CN108153935A - 一种构建胶凝材料多孔结构的方法 - Google Patents

一种构建胶凝材料多孔结构的方法 Download PDF

Info

Publication number
CN108153935A
CN108153935A CN201711244094.7A CN201711244094A CN108153935A CN 108153935 A CN108153935 A CN 108153935A CN 201711244094 A CN201711244094 A CN 201711244094A CN 108153935 A CN108153935 A CN 108153935A
Authority
CN
China
Prior art keywords
porous structure
cementitious material
sample
relative compaction
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711244094.7A
Other languages
English (en)
Other versions
CN108153935B (zh
Inventor
高云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201711244094.7A priority Critical patent/CN108153935B/zh
Publication of CN108153935A publication Critical patent/CN108153935A/zh
Application granted granted Critical
Publication of CN108153935B publication Critical patent/CN108153935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/333Design for testability [DFT], e.g. scan chain or built-in self-test [BIST]

Abstract

本发明公开了一种构建胶凝材料多孔结构的方法,包括以下步骤:1)获取胶凝材料样品,对其进行冷冻干燥;2)取干燥后的样品开展压汞实验,逐步施加压力,计算累计孔隙率与孔隙直径之间的关系;3)将累计孔隙率转换成相对密实度,在双对数坐标系中表示相对密实度与孔隙直径;4)确定相对密实度与孔隙直径呈线性相关的区域,应用最小二乘法计算相对密实度与孔隙直径线性相关区域的斜率;5)根据线性相关的范围与斜率确定构建多孔结构的数学参数,并实现多孔结构可视化;本发明解决了现有技术中基于水化动力学方法存在的假设条件不合理、参数难以测量问题,从而高效构建胶凝材料的多孔结构。

