的图像中的直线进行卡尔曼滤波道路标线跟踪,根据道路标线变化情况判断车辆是否变更车道以及车辆变更车道的状态:
当识别出的道路标线中跟踪倾角为30-90°之间时,判断车辆是变更车道状态。
根据本发明优选的,所述步骤2)惯性传感器根据步骤1)所述测量值获得车辆运动状态之间的微分方程式如式(I):
Figure BDA0001492247120000021
在式(I)中,车辆运动状态包括导航坐标系中的东向位置坐标e、北向位置坐标n、东向速度ve和航偏角
Figure BDA0001492247120000022
ax和ay为机体坐标系中的加速度传感器测量值,
Figure BDA0001492247120000023
为航偏角旋转角速度传感器测量值。
根据本发明优选的,所述步骤3)中,所述组合导航的方法如下:
将北斗和INS两个导航系统在车辆位置、速度和姿态角用卡尔曼滤波器组合起来。
根据本发明优选的,所述用卡尔曼滤波器组合起来的算法为:
车辆在单位时间内的行驶距离如公式(II):
Figure BDA0001492247120000024
车辆的运动方向如公式(III):
Figure BDA0001492247120000025
Δgps的测量误差方差值如公式(IV):
Figure BDA0001492247120000026
Figure BDA0001492247120000027
的测量误差方差值如公式(V):
Figure BDA0001492247120000031
根据本发明优选的,所述步骤4)中实现道路标线的识别的方法,包括图像增强、边缘检测、图像分割和Hough变换算法;
其中所述Hough变换算法检测图像中的直线,即道路标线:
在变换空间中采用直线的极坐标方程如公式(VI):
ρ=xcosθ+ysinθ (VI)
对参数(ρ,θ)进行m,n等分,构造累加数组A(ρii),其元素值表示经过该点(ρ,θ)的曲线个数之和,对图像上所有边缘点进行Hough变换,进行累加如公式(VII):
A(ρi,θi)=A(ρi,θi)+1 (VII)
取出数组A(ρii)中的最大元素,其对应的(ρ,θ)即所求;
直线斜率:k=-cotθ;
直线截距:
Figure BDA0001492247120000032
一种实现上述工作方法的系统装置,包括:北斗接收机、惯性传感器、CCD摄像头和中央处理器(CPU);
所述北斗接收机,包括射频前端处理模块、基带数字信号处理模块、定位导航运算模块;用以实现北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位等测量值;
所述惯性传感器,惯性导航的工作原理基于牛顿定律,利用惯性传感器中的加速度计,用于测量车辆的运动加速度,将其对时间进行一次积分得车辆运动速度,利用陀螺仪测量车辆的角速度,将其对时间进行积分得车辆的姿态角,然后通过中央处理器对惯性测量值进行处理,得到车辆的位置、速度和姿态;
所述CCD摄像头,其具有成像质量高、动态范围宽、灵敏度较高的特点,用于采集车辆前方路面图像信息,并输出模拟视频信号;
所述中央处理器(CPU),包括北斗定位模块、惯性测量值处理模块、图像处理模块,用于实现北斗格网差分定位、实现道路标线识别、判断车辆变更车道情况、与惯性导航系统进行组合导航。
本发明的技术优势在于:
本发明能够实现北斗电磁波信号在诸如隧道、桥下等自然障碍物遮挡而中断或削弱,及各种电磁波无意或故意的电磁波干扰、阻塞的情况下仍能对车辆进行车道级精准定位的目标。
附图说明
图1是北斗接收机的内部模块连接工序图;
图2为所述卡尔曼滤波器组合起来的算法流程图;
图3为车辆变道检测示意图;
图4为本发明所述系统装置的工作流程图;
图5为本发明定位工作方法的流程图。
具体实施方式
现结合实施例和说明书附图对本发明做详细的说明,但不限于此。
如图1-5所示。
实施例1、
一种北斗增强惯导高效融合车道级定位工作方法,包括如下步骤:
1)通过北斗接收机进行北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位的测量值;中央处理器进行北斗格网差分定位;北斗接收机的内部结构及工作顺序如图1所示;
2)惯性传感器根据步骤1)所述测量值获得车辆运动状态;车辆的运动状态包括车辆位置、速度和姿态;
3)通过中央处理器对惯性导航系统(INS)与北斗定位系统进行组合导航;
4)通过中央处理器分析图像,实现道路标线的识别;
5)由中央处理器对所检测出的图像中的直线进行卡尔曼滤波道路标线跟踪,根据道路标线变化情况判断车辆是否变更车道以及车辆变更车道的状态:
当识别出的道路标线中跟踪倾角为30-90°之间时,判断车辆是变更车道状态。
由于在拥堵路况下道路标线多处于被遮挡状态,很难对所有道路标线进行有效的标线跟踪,由于车辆的行驶轨迹存在一定的客观规律,即车辆在非变道状态下仅允许在道路中央行驶,因此,在车辆变道过程中,被跨越的这条道路标线往往会比较完整的暴露出来。具体流程图如图3所示。
实施例2、
如实施例1所述的一种北斗增强惯导高效融合车道级定位工作方法,其区别在于,所述步骤2)惯性传感器根据步骤1)所述测量值获得车辆运动状态之间的微分方程式如式(I):
Figure BDA0001492247120000051
在式(I)中,车辆运动状态包括导航坐标系中的东向位置坐标e、北向位置坐标n、东向速度ve和航偏角
Figure BDA0001492247120000052
ax和ay为机体坐标系中的加速度传感器测量值,
Figure BDA0001492247120000053
为航偏角旋转角速度传感器测量值。
实施例3、
如实施例1、2所述的一种北斗增强惯导高效融合车道级定位工作方法,其区别在于,所述步骤3)中,所述组合导航的方法如下:
将北斗和INS两个导航系统在车辆位置、速度和姿态角用卡尔曼滤波器组合起来。
实施例4、
如实施例3所述的一种北斗增强惯导高效融合车道级定位工作方法,其区别在于,所述用卡尔曼滤波器组合起来的算法为:
车辆在单位时间内的行驶距离如公式(II):
Figure BDA0001492247120000054
车辆的运动方向如公式(III):
Figure BDA0001492247120000055
Δgps的测量误差方差值如公式(IV):
Figure BDA0001492247120000061
Figure BDA0001492247120000062
的测量误差方差值如公式(V):
Figure BDA0001492247120000063
上述卡尔曼滤波器组合起来的算法流程如图2所示。
实施例5、
如实施例1-4所述的一种北斗增强惯导高效融合车道级定位工作方法,其区别在于,所述步骤4)中实现道路标线的识别的方法,包括图像增强、边缘检测、图像分割和Hough变换算法;
其中所述Hough变换算法检测图像中的直线,即道路标线:
在变换空间中采用直线的极坐标方程如公式(VI):
ρ=xcosθ+ysinθ (VI)
对参数(ρ,θ)进行m,n等分,构造累加数组A(ρii),其元素值表示经过该点(ρ,θ)的曲线个数之和,对图像上所有边缘点进行Hough变换,进行累加如公式(VII):
A(ρi,θi)=A(ρi,θi)+1 (VII)
取出数组A(ρii)中的最大元素,其对应的(ρ,θ)即所求;
直线斜率:k=-cotθ;
直线截距:
Figure BDA0001492247120000064
实施例6、
一种实现如实施例1-5所述工作方法的系统装置,包括:北斗接收机、惯性传感器、CCD摄像头和中央处理器(CPU);
所述北斗接收机,包括射频前端处理模块、基带数字信号处理模块、定位导航运算模块;用以实现北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位等测量值;
所述惯性传感器,惯性导航的工作原理基于牛顿定律,利用惯性传感器中的加速度计,用于测量车辆的运动加速度,将其对时间进行一次积分得车辆运动速度,利用陀螺仪测量车辆的角速度,将其对时间进行积分得车辆的姿态角,然后通过中央处理器对惯性测量值进行处理,得到车辆的位置、速度和姿态;
所述CCD摄像头,其具有成像质量高、动态范围宽、灵敏度较高的特点,用于采集车辆前方路面图像信息,并输出模拟视频信号;
所述中央处理器(CPU),包括北斗定位模块、惯性测量值处理模块、图像处理模块,用于实现北斗格网差分定位、实现道路标线识别、判断车辆变更车道情况、与惯性导航系统进行组合导航。

Claims (3)

1.一种北斗增强惯导高效融合车道级定位工作方法,其特征在于,该工作方法包括如下步骤:1)通过北斗接收机进行北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位的测量值;中央处理器进行北斗格网差分定位;2)惯性传感器根据步骤1)所述测量值获得车辆运动状态;3)通过中央处理器对惯性导航系统与北斗定位系统进行组合导航;4)通过中央处理器分析图像,实现道路标线的识别;5)由中央处理器对所检测出的图像中的直线进行卡尔曼滤波道路标线跟踪,根据道路标线变化情况判断车辆是否变更车道以及车辆变更车道的状态:当识别出的道路标线中跟踪倾角为30-90°之间时,判断车辆是变更车道状态;
所述步骤2)惯性传感器根据步骤1)所述测量值获得车辆运动状态之间的微分方程式如式(I):
Figure FDA0003354021540000011
在式(I)中,车辆运动状态包括导航坐标系中的东向位置坐标e、北向位置坐标n、东向速度ve和航偏角
Figure FDA0003354021540000012
ax和ay为机体坐标系中的加速度传感器测量值,
Figure FDA0003354021540000013
为航偏角旋转角速度传感器测量值;vn为北向速度;
所述步骤3)中,所述组合导航的方法如下:用卡尔曼滤波器将北斗和INS两个导航系统中的车辆位置、速度和姿态角组合起来;
所述用卡尔曼滤波器组合起来的算法为:车辆在单位时间内的行驶距离如公式(II):
Figure FDA0003354021540000014
车辆的运动方向如公式(III):
Figure FDA0003354021540000015
Δgps的测量误差方差值如公式(IV):
Figure FDA0003354021540000016
Figure FDA0003354021540000017
的测量误差方差值如公式(V):
Figure FDA0003354021540000018
2.根据权利要求1所述的一种北斗增强惯导高效融合车道级定位工作方法,其特征在于,所述步骤4)中实现道路标线的识别的方法,包括图像增强、边缘检测、图像分割和Hough变换算法;其中所述Hough变换算法检测图像中的直线,所述直线为道路标线:在变换空间中采用直线的极坐标方程如公式(VI):ρ=xcosθ+ysinθ(VI);对参数(ρ,θ)进行m,n等分,构造累加数组A(ρii),其元素值表示经过点(ρ,θ)的曲线个数之和,对图像上所有边缘点进行Hough变换,进行累加如公式(VII):A(ρii)=A(ρii)+1(VII);取出数组A(ρii)中的最大元素,其对应的(ρ,θ)即所求;直线斜率:k=-cotθ;直线截距:
Figure FDA0003354021540000021
3.一种实现权利要求1-2任意一项工作方法的系统装置,包括:北斗接收机、惯性传感器、CCD摄像头和中央处理器;所述北斗接收机,包括射频前端处理模块、基带数字信号处理模块、定位导航运算模块,用以实现北斗卫星信号的导航捕获与跟踪、解调出卫星导航电文、获取伪距和载波相位测量值;所述惯性传感器,用于测量车辆的运动加速度,得到车辆运动速度,测量车辆的角速度,得到车辆的姿态角,然后通过中央处理器对惯性测量值进行处理,得到车辆的位置、速度和姿态;所述CCD摄像头,用于采集车辆前方路面图像信息,并输出模拟视频信号;所述中央处理器,包括北斗定位模块、惯性测量值处理模块、图像处理模块,用于实现北斗格网差分定位、实现道路标线识别、判断车辆变更车道情况、与惯性导航系统进行组合导航。
CN201711253618.9A 2017-12-02 2017-12-02 北斗增强惯导高效融合车道级定位工作方法及系统装置 Active CN108168544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711253618.9A CN108168544B (zh) 2017-12-02 2017-12-02 北斗增强惯导高效融合车道级定位工作方法及系统装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711253618.9A CN108168544B (zh) 2017-12-02 2017-12-02 北斗增强惯导高效融合车道级定位工作方法及系统装置

Publications (2)

Publication Number Publication Date
CN108168544A CN108168544A (zh) 2018-06-15
CN108168544B true CN108168544B (zh) 2022-01-07

Family

ID=62525138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711253618.9A Active CN108168544B (zh) 2017-12-02 2017-12-02 北斗增强惯导高效融合车道级定位工作方法及系统装置

Country Status (1)

Country Link
CN (1) CN108168544B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956809A (zh) * 2018-09-27 2020-04-03 千寻位置网络有限公司 监测车辆通过路口的系统及方法
CN110210303B (zh) * 2019-04-29 2023-04-25 山东大学 一种北斗视觉融合精准车道辨识与定位方法及其实现装置
CN111089598B (zh) * 2019-11-25 2021-08-06 首都师范大学 一种基于icciu的车道级车载实时地图匹配方法
CN111942393B (zh) * 2020-05-09 2023-08-29 芜湖伯特利汽车安全系统股份有限公司 一种车辆位置和姿态感知系统及其控制方法
CN111707257A (zh) * 2020-06-10 2020-09-25 南京睿敏交通科技有限公司 车辆应急占道信息采集方法及系统
CN111781620B (zh) * 2020-06-30 2023-09-22 湖北北斗梦创信息技术有限公司 两客一危车辆北斗定位系统及方法
CN111650628A (zh) * 2020-07-17 2020-09-11 广东星舆科技有限公司 一种高精度融合定位方法、计算机介质及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476894B (zh) * 2009-02-01 2011-06-29 哈尔滨工业大学 车载sins/gps组合导航系统性能增强方法
CN101916516B (zh) * 2010-08-13 2012-07-11 深圳市豪恩汽车电子装备有限公司 一种车道偏移识别方法
US8406996B2 (en) * 2010-08-25 2013-03-26 Trimble Navigation Limited Cordless inertial vehicle navigation
CN102608642A (zh) * 2011-01-25 2012-07-25 北京七维航测科技股份有限公司 北斗/惯性组合导航系统
CN103791916B (zh) * 2014-01-28 2016-05-18 北京融智利达科技有限公司 一种基于mems惯导的组合车载导航系统
CN104048663A (zh) * 2014-04-25 2014-09-17 惠州华阳通用电子有限公司 一种车载惯性导航系统及导航方法
CN106324645A (zh) * 2016-08-19 2017-01-11 付寅飞 一种基于惯性导航和卫星差分定位的车辆精准定位方法
CN107063246A (zh) * 2017-04-24 2017-08-18 齐鲁工业大学 一种视觉导航/惯性导航的松散组合导航方法

Also Published As

Publication number Publication date
CN108168544A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN108168544B (zh) 北斗增强惯导高效融合车道级定位工作方法及系统装置
CN111307162B (zh) 用于自动驾驶场景的多传感器融合定位方法
CN107703528B (zh) 自动驾驶中结合低精度gps的视觉定位方法及系统
CN107328411B (zh) 车载定位系统和自动驾驶车辆
JP6821712B2 (ja) 自然光景中での統合センサの較正
CN103499350B (zh) Gps盲区下融合多源信息的车辆高精度定位方法及装置
Rose et al. An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS
CN107229063A (zh) 一种基于gnss和视觉里程计融合的无人驾驶汽车导航定位精度矫正方法
CN101661048B (zh) 速度计算装置、速度计算方法和导航装置
US8447519B2 (en) Method of augmenting GPS or GPS/sensor vehicle positioning using additional in-vehicle vision sensors
RU2667675C1 (ru) Устройство определения позиции транспортного средства и способ определения позиции транспортного средства
JP5218656B2 (ja) 車両走行位置判定方法及び車両走行位置判定装置
JP5388082B2 (ja) 静止物地図生成装置
JP5404861B2 (ja) 静止物地図生成装置
EP1901259A1 (en) Vehicle and lane recognizing device
WO2015087502A1 (ja) 自車位置検出装置
CN108759823B (zh) 基于图像匹配的指定道路上低速自动驾驶车辆定位及纠偏方法
CN107728175A (zh) 基于gnss和vo融合的无人驾驶车辆导航定位精度矫正方法
JP5286653B2 (ja) 静止物地図生成装置
JP2007093483A (ja) 測位装置、測位方法および測位プログラム
CN112014856B (zh) 一种适于交叉路段的道路边沿提取方法及装置
CN109975844B (zh) 一种基于光流法的gps信号防漂移方法
CN114111775B (zh) 一种多传感器融合定位方法、装置、存储介质及电子设备
CN103499351A (zh) 一种基于磁地标和磁传感器的车辆辅助定位方法
JP2009074861A (ja) 移動量計測装置及び位置計測装置

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181226

Address after: No. 27, mountain Dana Road, Ji'nan City, Shandong, Shandong

Applicant after: Shandong University

Applicant after: Cernet Co., Ltd.

Address before: No. 27, mountain Dana Road, Ji'nan City, Shandong, Shandong

Applicant before: Shandong University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant