CN108152050B - 一种整车参数校准方法 - Google Patents

一种整车参数校准方法 Download PDF

Info

Publication number
CN108152050B
CN108152050B CN201711407767.6A CN201711407767A CN108152050B CN 108152050 B CN108152050 B CN 108152050B CN 201711407767 A CN201711407767 A CN 201711407767A CN 108152050 B CN108152050 B CN 108152050B
Authority
CN
China
Prior art keywords
vehicle
simulation
acceleration
parameter
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711407767.6A
Other languages
English (en)
Other versions
CN108152050A (zh
Inventor
李占江
高超
蒋元广
李麟
朱震海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan yuebo Hydrogen Power System Research Institute Co.,Ltd.
Original Assignee
Nanjing Yuebo Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yuebo Power System Co Ltd filed Critical Nanjing Yuebo Power System Co Ltd
Priority to CN201711407767.6A priority Critical patent/CN108152050B/zh
Publication of CN108152050A publication Critical patent/CN108152050A/zh
Application granted granted Critical
Publication of CN108152050B publication Critical patent/CN108152050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种整车参数校准方法,包括如下步骤:步骤1.车辆数据的采集:步骤2.车辆动力学公式计算与曲线拟合:步骤3.建立仿真车辆模型:步骤4.批处理程序的应用:步骤5.整车参数的验证:本发明的优点是依托车辆动力学公式与软件的反复效验计算,使得计算结果既来源于实际的实验又能够在无干扰仿真环境下进行校准,使参数校准结果更加可靠。同时使用批程序程序结合优化算法辅助进行参数的选定,能够大量减少校准时间并提高校准精度。