Description

一种构建胶凝材料多孔结构的方法
技术领域
本发明涉及无机非金属材料分析与表征技术领域,尤其涉及一种基于压汞实验数据构建胶凝材料多孔结构的方法。
背景技术
胶凝材料(如水泥)作为一种基础材料,在土木工程建设中占据极其重要的地位。从材料角度来看,胶凝材料本质上具有复杂的多孔结构,并且该多孔结构在很大程度上决定其物理(如传输)、力学(如弹模)性能。换言之,通过构建相应的多孔结构,结合必要的物理(如菲克定律)、力学(如胡克定律)定律,便可合理预测胶凝材料的物理、力学性能,减少性能测试所耗费的大量人力、物力成本;对此,其关键点在于如何构建胶凝材料多孔结构。
当前,国内外研究人员主要基于胶凝材料的水化动力学构建其多孔结构,以荷兰代尔夫特理工大学van Breugel教授提出的HYMOSTRUC3D、美国国家标准与技术研究院Bentz博士提出的CEMHYD3D为代表。该类方法糅合多粒子随机堆积(Particle Packing)与胶凝材料计量化学(Stoichiometry)等理论,在描述胶凝材料的水化历程、构建胶凝材料的多孔结构及预测胶凝材料的综合性能等研究领域取得了巨大的成功。
值得注意的是,该类方法通常存在假设条件不合理、参数难以测量问题。例如,HYMOSTRUC3D假设胶凝材料颗粒为理想的球体,水化时胶凝材料颗粒均匀膨胀;CEMHYD3D胶凝材料水化程度随时间演化方程含有不可测参数;由于假设条件以及参数选择不具有统一的标准,导致不同人员研究结果的横向对比性存在不足;另外,基于水化动力学的方法尚不适用于新型胶凝体系(碱激发胶凝材料);因此,开发多孔结构的高效构建方法对于胶凝材料研究具有重要意义。
发明内容
针对上述存在的问题,本发明目的在于提供一种解决了现有技术中假设条件不合理、参数难以测量的问题,从而达到高效构建胶凝材料的多孔结构模型的方法。
为了达到上述目的,本发明采用的技术方案如下:一种构建胶凝材料多孔结构的方法,该方法包括如下步骤:
1)按要求制作胶凝材料样品,冷冻干燥后样品待用;
2)将步骤1)得到的样品进行压汞实验,逐步施加压力P,获取累计孔隙率f,计算累计孔隙率f与孔隙d直径之间的关系;
3)将样品的累计孔隙率f转换成相对密实度χ,在双对数坐标系中表示相对密实度χ与孔隙直径d;
4)确定相对密实度χ与孔隙直径d呈线性相关的区域(d1~d2),d1<d<d2,其中d1表示线性相关的直径下限,d2表示线性相关的直径上限,应用最小二乘法计算相对密实度χ与孔隙直径d线性相关区域的斜率A;
5)根据线性相关的范围(d1~d2)与斜率A确定构建多孔结构的数学参数(n,i,b),n表示迭代元在一维方向上的孔隙相和固体相的总数目,i表示迭代次数,b表示迭代元中固体相数目,构建胶凝材料多孔结构的数学参数的模型图,基于MATLAB软件实现多孔结构可视化。
本发明所述步骤2)的操作过程中,将胶凝材料孔隙视为直径不同的圆柱形,样品累计孔隙率f与孔隙d直径之间的计算公式如下:其中,γs表示汞的表面张力,θ表示汞与孔隙表面的接触角。
本发明所述步骤3)的操作过程中,将样品的累计孔隙率f转换成相对密实度χ的计算公式如下:χ=1-f。
本发明所述步骤4)的操作过程中,应用最小二乘法计算相对密实度χ与孔隙直径d线性相关区域的斜率A的计算公式如下:
其中,∑表示求和,S表示样本数量。
本发明所述步骤5)的操作过程中,所述的n,i,b均为正整数。
本发明所述骤5)的操作过程中,构建多孔结构的数学参数n与i的计算方法如下:
本发明所述骤5)的操作过程中,构建多孔结构的数学参数b的计算方法如下:(b=n3-A)。
本发明的优点在于:本发明的构建胶凝材料多孔结构的方法,其本身是基于通用的压汞实验数据,方法整体流程中不含有任何不合理的假设条件或难以测量的实验参数,而且相关构建参数由统一的数学公式确定,适用于不同人员研究结果之间的横向对比。
