CN108165956A - 一种添加石墨烯的azo复合薄膜的制备方法 - Google Patents
一种添加石墨烯的azo复合薄膜的制备方法 Download PDFInfo
- Publication number
- CN108165956A CN108165956A CN201711468303.6A CN201711468303A CN108165956A CN 108165956 A CN108165956 A CN 108165956A CN 201711468303 A CN201711468303 A CN 201711468303A CN 108165956 A CN108165956 A CN 108165956A
- Authority
- CN
- China
- Prior art keywords
- azo
- film
- preparation
- graphene
- laminated films
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1295—Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种添加石墨烯的AZO复合薄膜的制备方法,包括以下步骤:以二水乙酸锌和九水硝酸铝为反应物,以乙二醇甲醚作溶剂,乙醇胺作稳定剂,通过水解、缩合和陈化得到AZO溶胶;把石墨烯片状粉末加入AZO溶胶中,超声振荡使二者充分混合,制得镀膜液;将上述制备的镀膜液均匀涂覆在基片上,热处理使其结晶,如此重复多次操作直到得到所需厚度的薄膜;在还原性气氛下热处理使膜层充分结晶固化得到复合薄膜。本发明的优点:采用石墨烯与AZO复合,制备出石墨烯/AZO复合薄膜,以及在AZO薄膜原有基础上提高其导电性能及其透光率,该方法制备的AZO薄膜能够应用于太阳能电池、透明薄膜晶体管、低辐射窗口和电子触摸屏领域。
Description
技术领域
本发明涉及玻璃表面镀膜技术领域,特别涉及一种添加石墨烯的AZO复合薄膜的制备方法。
背景技术
AZO薄膜是在氧化锌晶体结构中掺入化学元素周期表第Ⅲ族元素铝制备的透明导电膜,是一种可见光透明的宽带隙氧化物半导体材料。在太阳能电池、透明薄膜晶体管、低辐射窗口、电子触摸屏等方面发挥重要作用。磁控溅射法、脉冲激光沉积法制备的氧化锌基薄膜品质高,但需要复杂的真空设备,生产效率低,需要高纯靶材,成分调整困难,成膜面积受到限制。喷雾热分解法、溶胶-凝胶法、电化学沉积法等都可以实现低成本、大面积成膜,但其工艺还有待进一步改进,提高AZO膜的导电性和透明性。溶胶-凝胶技术试制金属有机或无机化合物经溶液、溶胶、凝胶而固化,在溶胶或凝胶状态下成型,再经热处理转化为氧化物膜的湿化学方法。
石墨烯具有很高的载流子迁移率。另外,单层的石墨烯透光率高达97.7%,几乎完全透明,4层的化学沉积石墨烯仍具有约90%的透过率,高于商业化的 ITO、FTO和AZO薄膜的透过率。因此,理论上石墨烯是一种良好的透明导电膜材料。作为由单层碳原子紧密堆积而成的二维蜂窝状材料,现阶段尚没有把石墨烯优良的光电性能为其在sol-gel法制备AZO薄膜中的应用方法以供使用。
发明内容
本发明的目的是为了解决背景技术中存在的缺点,而提出的一种添加石墨烯的AZO复合薄膜的制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤一、以二水乙酸锌和九水硝酸铝为反应物,以乙二醇甲醚作溶剂,乙醇胺作稳定剂,通过水解、缩合和陈化得到AZO溶胶;
步骤二、把石墨烯片状粉末加入AZO溶胶中,超声振荡使二者充分混合,制得镀膜液;
步骤三、将上述制备的镀膜液均匀涂覆在基片上,热处理使其结晶,结晶后,再次涂覆镀膜液和热处理结晶,如此重复多次操作直到得到所需厚度的薄膜;
步骤四、薄膜达到目标厚度后,在还原性气氛下进一步进行热处理使膜层充分结晶固化,得到复合薄膜。
在上述技术方案的基础上,可以有以下进一步的技术方案:
步骤一中陈化时间为24h-48h。
步骤二中所述石墨烯片状粉末粒径为10nm-400nm,其添加量为所述AZO溶胶的质量的0.01%-1%。
步骤二中超声振荡时间为36h-48h,石墨烯片状粉末在AZO溶胶中充分混合后静置70h-80h。
步骤三中热处理的温度为350℃-420℃,每次热处理维持时间8min-10min。
步骤四中在还原气氛下进行的热处理温度为500℃-530℃,时间为1h-1.5h。