Description

一种整车参数校准方法
技术领域
本发明涉及一种整车参数校准方法,属于汽车参数计算和车辆动力学仿真技术领域。特别是针对在实际实验中难以直接测量的车辆整车参数的校准和求取方法。
背景技术
目前,随着中国国内汽车产业的不断发展,中国自主化研发的水平也在不断的提高,车辆开发工作中车辆的仿真工作尤为重要,贯穿了整个车辆研发的整个流程,而车辆模型的参数是否准确,进行参数的匹配,又是一切仿真工作的基础,它往往影响到仿真的最终结果,从而影响到工程人员对车辆状态的判断和控制策略的开发,如风阻系数,迎风面积,滚动阻力系数、旋转质量换算系数。
公开号为CN107463789A的专利申请公开了一种集成化的医用显示器自动校准装置,其主要由硬件系统和软件模块组成。硬件系统包括:导轨机构,平衡支撑机构,亮度色度计、照度计,控制单元及控制计算机。平衡支撑机构设在导轨机构,照度计设在平衡支撑机构的一端;亮度色度计设在平衡支撑机构的另一端。控制单元分别与导轨机构、平衡支撑机构、亮度色度、计照度计、被校准医用显示器和控制计算机电连接,确保它们能够按照校准软件模块的指令运行,且控制导轨沿前后、左右和上下方向移动并控制旋转台旋转,从而带动亮度色度计旋转。采用本发明的校准方法,是对被校准医用显示器自动摆位、定位,继而进行各种参数校准,方法客观、准确,大幅度提高校准检测的效率和校准质量。
公开号为CN206695925U的专利申请公开了一种多路RTD热电阻测量模块,包括12路RTD信号调理电路、跟随器、A/D转换电路、数字隔离电路、FPGA、以及CPU。所述12路RTD信号调理电路为三线制;所述A/D转换电路对所述12路信号逐路进行数模转换;转换后的信号通过所述数字隔离电路发送给所述FPGA,所述FPGA用于消除所述RTD热电阻的线性误差;所述FPGA和所述CPU交互通信。
传统的参数校准方法有两种方式:一是通过滑行实验拟合车辆阻力值曲线,确认a,b,c值,但这种方法由于无法排除外界条件的干扰,获得的数据与实际数据偏差大;二是通过风洞、转毂实验台专业测试设备进行测量,但人力物力消耗大。
发明内容
本发明的目的在于提供一种能够克服上述技术问题的整车参数校准方法,
本发明所述方法包括如下步骤:
步骤1.车辆数据的采集:
11、车辆的等速或滑行实验,被测车辆进行等速实验或滑行实验,在实验中,能够利用CAN网络分析仪通过车载CAN网络采集发动机/发电机的输出扭矩值数据T,利用加速度传感器采集实验时整车的加速度
12、数据的预处理,通过线性插值的方法和低通滤波的方法对采集的数据的进行初步的第一轮处理,将采集数据中出现的波动和干扰进行滤波,排除数据信号的扰动,使数据平滑,将处理后的数据与采样时间轴通过三次样条线性插值方式绘制成扭矩随时间变化曲线L1和加速度变化曲线D1。
步骤2.车辆动力学公式计算与曲线拟合:
根据车辆行驶方程式,在无风条件下,汽车的驱动力与行驶阻力之间的关系为驱动力为滚动阻力、空气阻力、坡道阻力和加速阻力的之和F=Ff+Fw+Fi+Fj
其中F为车辆驱动力、Ff为车辆受到的滚动阻力,Fw为车辆受到的空气阻力,Fi为车辆受到的爬坡阻力,Fj为车辆受到的加速阻力。
也能够等价为公式1-1:
Figure GDA0002179601900000022
公式1-1中:
Ttq为发动机(电动机)转矩,单位为N.m;
r为车轮半径,单位为m;
ig为变速箱当前档为齿轮速比;
i0为主减速器速比;
η为传动效率,单位为%;
G为重力,单位为N;
f为滚动阻力系数;