附图说明
图1为本发明实例中水泥矿渣浆体压汞数据图;
图2为本发明实例中水泥矿渣浆体的数据分析图;
图3为本发明实例中构建水泥矿渣浆体的数学参数示意图;
图4为本发明实例中构建的水泥矿渣浆体多孔结构的模型图。
具体实施方式
下面结合附图说明和具体实施方式对本发明作进一步详细的描述。
本发明的实施例中提及的胶凝材料主要由水泥及矿物掺合料(如粒化高炉矿渣)加水拌合配制。养护硬化后的胶凝材料多孔结构包含有凝胶孔及毛细孔。胶凝材料的孔隙体现为复杂的几何形貌与随机的空间分布。压汞实验由于原理及设备较为简单,被广泛运用于胶凝材料的孔隙分布表征,是胶凝材料研究领域的一种常规测试手段。
实施例1:如图1、2、3和4所示的一种构建胶凝材料多孔结构的方法,包括如下:
1)获取胶凝材料样品,对其进行冷冻干燥:
将普通硅酸盐水泥:粒化高炉矿渣:去离子水按照4:1:2质量比拌合,在标准养护室内养护28天。取养护后的水泥矿渣浆体小块(约0.5cm3)若干,将其置于液氮气氛中冷冻(约2~3min),然后再置于真空干燥箱内抽真空,每24h记录水分丢失的重量,直至达到0.01%/天,整个干燥过程持续约1周。
2)取干燥后的样品开展压汞实验,逐步施加压力,计算累计孔隙率与孔隙直径之间的关系:
取干燥后的样品开展压汞实验,外加压力P范围为0~206MPa,获取累计孔隙率f,即f(P);将胶凝材料孔隙视为直径不同的圆柱形,计算样品的累计孔隙率f与孔隙直径d之间的关系,即f(d),计算方法如下:
其中γs=0.48N/m表示汞的表面张力,θ=140°表示汞与孔隙表面的接触角。
得到图1所示测得的水泥矿渣浆体样品的压汞数据(累计孔隙率与孔隙直径)。
3)将累计孔隙率转换成相对密实度,在双对数坐标系中表示相对密实度与孔隙直径:
将样品的累计孔隙率f转换成相对密实度χ,即χ=1-f。在双对数坐标系中表示相对密实度χ与孔隙直径d。
4)确定相对密实度与孔隙直径呈线性相关的区域,应用最小二乘法计算相对密实度与孔隙直径线性相关区域的斜率:
确定相对密实度与孔隙直径呈线性相关的区域(d1~d2),即logχ=Alogd+B,d1<d<d2,其中d1表示线性相关的直径下限(d1=5nm),d2表示线性相关的直径上限(d2=320nm),如图2所示。应用最小二乘法计算相对密实度与孔隙直径线性相关区域(d1~d2)的斜率A,计算方法如下:
计算得出:A=0.0665。
5)根据线性相关范围(d1~d2)与斜率A确定构建多孔结构的数学参数(n,i,b),其中正整数n表示迭代元(由孔隙相和固体相组成)在一维方向上的相(包括孔隙相和固体相)数目,正整数i表示迭代次数,正整数b表示迭代元中固体相数目,如图3所示。
(6)确定构建多孔结构的数学参数n与i,计算方法如下:
其中d1=5nm表示线性相关的直径下限,d2=320nm表示线性相关的直径上限,A=0.0665表示相对密实度与孔隙直径线性相关区域的斜率。计算结果为:n=4,i=3。
(7)确定构建多孔结构的数学参数b,计算方法如下:
(b=n3-A)
其中A=0.0665表示相对密实度与孔隙直径线性相关区域的斜率;计算结果为:b=59;基于MATLAB软件实现多孔结构可视化,如图4所示。
本实施例表明,本发明由通用于胶凝材料多孔结构表征的压汞实验的数据出发,整体方法中不需要额外的假设条件,构建多孔结构的数学参数全部可由压汞实验数据推导。
相比于现有技术中基于水化动力学方法存在的假设条件不合理、参数难以测量问题,本发明的方法得以高效构建胶凝材料的多孔结构。
需要说明的是,上述仅仅是本发明的较佳实施例,并非用来限定本发明的保护范围,在上述实施例的基础上所做出的任意组合或等同变换均属于本发明的保护范围。

Claims (8)

1.一种构建胶凝材料多孔结构的方法,其特征在于,所述的方法包括如下步骤:
1)按要求制作胶凝材料样品,冷冻干燥后样品待用;
2)将步骤1)得到的样品进行压汞实验,逐步施加压力P,获取累计孔隙率f,计算累计孔隙率f与孔隙d直径之间的关系;
3)将样品的累计孔隙率f转换成相对密实度χ,在双对数坐标系中表示相对密实度χ与孔隙直径d;
4)确定相对密实度χ与孔隙直径d呈线性相关的区域(d1~d2),d1<d<d2,其中d1表示线性相关的直径下限,d2表示线性相关的直径上限,应用最小二乘法计算相对密实度χ与孔隙直径d线性相关区域的斜率A;
5)根据线性相关的范围(d1~d2)与斜率A确定构建多孔结构的数学参数(n,i,b),n表示迭代元在一维方向上的孔隙相和固体相的总数目,i表示迭代次数,b表示迭代元中固体相数目,构建胶凝材料多孔结构的数学参数的模型图,实现多孔结构可视化。
2.如权利要求1所述的构建胶凝材料多孔结构的方法,其特征在于,所述步骤2)的操作过程中,将胶凝材料孔隙视为直径不同的圆柱形,样品累计孔隙率f与孔隙d直径之间的计算公式如下:
其中,γs表示汞的表面张力,θ表示汞与孔隙表面的接触角。
3.如权利要求1所述的构建胶凝材料多孔结构的方法,其特征在于,所述步骤3)的操作过程中,将样品的累计孔隙率f转换成相对密实度χ的计算公式如下:χ=1-f。
4.如权利要求1所述的构建胶凝材料多孔结构的方法,其特征在于,所述步骤4)的操作过程中,应用最小二乘法计算相对密实度χ与孔隙直径d线性相关区域的斜率A的计算公式如下:
其中,∑表示求和,S表示样本数量。
5.如权利要求1所述的构建胶凝材料多孔结构的方法,其特征在于,所述步骤5)的操作过程中,所述的n,i,b均为正整数。
6.如权利要求1或5所述的构建胶凝材料多孔结构的方法,其特征在于,所述骤5)的操作过程中,构建多孔结构的数学参数n与i的计算方法如下:
7.如权利要求1或5所述的构建胶凝材料多孔结构的方法,其特征在于,所述骤5)的操作过程中,构建多孔结构的数学参数b的计算方法如下:
(b=n3-A)。
8.如权利要求1所述的构建胶凝材料多孔结构的方法,其特征在于,所述骤5)的操作过程中,利用MATLAB软件构建胶凝材料多孔结构的数学参数的模型图,实现多孔结构可视化。
CN201711244094.7A 2017-11-30 2017-11-30 一种构建胶凝材料多孔结构的方法 Active CN108153935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711244094.7A CN108153935B (zh) 2017-11-30 2017-11-30 一种构建胶凝材料多孔结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711244094.7A CN108153935B (zh) 2017-11-30 2017-11-30 一种构建胶凝材料多孔结构的方法

Publications (2)

Publication Number Publication Date
CN108153935A true CN108153935A (zh) 2018-06-12
CN108153935B CN108153935B (zh) 2021-05-04

Family

ID=62465918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711244094.7A Active CN108153935B (zh) 2017-11-30 2017-11-30 一种构建胶凝材料多孔结构的方法

Country Status (1)

Country Link
CN (1) CN108153935B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112750511A (zh) * 2020-12-30 2021-05-04 东南大学 一种基于迭代法重构水泥基体孔隙分布的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778271A (zh) * 2013-09-06 2014-05-07 上海大学 基于网格装配的多孔结构建模方法
CN104156539A (zh) * 2014-08-22 2014-11-19 江苏科技大学 固体氧化物燃料电池电极气体传输曲率因子预测方法
EP3030887A1 (en) * 2013-08-08 2016-06-15 Ingrain, Inc. Conditioning of expanded porosity
CN106354984A (zh) * 2016-10-21 2017-01-25 山东中瑞新能源科技有限公司 桩基螺旋埋管在地下水渗流条件下的温度响应计算方法
CN106769778A (zh) * 2017-01-20 2017-05-31 清华大学 一种低渗岩石颗粒的渗透率测量系统及测量方法
US20170169139A1 (en) * 2015-12-10 2017-06-15 Saudi Arabian Oil Company Predicting and modeling changes in capillary pressure and relative permeabilities in a porous medium due to mineral precipitation and dissolution
CN106934116A (zh) * 2017-02-22 2017-07-07 华南理工大学 一种基于遗传算法的骨支架孔径分布控制方法
CN107180271A (zh) * 2017-04-27 2017-09-19 广州慧扬健康科技有限公司 基于最小二乘法的住院人数的预测系统
CN107321982A (zh) * 2017-06-22 2017-11-07 华南理工大学 一种基于数值优化的多孔金属纤维烧结板制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3030887A1 (en) * 2013-08-08 2016-06-15 Ingrain, Inc. Conditioning of expanded porosity
CN103778271A (zh) * 2013-09-06 2014-05-07 上海大学 基于网格装配的多孔结构建模方法
CN104156539A (zh) * 2014-08-22 2014-11-19 江苏科技大学 固体氧化物燃料电池电极气体传输曲率因子预测方法
US20170169139A1 (en) * 2015-12-10 2017-06-15 Saudi Arabian Oil Company Predicting and modeling changes in capillary pressure and relative permeabilities in a porous medium due to mineral precipitation and dissolution
CN106354984A (zh) * 2016-10-21 2017-01-25 山东中瑞新能源科技有限公司 桩基螺旋埋管在地下水渗流条件下的温度响应计算方法
CN106769778A (zh) * 2017-01-20 2017-05-31 清华大学 一种低渗岩石颗粒的渗透率测量系统及测量方法
CN106934116A (zh) * 2017-02-22 2017-07-07 华南理工大学 一种基于遗传算法的骨支架孔径分布控制方法
CN107180271A (zh) * 2017-04-27 2017-09-19 广州慧扬健康科技有限公司 基于最小二乘法的住院人数的预测系统
CN107321982A (zh) * 2017-06-22 2017-11-07 华南理工大学 一种基于数值优化的多孔金属纤维烧结板制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YUN GAO,KAI WU, JINYANG JIANG: "Examination and modeling of fractality for pore-solid structure in cement paste: Starting from the mercury intrusion porosimetry test", 《CONSTRUCTION AND BUILDING MATERIALS》 *
李卓,王清辉,徐志佳: "多孔金属纤维微观建模及孔隙渗透特性研究( 下)", 《现代制造工程》 *
谢涛,何雅玲,吴明,何超: "气凝胶纳米多孔隔热材料传热计算模型的研究", 《工程热物理学报》 *
高云,蒋金洋,吴凯: "非饱和硬化水泥浆氯离子扩散性能的数值模拟", 《建筑材料学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112750511A (zh) * 2020-12-30 2021-05-04 东南大学 一种基于迭代法重构水泥基体孔隙分布的方法
CN112750511B (zh) * 2020-12-30 2024-04-09 东南大学 一种基于迭代法重构水泥基体孔隙分布的方法