本发明的优点在于:本发明采用石墨烯与AZO复合,制备出石墨烯/AZO复合薄膜,以及在AZO薄膜原有基础上提高其导电性能及其透光率,该方法制备的AZO薄膜能够应用于太阳能电池、透明薄膜晶体管、低辐射窗口和电子触摸屏等领域。
附图说明
图1是本发明的表面扫描电镜图像;
图2是图1的横断面扫描电镜图像。
具体实施方式
为了使本发明更加清楚明白,以下结合附图对本装置详细说明,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一、本发明提供的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤一、以32.926g的二水乙酸锌和0.283g的九水硝酸铝为反应物,以190ml的乙二醇甲醚作溶剂,以9ml的乙醇胺作稳定剂,先把乙二醇甲醚与乙醇胺混合搅拌30min,然后加入二水合乙酸锌、九水合硝酸铝,继续搅拌30min。移入四孔烧瓶,60℃水浴,搅拌5h,陈化24h,得到AZO溶胶。
步骤二、通过现有的化学还原氧化石墨烯法制备石墨烯,把粒径为100nm的石墨烯片状粉末加入AZO溶胶中,石墨烯加入量分别为0.093g,将AZO溶胶与石墨烯粉末的混合液超声48h,然后静置72h制得镀膜液。
步骤三、将上述制备的镀膜液均匀涂覆在基片上,基片采用硅酸盐玻璃,在镀膜前,硅酸盐玻璃依次使用乙醇、丙酮和去离子水在超声条件下洗涤15min,然后使用氮气干燥。干燥后采用旋涂机进行旋涂法涂膜,涂膜时,先设置旋涂机转速为1000rpm,向基片滴涂镀膜液,涂10s,然后设置旋涂机转速为3000 rpm涂30s,涂膜后,放入温度为420℃的马弗炉保温9min,去除有机残余物,使薄膜初步结晶。再次旋涂和热处理,如此重复,直至涂覆10层薄膜达到所需厚度的薄膜。
步骤四、薄膜达到目标厚度后,在还原性气氛下进一步进行热处理使膜层充分结晶固化,原性气氛为95%体积分数的氮气和5%体积分数的氢气热处理温度为530℃,时间为1.2h,制备得到添加有石墨烯的透明导电AZO复合薄膜。
复合薄膜制备后进行样品测试,使用四探针方块电阻仪,取值为每个薄膜样品9个不同位置测试,得到平均值电阻值为9Ω,可见光透过率使用U4100分光光度计测试,扫描光源波长范围为380nm-780nm,测得的可见光透过率为96.9%,本方案制备的复合薄膜薄膜表面和横断面的场发射扫描电子显微镜图像,如图1和图2所示。
实施例二、在实施例一的基础上,在步骤三中热处理的温度为350℃,步骤四热处理的温度为500℃,样品测试时,平均值电阻值为31Ω,可见光透过率为95.0%。
实施例三、在实施例一的基础上,在步骤一中九水硝酸铝的质量为0.566g,步骤二中加入的石墨烯质量为0.46g,在步骤三中热处理的温度为350℃,步骤四热处理的温度为500℃,样品测试时,平均值电阻值为22Ω,可见光透过率为94.3%。
实施例四、在实施例一的基础上,在步骤一中九水硝酸铝的质量为0.566g,步骤二中加入的石墨烯质量为0.46g,样品测试时,平均值电阻值为12Ω,可见光透过率为95.5%。
Claims (6)
1.一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤一、以二水乙酸锌和九水硝酸铝为反应物,以乙二醇甲醚作溶剂,乙醇胺作稳定剂,通过水解、缩合和陈化得到AZO溶胶;
步骤二、把石墨烯片状粉末加入AZO溶胶中,超声振荡使二者充分混合,制得镀膜液;
步骤三、将上述制备的镀膜液均匀涂覆在基片上,热处理使其结晶,结晶后,再次涂覆镀膜液和热处理结晶,如此重复多次操作直到得到所需厚度的薄膜;
步骤四、薄膜达到目标厚度后,在还原性气氛下进一步进行热处理使膜层充分结晶固化,得到复合薄膜。
2.根据权利要求1所述的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于:步骤一中陈化时间为24h-48h。
3.根据权利要求1所述的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于:步骤二中所述石墨烯片状粉末粒径为10nm-400nm,其添加量为所述AZO溶胶的质量的0.01%-1%。
4.根据权利要求1所述的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于:步骤二中超声振荡时间为36h-48h,石墨烯片状粉末在AZO溶胶中充分混合后静置70h-80h。
5.根据权利要求1所述的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于:步骤三中热处理的温度为350℃-420℃,每次热处理维持时间8min-10min。
6.根据权利要求1所述的一种添加石墨烯的AZO复合薄膜的制备方法,其特征在于:步骤四中在还原气氛下进行的热处理温度为500℃-530℃,时间为1h-1.5h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711468303.6A CN108165956A (zh) | 2017-12-29 | 2017-12-29 | 一种添加石墨烯的azo复合薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711468303.6A CN108165956A (zh) | 2017-12-29 | 2017-12-29 | 一种添加石墨烯的azo复合薄膜的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108165956A true CN108165956A (zh) | 2018-06-15 |
Family
ID=62519630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711468303.6A Withdrawn CN108165956A (zh) | 2017-12-29 | 2017-12-29 | 一种添加石墨烯的azo复合薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108165956A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109360691A (zh) * | 2018-11-19 | 2019-02-19 | 天津市职业大学 | 一种掺杂氧化锌透明导电薄膜的制备方法 |
CN109673068A (zh) * | 2018-12-25 | 2019-04-23 | 唐山烯彤科技有限公司 | 一种以石墨烯复合纳米材料制作电热膜的生产方法 |
CN114437393A (zh) * | 2020-11-06 | 2022-05-06 | 湖南七点钟文化科技有限公司 | 锌基大电阻薄膜镀膜液、其制备方法与锌基大电阻薄膜的制备方法 |
CN114656165A (zh) * | 2022-03-24 | 2022-06-24 | 中建材玻璃新材料研究院集团有限公司 | 一种玻璃防尘涂层及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102943253A (zh) * | 2012-11-30 | 2013-02-27 | 中国科学院深圳先进技术研究院 | 一种掺铝氧化锌透明导电薄膜及其制备方法 |
CN103199126A (zh) * | 2013-03-19 | 2013-07-10 | 上海理工大学 | 石墨烯-氧化锌透明导电薄膜及其制备方法 |
CN106435533A (zh) * | 2016-08-02 | 2017-02-22 | 辽宁大学 | 一种制备高性能azo透明导电薄膜的方法 |
-
2017
- 2017-12-29 CN CN201711468303.6A patent/CN108165956A/zh not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102943253A (zh) * | 2012-11-30 | 2013-02-27 | 中国科学院深圳先进技术研究院 | 一种掺铝氧化锌透明导电薄膜及其制备方法 |
CN103199126A (zh) * | 2013-03-19 | 2013-07-10 | 上海理工大学 | 石墨烯-氧化锌透明导电薄膜及其制备方法 |
CN106435533A (zh) * | 2016-08-02 | 2017-02-22 | 辽宁大学 | 一种制备高性能azo透明导电薄膜的方法 |
Non-Patent Citations (2)
Title |
---|
XIAYANG YU等: ""Sol-gel derived Al-doped zinc oxide e Reduced graphene oxide nanocomposite thin films"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
彭寿 等: ""种子层及掺杂浓度对溶胶-凝胶法制备ZnO∶Al薄膜光电性能的影响"", 《硅酸盐通报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109360691A (zh) * | 2018-11-19 | 2019-02-19 | 天津市职业大学 | 一种掺杂氧化锌透明导电薄膜的制备方法 |
CN109673068A (zh) * | 2018-12-25 | 2019-04-23 | 唐山烯彤科技有限公司 | 一种以石墨烯复合纳米材料制作电热膜的生产方法 |
CN109673068B (zh) * | 2018-12-25 | 2021-07-02 | 唐山烯彤科技有限公司 | 一种以石墨烯复合纳米材料制作电热膜的生产方法 |
CN114437393A (zh) * | 2020-11-06 | 2022-05-06 | 湖南七点钟文化科技有限公司 | 锌基大电阻薄膜镀膜液、其制备方法与锌基大电阻薄膜的制备方法 |
CN114656165A (zh) * | 2022-03-24 | 2022-06-24 | 中建材玻璃新材料研究院集团有限公司 | 一种玻璃防尘涂层及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108165956A (zh) | 一种添加石墨烯的azo复合薄膜的制备方法 | |
KR101489161B1 (ko) | 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막 | |
CN102598160A (zh) | 透明导电膜的制造方法及透明导电膜、使用该透明导电膜的元件、透明导电基板以及使用该透明导电基板的器件 | |
CN104992752A (zh) | 一种纳米银线透明导电薄膜的生产方法 | |
CN105219167B (zh) | 一种有导电填充物的醇基银纳米线墨水制成的导电薄膜 | |
Xue et al. | Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells | |
CN108101381A (zh) | 一种铋基卤化物钙钛矿纳米片及其制备方法 | |
CN103951410B (zh) | 一种BiFeO3薄膜的制备方法 | |
CN107093640A (zh) | 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用 | |
CN108091415A (zh) | 一种三重陷光结构透明导电薄膜及其制备 | |
CN107910030A (zh) | 一种柔性bnt铁电薄膜的制备方法 | |
CN104726851B (zh) | 一种溶胶凝胶法制备p型氧化锡薄膜材料的方法 | |
CN103194741B (zh) | 一种氧化铝前驱体溶液及其制备方法与应用 | |
CN103274435B (zh) | 一种氧化铝钛薄膜及其制备方法和应用 | |
CN106590618A (zh) | 一种具有包覆结构的NiO/rGO复合薄膜及其制备方法 | |
He et al. | ZnO thin films prepared by a modified water-based Pechini method | |
CN104692444A (zh) | 一种制备二氧化铈纳米晶薄膜的方法 | |
CN116371703B (zh) | 一种适用于柔性衬底的ito薄膜的制备方法及ito薄膜 | |
CN107034452A (zh) | 柔性掺杂型ZnO基透明导电薄膜的化学制作方法 | |
CN102795891A (zh) | 一种以MgO为缓冲层的钛酸锶钡薄膜的制备方法 | |
CN106449099A (zh) | 一种基于ZnO纳米粉光阳极膜的制备方法及其制得的光阳极膜 | |
TWI435846B (zh) | A method for preparing transparent conductive zinc oxide thin film by dipping stitch doping technique | |
JP6893347B2 (ja) | 透明導電膜の製造方法および透明導電膜 | |
CN104876231B (zh) | 一种La3Ga5SiO14薄膜的制备方法 | |
CN108232018A (zh) | 一种五氧化二钒薄膜的制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180615 |