Cd为风阻系数;
A为车辆迎风面积,单位为m2
V为车辆行驶速度,单位为km/h;
α为道路的坡度,单位为度;
δm为车辆的旋转质量换算系数;
为车辆的加速,单位为m/s2
其中,汽车产生的重力为:
G=m*g
m为汽车总质量;
g为重力加速度为常数9.8N/kg。
当需要校准的是车辆的风阻系数Cd、迎风面积A、滚动阻力系数f,则使用等速实验的数据。
在等速实验中,车辆在水平无风的道路匀速行驶,能够认为坡道阻力和加速阻力近似为0,公式1-1也简化为下式1-2:
Figure GDA0002179601900000032
实验车辆的车辆质量、车轮半径、行驶的车速能够通过简单的直接测量方法得到,变速箱和主减速器的齿轮速比能够通过查阅公知资料得到。
假设公式1-2中,迎风面积、风阻系数、滚动阻力系数的数值符合实际情况,则此时车辆的驱动力Ttq等于实际等速实验中采集的发动机或者电机的扭矩值。
即得到公式1-3
T=Ttq……1-3
T为发动机/发电机的输出扭矩值数据。
所以,当有一组风阻系数、迎风面积、滚动阻力系数满足实际情况,则扭矩值大小曲线与仿真结果的扭矩值大小相接近。
当需要校准的是车辆的旋转质量换算系数δm则使用车辆滑行实验的数据,在滑行实验中,车辆在水平、无风的道路进行,预先行驶到一定车速,之后松开油门,依靠惯性驱动车辆前进,此时车辆的发动机/电机扭矩Ttq为0,车辆的车速V已经在实验中采集,而加速度
Figure GDA0002179601900000041
则能够通过车速对时间进行微分求得,公式1-1能够简化为公式1-4:
Figure GDA0002179601900000042
如输入模型的旋转质量换算系数δm与实车测试时保持一致,则加速度
Figure GDA0002179601900000043
与实车测试时测试的结果相同,即仿真的加速度变化曲线D2与实际的加速度变化曲线D1吻合。
步骤3.建立仿真车辆模型:
利用车辆已知参数搭建整车的仿真车辆模型,车辆迎风面积、风阻系数和滚动阻力系数要校准的参数的数据大小当尚不能确定,能够先根据经验设定。同时建立与实验的对应相同的等速、滑行仿真工况并进行性能仿真任务。
当多个整车参数都为未知,如迎风面积、风阻系数、滚动阻力系数多个参数都为未知,则其推导出的参数数值与实际参数值的吻合度,能够将多个阻力参数看作是一个阻力影响,对于仿真结果没有实际影响。
仿真完毕后,分析仿真结果,将车辆在等速工况下运行的扭矩变化曲线L2或将车辆在滑行工况下运行的加速度变化曲线D2进行解析取出与实际扭矩变化曲线或实际车辆加速度变化曲线进行对比。
在得到了风阻系数、迎风面积和滚动阻力系数之后,再带入车辆的滑行仿真工况,将加速度变化曲线D2与实际采集的加速度变化曲线D1做差,所得插值曲线做标准差,所得标准差最小的,则数据的旋转质量换算系数δm与实际车辆吻合,如表1所示。
表1:整车参数校准结果表
Figure GDA0002179601900000051
步骤4.批处理程序的应用:
当手动利用车辆仿真模型进行参数比对和校准,需要在需校准的每个参数的一定范围内按照经验进行不断尝试,再修改对应的仿真车辆模型参数并进行仿真运算,运算完毕后,对仿真结果进行人工分析,根据结果判断数据参数是否合理,否则进行下一轮输入。
本发明所述方法利用python脚本编写自动校准辅助软件,循环检测仿真模型结果的输出,从而优化调整仿真模型参数的输入,结合计算机批处理程序和优化算法进行辅助筛选,在优化算法选择方面,选择了多岛遗传算法,选择多岛遗传算法的原因是,多岛遗传算法的适应性强并具有全局性且能综合探索设计区域形成全局最优解以避免集中在局部区域探索,从而形成局部最优解。
利用编写的python脚本软件,利用正则表达式匹配仿真模型配置文件中所需要修改参数相关的字段值,自动修改车辆动力学仿真软件中车辆要校准的参数,利用编写计算机批处理文件来自动循环调用执行整车模型的仿真运行,在仿真结束后解析仿真的运行结果,与实际采集的实验数据相比较,并记录比较结果,将比较结果通过软件输入给多岛遗传优化算法作为调整下一轮输入的依据,最终软件自动选取与实验数据标准差之和最小的一组输入量,作为校准后的整车参数数值。
本发明所述方法避免了测试人员的反复校验,由于加入了多目标遗传算法的控制,降低了需要进行仿真循环次数,极大的提高了参数校准的精度和准确性。
步骤5.整车参数的验证:
将求得多组整车参数组合进行提取,筛选标准差最小的多组整车参数数值结果,分析校准后整车参数结果数值的合理性,再将其带入其他车辆动力学仿真软件进行运算,观察其运行结果,输出轴功率是否与实验测试结果一致,选取输出轴功率一致的一组参数作为整车参数,并将其参数存储在车型对应的数据文件中保存,从而完成对整车参数选择的验证。
本发明具有如下优点:
1、易于实现,适用广泛,只需要结合车辆的滑行和等速实验数据和车辆仿真模型,容易实现且成本低。
2、具有数据效验能力:因为整车参数计算结果结合了实验数据和车辆仿真结果,通过动力学公式的计算和变换参数来保证仿真结果与实验测试数据相近,保证了参数计算的正确性,参数计算完毕后,再将参数带回模型进行验算,进行二次回归,保证计算出的数值符合实际,具有数据的效验能力。
3、稳定性高:因为整车参数是由基于大量实验数据中推算得出的,不会具有大范围的数据误差和波动,同时具有数据的前处理能力,在前期通过数据的滤波处理,排除掉数据中的异常值和干扰值,以排除异常数据对求解参数的误导和误差,使最终计算结果具有稳定性和可靠性。
4、效率高:体现在两个方面,其一,对于一种车型的参数不需要进行重复的效验和计算,减少了效验次数,其二,引入了计算机批处理程序和优化算法进行参数辅助筛选的方法来应对大量的参数组合,能够帮助工程师在大量数据空间内,减少需要仿真循环次数,快速定位到合适的模型参数结果。
本发明所述方法的优点是依托车辆动力学公式与软件的反复效验计算,使得计算结果既来源于实际的实验又能够在无干扰仿真环境下进行校准,使参数校准结果更加可靠。同时使用批程序结合优化算法辅助进行参数的选定,能够大量减少校准时间并提高校准精度。
附图说明
图1是本发明所述方法的流程图;
图2是某车型等速40工况下电机输出实际扭矩曲线L1图;
图3是某车型80km/h车速滑行工况下车辆的实际加速度曲线D1图;
图4是等速40工况下仿真电机输出扭矩曲线L2图;
图5是本发明所述方法的手动的仿真模型校准流程图;
图6是本发明所述方法的自动的仿真模型校准流程图。
具体实施方式
下面结合附图对本发明的实施方式进行详细描述。本发明所述方法包括如下步骤:
步骤1.车辆数据的采集:
11、车辆的等速或滑行实验,被测车辆进行等速实验或滑行实验,在实验中,能够利用CAN网络分析仪通过车载CAN网络采集发动机/发电机的输出扭矩值数据T,利用加速度传感器采集实验时整车的加速度
Figure GDA0002179601900000071
12、数据的预处理,通过线性插值的方法和低通滤波的方法对采集的数据的进行初步的第一轮处理,将采集数据中出现的波动和干扰进行滤波,排除数据信号的扰动,使数据平滑,将处理后的数据与其采样时间轴通过三次样条线性插值方式绘制成扭矩随时间变化曲线L1和加速度变化曲线D1。
某车型等速实验中电机扭矩随时间变化曲线如图1所示,电机输出轴扭矩T在小幅度内(24N.m~25N.m)间上下波动,整体变化平稳,电机扭矩随时间变化曲线如图2所示。某车型80km/h滑行实验中整车加速度变化曲线如图3所示,为整车加速度变化曲线。
步骤2.车辆动力学公式计算与曲线拟合:
根据车辆行驶方程式,在无风条件下,汽车的驱动力与行驶阻力之间的关系为驱动力为滚动阻力、空气阻力、坡道阻力和加速阻力的之和F=Ff+Fw+Fi+Fj
其中F为车辆驱动力、Ff为车辆受到的滚动阻力,Fw为车辆受到的空气阻力,Fi为车辆受到的爬坡阻力,Fj为车辆受到的加速阻力。
也能够等价为公式1-1:
Figure GDA0002179601900000072
公式1-1中:
Ttq为发动机(电动机)转矩,单位为N.m;
r为车轮半径,单位为m;
ig为变速箱当前档为齿轮速比;
i0为主减速器速比;
η为传动效率,单位为%;
G为重力,单位为N;
f为滚动阻力系数;
Cd为风阻系数;
A为车辆迎风面积,单位为m2
V为车辆行驶速度,单位为km/h;
α为道路的坡度,单位为度;
δm为车辆的旋转质量换算系数;
Figure GDA0002179601900000081
为车辆的加速,单位为m/s2
其中,汽车产生的重力为:
G=m*g
m为汽车总质量;
g为重力加速度为常数9.8N/kg。
当需要校准的是车辆的风阻系数Cd、迎风面积A、滚动阻力系数f,则使用等速实验的数据。
在等速实验中,车辆在水平无风的道路匀速行驶,能够认为坡道阻力和加速阻力近似为0,公式1-1也简化为下式1-2:
Figure GDA0002179601900000091
实验车辆的车辆质量、车轮半径、行驶的车速能够通过简单的直接测量方法得到,变速箱和主减速器的齿轮速比能够通过查阅公知资料得到。
假设公式1-2中,迎风面积、风阻系数、滚动阻力系数的数值符合实际情况,则此时车辆的驱动力Ttq等于实际等速实验中采集的发动机或者电机的扭矩值。
即得到公式1-3
T=Ttq……1-3
T为发动机/发电机的输出扭矩值数据。
所以,当有一组风阻系数、迎风面积、滚动阻力系数满足实际情况,则扭矩值大小曲线与仿真结果的扭矩值大小相接近。
当需要校准的是车辆的旋转质量换算系数δm则使用车辆滑行实验的数据,在滑行实验中,车辆在水平、无风的道路进行,预先行驶到一定车速,之后松开油门,依靠惯性驱动车辆前进,此时车辆的发动机/电机扭矩Ttq为0,车辆的车速V已经在实验中采集,而加速度
Figure GDA0002179601900000092
则能够通过车速对时间进行微分求得,公式1-1能够简化为公式1-4:
Figure GDA0002179601900000093
如输入模型的旋转质量换算系数δm与实车测试时保持一致,则加速度与实车测试时测试的结果相同,即仿真的加速度变化曲线D2与实际的加速度变化曲线D1吻合。
步骤3.建立仿真车辆模型:
利用车辆已知参数搭建整车的仿真车辆模型,车辆迎风面积、风阻系数和滚动阻力系数要校准的参数的数据大小当尚不能确定,能够先根据经验设定。同时建立与实验的对应相同的等速、滑行仿真工况并进行性能仿真任务。
当多个整车参数都为未知,如迎风面积、风阻系数、滚动阻力系数多个参数都为未知,则其推导出的参数数值与实际参数值的吻合度,能够将多个阻力参数看作是一个阻力影响,对于仿真结果没有实际影响。
仿真完毕后,分析仿真结果,将车辆在等速工况下运行的扭矩变化曲线L2或将车辆在滑行工况下运行的加速度变化曲线D2进行解析取出与实际扭矩变化曲线或实际车辆加速度变化曲线进行对比。
图4为某车型所建立的仿真车辆模型,运行等速40km/h工况下的仿真电机扭矩变化曲线L2。将仿真结果的扭矩变化曲线L2与实际采集的扭矩变化曲线L1做差,再求解每条差值曲线的标准差,在所有输入参数中所得标准差X最小的,则数据的风阻系数、迎风面积和滚动阻力系数与实际情况吻合。这个过程也能够看作为实际扭矩曲线与仿真扭矩曲线的曲线拟合过程。
在得到了风阻系数、迎风面积和滚动阻力系数之后,再带入车辆的滑行仿真工况,将加速度变化曲线D2与实际采集的加速度变化曲线D1做差,所得插值曲线做标准差,所得标准差最小的,则数据的旋转质量换算系数δm与实际车辆吻合,如表1所示。
表1:整车参数校准结果表
Figure GDA0002179601900000101
步骤4.批处理程序的应用:
当手动利用车辆仿真模型进行参数比对和校准,需要在需校准的每个参数的一定范围内按照经验进行不断尝试,再修改对应的仿真车辆模型参数并进行仿真运算,运算完毕后,对仿真结果进行人工分析,根据结果判断数据参数是否合理,否则进行下一轮输入。
本发明所述方法利用python脚本编写自动校准辅助软件,循环检测仿真模型结果的输出,从而优化调整仿真模型参数的输入,结合计算机批处理程序和优化算法进行辅助筛选,在优化算法选择方面,选择了多岛遗传算法,选择多岛遗传算法的原因是,多岛遗传算法的适应性强并具有全局性且能综合探索设计区域形成全局最优解以避免集中在局部区域探索,从而形成局部最优解。
利用编写的python脚本软件,利用正则表达式匹配仿真模型配置文件中所需要修改参数相关的字段值,自动修改车辆动力学仿真软件中车辆要校准的参数,利用编写计算机批处理文件来自动循环调用执行整车模型的仿真运行,在仿真结束后解析仿真的运行结果,与实际采集的实验数据相比较,并记录比较结果,将比较结果通过软件输入给多岛遗传优化算法作为调整下一轮输入的依据,最终软件自动选取与实验数据标准差之和最小的一组输入量,作为校准后的整车参数数值。
本发明所述方法避免了测试人员的反复校验,由于加入了多目标遗传算法的控制,降低了需要进行仿真循环次数,极大的提高了参数校准的精度和准确性。
步骤5.整车参数的验证:
将求得多组整车参数组合进行提取,筛选标准差最小的多组整车参数数值结果,分析校准后整车参数结果数值的合理性,再将其带入其他车辆动力学仿真软件进行运算,观察其运行结果,输出轴功率是否与实验测试结果一致,选取输出轴功率一致的一组参数作为整车参数,并将其参数存储在车型对应的数据文件中保存,从而完成对整车参数选择的验证。
本发明所述方法的操作流程如图6所示。本发明所述方法避免了测试人员的反复校验,由于加入了多目标遗传算法的控制,降低了需要进行仿真循环次数,极大的提高了参数校准的精度和准确性。
当手动利用车辆仿真模型进行参数比对和校准,则流程如图5所示,需要在需校准的每个参数的一定范围内按照经验进行不断尝试,再修改对应的仿真车辆模型参数并进行仿真运算,运算完毕后,对仿真结果进行人工分析,根据结果判断数据参数是否合理,否则进行下一轮输入。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明公开的范围内,能够轻易想到的变化或替换,都应涵盖在本发明权利要求的保护范围内。

Claims (7)

1.一种整车参数校准方法,其特征在于,包括如下步骤:
步骤1.车辆数据的采集:
11、车辆的等速或滑行实验,被测车辆进行等速实验或滑行实验,在实验中,能够利用CAN网络分析仪通过车载CAN网络采集发动机或发电机的输出扭矩值数据T,利用加速度传感器采集实验时整车的加速度
Figure FDA0002283076010000011
12、数据的预处理,通过线性插值的方法和低通滤波的方法对采集的数据进行初步的第一轮处理,将采集数据中出现的波动和干扰进行滤波,排除掉数据信号的扰动,使数据平滑;
步骤2.车辆动力学公式计算与曲线拟合:
根据车辆行驶方程式,在无风条件下,汽车的驱动力与行驶阻力之间的关系是:驱动力为滚动阻力、空气阻力、坡道阻力和加速阻力之和F=Ff+Fw+Fi+Fj
其中F为车辆驱动力、Ff为车辆受到的滚动阻力,Fw为车辆受到的空气阻力,Fi为车辆受到的爬坡阻力,Fj为车辆受到的加速阻力;
或等价为以下公式1-1:
Figure FDA0002283076010000012
公式1-1中:
Ttq为发动机或发电机转矩,单位为N.m;
r为车轮半径,单位为m;
ig为变速箱当前档齿轮速比;
i0为主减速器速比;
η为传动效率,单位为%;
G为重力,单位为N;
f为滚动阻力系数;
Cd为风阻系数;
A为车辆迎风面积,单位为m2
V为车辆行驶速度,单位为km/h;
α为道路的坡度,单位为度;
δm为车辆的旋转质量换算系数;
Figure FDA0002283076010000021
为车辆的加速,单位为m/s2
其中,汽车产生的重力为:
G=m*g
m为汽车总质量;
g为重力加速度为常数9.8N/kg;
当需要校准的是车辆的风阻系数Cd、迎风面积A、滚动阻力系数f,则使用等速实验的数据;
步骤3.建立仿真车辆模型:
利用车辆已知参数搭建整车的仿真车辆模型,车辆迎风面积、风阻系数和滚动阻力系数要校准的参数的数据大小当尚不能确定,能够先根据经验设定,同时建立与实验的对应相同的等速、滑行仿真工况并进行性能仿真任务;
步骤4.批处理程序的应用:
当手动利用车辆仿真模型进行参数比对和校准,需要在需校准的每个参数的一定范围内按照经验进行不断尝试,再修改对应的仿真车辆模型参数并进行仿真运算,运算完毕后,对仿真结果进行人工分析,根据结果判断数据参数是否合理,否则进行下一轮输入;
步骤5.整车参数的验证:
将求得多组整车参数组合进行提取,筛选标准差最小的多组整车参数数值结果,分析校准后整车参数结果数值的合理性,再将其带入其他车辆动力学仿真软件进行运算,观察其运行结果,输出轴功率是否与实验测试结果一致,选取输出轴功率一致的一组参数作为整车参数,并将其参数存储在该车型对应的数据文件中保存,从而完成对整车参数选择的验证。
2.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤12中,将处理后的数据与其采样时间轴通过三次样条线性插值方式绘制成扭矩随时间变化曲线L1和加速度变化曲线D1。
3.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤2中,在等速实验中,车辆在水平无风的道路匀速行驶,所以能够认为坡道阻力和加速阻力近似为0,公式1-1也简化为:
Figure FDA0002283076010000031
实验车辆的车辆质量、车轮半径、行驶的车速能够通过简单的直接测量方法得到,变速箱和主减速器的齿轮速比能够通过查阅资料得到;
假设公式1-1中,迎风面积、风阻系数、滚动阻力系数的数值符合实际情况,则此时车辆的驱动力Ttq等于实际等速实验中采集的发动机或发电机的扭矩值;
即得到公式1-2
T=Ttq 1-2
公式1-2中,T为发动机或发电机的输出扭矩值数据;
当需要校准的是车辆的旋转质量换算系数δm则使用车辆滑行实验的数据,在滑行实验中,车辆在水平、无风的道路进行,预先行驶到一定车速,之后松开油门,依靠惯性驱动车辆前进,此时车辆的发动机或发电机扭矩Ttq为0,车辆的车速V已经在实验中采集,而加速度则能够通过车速对时间进行微分求得,公式1-1能够简化为公式1-3:
Figure FDA0002283076010000042
如输入模型的旋转质量换算系数δm与实车测试时保持一致,则加速度
Figure FDA0002283076010000043
与实车测试时测试的结果相同,即仿真的加速度变化曲线D2与实际的加速度变化曲线D1吻合。
4.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤2中,当有一组风阻系数、迎风面积、滚动阻力系数满足实际情况,则扭矩值大小与仿真结果的扭矩值大小相接近。
5.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤3中,当迎风面积、风阻系数、滚动阻力系数多个整车参数都为未知,则其推导出的参数数值与实际参数值趋于一致。
6.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤3中,仿真完毕后,分析仿真结果,将车辆在该等速工况下运行的扭矩变化曲线L2或将车辆在滑行工况下运行的加速度变化曲线D2进行解析取出与实际扭矩变化曲线或实际车辆加速度变化曲线进行对比。
7.根据权利要求1所述的一种整车参数校准方法,其特征在于,所述步骤3中,在得到了风阻系数、迎风面积和滚动阻力系数之后,再带入车辆的滑行仿真工况,将加速度变化曲线D2与实际采集的加速度变化曲线D1做差,所得插值曲线做标准差,所得最小的标准差为旋转质量换算系数δm与实际车辆相吻合。
CN201711407767.6A 2017-12-22 2017-12-22 一种整车参数校准方法 Active CN108152050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711407767.6A CN108152050B (zh) 2017-12-22 2017-12-22 一种整车参数校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711407767.6A CN108152050B (zh) 2017-12-22 2017-12-22 一种整车参数校准方法

Publications (2)

Publication Number Publication Date
CN108152050A CN108152050A (zh) 2018-06-12
CN108152050B true CN108152050B (zh) 2020-02-14

Family

ID=62465383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711407767.6A Active CN108152050B (zh) 2017-12-22 2017-12-22 一种整车参数校准方法

Country Status (1)

Country Link
CN (1) CN108152050B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891133A (zh) * 2020-06-29 2020-11-06 东风商用车有限公司 一种适配多种路况的整车质量估算方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271702B (zh) * 2018-09-11 2023-04-07 贵州大学 工程车发动机与液力变矩器逆向匹配的优化方法
CN109522673B (zh) * 2018-11-30 2024-06-04 百度在线网络技术(北京)有限公司 一种测试方法、装置、设备和存储介质
CN110598234A (zh) * 2019-05-07 2019-12-20 重庆长安汽车股份有限公司 车辆动力学模型参数校准方法
CN110321588B (zh) * 2019-05-10 2023-04-07 中车青岛四方车辆研究所有限公司 基于数值模拟的轨道车辆空气阻力计算方法
CN112394755B (zh) * 2020-11-03 2022-03-15 武汉格罗夫氢能汽车有限公司 一种氢燃料电池车的怠速扭矩匹配方法
CN113449386B (zh) * 2021-08-30 2021-12-07 肇庆小鹏新能源投资有限公司 云计算的数据处理方法及装置、电子设备及介质
CN113449385B (zh) * 2021-08-30 2021-12-07 肇庆小鹏新能源投资有限公司 云计算的数据处理方法及装置、电子设备及介质
CN113449388B (zh) * 2021-08-30 2021-12-07 肇庆小鹏新能源投资有限公司 云计算的数据处理方法及装置、电子设备及介质
CN113884314B (zh) * 2021-10-19 2024-01-30 湖南行必达网联科技有限公司 一种动力性能结果校准方法
CN114019799B (zh) * 2021-11-06 2023-10-13 易如(山东)智能科技有限公司 基于多目标遗传算法优化拖拉机燃油经济及动力性的方法
CN114970219B (zh) * 2022-08-01 2022-11-29 江铃汽车股份有限公司 一种柔性连接加速度传感器数据采集方法及系统
CN116124270B (zh) * 2023-04-18 2023-06-16 深圳亿维锐创科技股份有限公司 一种动态汽车衡自动智能化校准方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496237B2 (ja) * 2012-03-26 2014-05-21 三菱電機株式会社 変速機制御装置
JP2013203097A (ja) * 2012-03-27 2013-10-07 Nissan Motor Co Ltd 車体制振制御装置
CN103135525B (zh) * 2013-01-11 2015-12-09 北奔铁马重型汽车研发(北京)有限公司 一种整车参数配置方法
CN106052934B (zh) * 2016-05-13 2019-02-05 中国电器科学研究院有限公司 一种车辆运行状况参数间接测量装置及标定方法
CN107100993B (zh) * 2017-05-08 2018-10-02 合肥工业大学 一种车辆质量与坡道坡度识别的自动变速换挡修正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891133A (zh) * 2020-06-29 2020-11-06 东风商用车有限公司 一种适配多种路况的整车质量估算方法及系统

Also Published As

Publication number Publication date
CN108152050A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN108152050B (zh) 一种整车参数校准方法
CN108414244B (zh) 一种电动汽车动力总成实车模拟试验台架及其试验方法
CN103308325B (zh) 电动汽车驱动系统半实物仿真平台
EP2950074B1 (en) Vehicle test system, test condition data generation apparatus, test condition data generation program, and vehicle test method
EP2947448B1 (en) Vehicle testing system
JP6549892B2 (ja) 車両試験システム、試験管理装置、試験管理プログラム及び車両試験方法
CN108871788B (zh) 一种自动变速器换挡品质测试台架的校验方法
CN102788704B (zh) 基于驾驶员模型的汽车操纵稳定性检测系统及检测方法
CN108918161B (zh) 一种测试标定系统及控制方法
CN110926833A (zh) 一种电动汽车试验系统及试验方法
CN104316333B (zh) 一种助力自行车中置系统的测试系统
CN112051076B (zh) 新能源汽车动力总成路谱加载试验方法
CN103344442A (zh) 一种混合动力系统试验台及其工作方法
CN104849065A (zh) 一种车辆山路模拟试验方法及试验设备
CN108020421A (zh) 发动机整车试验方法、装置及发动机台架
CN106872827A (zh) 一种电动车的电传动机构动态测试系统和方法
CN100419402C (zh) 汽车底盘测功机系统
CN103134683A (zh) 室内进行车辆发动机排气制动测试的系统和方法
CN115855529A (zh) 一种基于底盘测功机和环境仓的热管理试验方法及系统
CN114943116A (zh) 一种基于混动变速器的台架试验载荷谱生成方法
CN112763909B (zh) 一种车用驱动电机联合工况测试方法及系统
CN109657393A (zh) 用于轮胎与底盘电控系统匹配的仿真平台及匹配仿真方法
CN116702096B (zh) 车辆高原环境道路滑行阻力测算方法及装置
CN109426691B (zh) 车辆运动部件仿真方法及仿真系统
CN104697790B (zh) 汽车自动变速器p挡驻车临界驻入车速试验测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211210

Address after: 475000 No. 166, north of 310 National Road, Wangtun Township, yuwangtai District, Kaifeng City, Henan Province

Patentee after: Henan yuebo Hydrogen Power System Research Institute Co.,Ltd.

Address before: 210019 410 4 East Street, Jialing River, Jianye District, Nanjing, Jiangsu, 4

Patentee before: NANJING YUEBOO POWER SYSTEM Co.,Ltd.