Also Published As

Publication number Publication date
CN108153935B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
Zeng et al. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials
Horpibulsuk et al. Soil stabilization by calcium carbide residue and fly ash
Jin et al. Fractal analysis of effect of air void on freeze–thaw resistance of concrete
Fraj et al. New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag
Tang et al. A fractal approach to determine thermal conductivity in cement pastes
Aldaood et al. Soil–water characteristic curve of lime treated gypseous soil
He et al. Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples
CN109243544B (zh) 环境与材料物理化学本质作用下混凝土内传质计算方法
Dotelli et al. The evolution of cement paste hydration process by impedance spectroscopy
Niu et al. A 3D-IFU model for characterising the pore structure of hybrid fibre-reinforced concrete
Chen et al. Critical features of microstructure development of early-age cement paste revealed by non-contact electrical resistivity measurement
CN108153935A (zh) 一种构建胶凝材料多孔结构的方法
Cai et al. The modeling of electrical property in porous media based on fractal leaf vein network
Zhang et al. Moisture diffusion in cement pastes with hydrophobic agent
Qian et al. Investigations on pore-structure in cementitious materials using gas intrusion porosimetry
Wang et al. Effect of super absorbent polymer and mineral additives on mechanical, shrinkage and healing properties of self-healing lightweight aggregate concrete under different curing regimes
Xiao et al. Prediction model for carbonation depth of concrete subjected to freezing-thawing cycles
Zhang et al. Predicting the Drying of Concrete by an Anomalous Diffusion Model
Chuang et al. Durability analysis testing on reactive powder concrete
CN112750511B (zh) 一种基于迭代法重构水泥基体孔隙分布的方法
CN108279163A (zh) 一种基于压汞实验预测水泥基材料弹性模量的方法
Fu et al. Study of cement-based thermal storage materials with fly ash
Bellifa et al. Effects of calcium leaching on the physical and mechanical properties of aerial lime-cement mortars
Lin Effective diffusion coefficient of chloride in porous concrete
Wang et al. Coupled Effects of Heat and Moisture of Early-Age Concrete

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant