CN108136401B - 热控设备及其使用方法 - Google Patents

热控设备及其使用方法 Download PDF

Info

Publication number
CN108136401B
CN108136401B CN201680052768.0A CN201680052768A CN108136401B CN 108136401 B CN108136401 B CN 108136401B CN 201680052768 A CN201680052768 A CN 201680052768A CN 108136401 B CN108136401 B CN 108136401B
Authority
CN
China
Prior art keywords
thermal
thermoelectric cooler
temperature
active face
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680052768.0A
Other languages
English (en)
Other versions
CN108136401A (zh
Inventor
大卫·弗洛姆
潘天
马修·皮奇尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cepheid
Original Assignee
Cepheid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cepheid filed Critical Cepheid
Priority to CN202110588690.7A priority Critical patent/CN113275057B/zh
Publication of CN108136401A publication Critical patent/CN108136401A/zh
Application granted granted Critical
Publication of CN108136401B publication Critical patent/CN108136401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Control Of Temperature (AREA)

Abstract

本文提供了适合提供温度循环中提高的控制和效率的热控设备。此类热控设备可包括与另一个热操控设备协同控制的热电冷却器以控制热电冷却器的相对面和/或微环境。一些此类热控设备包括由热电容器分隔的第一和第二热电冷却器。热控设备可以被配置于平面配置,所述平面配置具有用于与样品分析仪的平面反应容器热耦合的工具,其用于反应容器中的流体样品的聚合酶链式反应中的热循环。还提供了使用此类热控设备进行热循环的方法。

Description

热控设备及其使用方法
相关申请的交叉引用
本申请要求2015年7月23日提交的题为“Thermal Control Device and Methodsof Use”的美国临时专利申请第62/196,267号的优先权权益,其全部内容通过引用并入本文。
本申请大体涉及2013年3月15日提交的题为“Honeycomb tube”的美国专利申请第13/843,739号;2002年1月25日提交的题为“Fluid Processing and Control”的美国专利第8,048,386号;以及2000年8月25日提交的题为“Fluid Control and ProcessingSystem”的美国专利第6,374,684号;其每一个出于所有目的通过引用整体并入本文。
背景技术
本发明大体涉及热控设备,尤其是用于在核酸分析中热循环的设备、系统和方法。
各种生物测试程序需要热循环经由热交换促进化学反应。此类程序的一个实例是用于DNA扩增的聚合酶链式反应(PCR)。另外的实例包括快速-PCR、连接酶链式反应(LCR)、自我持续序列复制、酶动力学研究、匀质配体结合测定和需要复杂温度变化的复杂生化机理研究。
此类程序需要可准确地升高和精确且快速地降低样品温度的系统。常见的系统通常使用冷却设备(如风扇),其占用大量的物理空间并需要大量的电力来提供所需的性能(即,快速温降)。基于风扇的冷却系统有启动滞后时间和停机重叠的问题,即它们将在关闭后会起作用,因此不会像数字般的快速精确运行。例如,离心风机将在打开时不会立即以完全容积容量(volumetric capability)吹扫,并且还将在关闭电源后也会继续旋转,因此,在测试中必须考虑执行的重叠时间。此类滞后和重叠问题随着设备年龄而变得更加严重。
基于风扇的冷却系统通常提供了成本低、性能相对可接受且易于实施的系统,因此几乎没有为业界提供动力来解决这些问题。迄今为止的答案是并入具有更佳容量输出速率的更强大的风扇,这也增加了空间和功率要求。这样做的一个代价是对现场测试系统的可移植性产生负面影响,其可用于例如快速检测偏远地区的病毒/细菌暴发。另一个问题是,这种方法在高温环境下不太成功,诸如在热带地区可能会存在问题。因此,所未解决的需要是解决生物测试系统中已知的加热/冷却设备的缺陷。
热循环通常是大多数核酸扩增方法的一个基本方面,其中流体样品的温度在较低的退火温度(如60度)和较高的变性温度(如95度)之间循环多达五十次。这种热循环通常使用较大的热质量(如铝块)以加热流体样品和风扇以冷却流体样品来进行。由于铝块的热质量很大,加热和冷却速率限制在约1℃/秒,因此50个循环的PCR过程可能需要两个或更多个小时才能完成。在环境温度可能升高的热带气候中,冷却速率可能受到不利影响,从而延长热循环的时间,例如从2小时至6小时。
一些商业仪器提供5℃/秒数量级的加热速率,而冷却速率显著更小。由于这些相对较低的加热和冷却速率,已经观察到一些过程,诸如PCR可能变得低效和无效。例如,反应可能发生在中等温度,产生不想要的和干扰性的DNA产物,诸如"引物二聚体"或异常扩增子,以及消耗用于预期的PCR反应所必需的试剂。当在非均匀的温度环境中进行时,其它过程(诸如配体结合或其它生化反应)类似地经历对分析方法有潜在危害的副反应和产物。
对于PCR和其它化学检测方法的一些应用,经测试的样品流体体积可能对热循环产生重大影响。
核酸扩增过程和类似的生化反应过程的优化通常需要快速的加热和冷却速率,以便尽可能快地达到所需的最佳反应温度。当在高温环境中(诸如设施可能通常存在于缺乏气候控制的热带气候中)进行热循环时,这可能是特别具有挑战性的。此类条件可能导致更长的热循环时间,具有更少的特定结果(即更多的不期望的副反应)。因此,对于不依赖于周围环境且可以低成本和最小尺寸产生以包含在诊断设备中的具有较高的加热和冷却速率的热控设备,存在未满足的需求。还需要能在现代系统的速度、准确度和精确度的要求范围内,更好地控制反应室内的温度循环的热控设备。
发明简述
本发明涉及生物反应容器的以提高的控制、速度和效率来进行热循环的热控设备。在第一方面,热控设备包括第一热电冷却器,所述第一热电冷却器具有主动面(activeface)和基准面(reference face);第二热电冷却器,所述第二热电冷却器具有主动面和基准面;以及热电容器,其设置在第一和第二热电冷却器之间,使得第一热电冷却器的基准面通过热电容器与第二热电冷却器的主动面热耦合。在一些实施方案中,热控设备包括可操作地耦合至第一和第二热电冷却器中的每一个的控制器,所述控制器经配置以操作与第一热电冷却器并行的第二热电冷却器,使得当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时,提高第一热电冷却器的操作速度和效率。
在一些实施方案中,热中介层(thermal interposer)定位于第一与第二热电冷却器设备之间,以及在一些实施方案中,热中介层用作热电容器。在一些实施方案中,热控设备包括热电容器,所述热电容器由具有足够质量的热导材料形成以储存足够热能进而在热循环期间促进增加的流体样品的加热和冷却速率。在一些实施方案中,热电容器包含具有比第一和第二热电冷却器的主动面和/或基准面的热质量更高的热质量的材料,其在一些实施方案中由陶瓷材料形成。在一些实施方案中,热电容器由厚度为约10mm或更小(如约10、9、8、7、6、5、4、3、2或1mm或更小)的铜层形成。该配置允许相对薄的平面构成的热控设备,以适合与减小尺寸的核酸分析设备中的平面反应容器一起使用。
在一些实施方案中,热控设备包括第一温度传感器,其适合感测第一热电冷却器的主动面的温度;和第二温度传感器,其适合感测热电容器的温度。在一些实施方案中,第一和第二温度传感器与控制器耦合,使得第一和第二热电冷却器的操作至少部分地分别基于从第一和第二温度传感器至控制器的输入。在一些实施方案中,将第二温度传感器嵌入热电容器的热导材料或至少与热电容器的热导材料热接触。可以理解的是,在本文所述的任何实施方案中,可将温度传感器设置在各个其它位置,只要传感器与相应的层足够热接触以感测该层的温度即可。
在一些实施方案中,热控设备包括控制器,所述控制器经配置具有初级控制回路(其中提供有第一温度传感器的输入)和次级控制回路(其中提供有第二温度传感器的输入)。控制器可经配置使得初级控制回路的带宽响应比次级控制回路的带宽响应在定时时(timed)更快(或更慢)。通常,初级和次级控制回路两者都是闭合回路。在一些实施方案中,使控制回路串联连接(与并联相反)。在一些实施方案中,控制器经配置在加热循环(其中将第一热电冷却器的主动面加热至升高的目标温度)与冷却循环(其中将第一热电冷却器的主动面冷却至降低的目标温度)之间循环。控制器可经配置使得次级控制回路使第二热电冷却器在加热与冷却模式之间切换,之后使第一控制回路在加热与冷却之间切换以热加载热电容器。在一些实施方案中,次级控制回路将热电容器的温度维持在与第一热电冷却器的主动面的温度的约40℃内。在一些实施方案中,次级控制回路将热电容器的温度维持在与第一热电冷却器的主动面的温度相差约5、10、15、20、25、30、35、40、45或50℃内。控制器可经配置使得通过第二热电冷却器的操作来维持第一热电冷却器的效率,从而使得第一热电冷却器的主动面加热和冷却以约10℃/秒的缓变率发生。可用本发明实现的非限制性的示例性缓变率包括20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、3、2或1℃/秒。在一些实施方案中,升高的目标温度是约90℃或更大且降低的目标温度是约40℃或更小。在一些实施方案中,降低的目标温度在约40℃至约75℃的范围内。在一些实施方案中,降低的目标温度是约45、50、55、60、65或约70℃。
在一些实施方案中,热控设备还包括与第二热电冷却器的基准面耦合的散热器以防止循环期间的热逃逸。热控设备可经构造为大体的平面配置且经定尺寸以对应于样品分析设备中的反应容器管的平面部分。在一些实施方案中,平面尺寸具有约45mm或更小的长度和约20mm或更小的宽度,或约40mm×约12.5mm、诸如约11mm×13mm长,以适合与PCR分析设备中的反应容器一起使用。大体的平面配置可经配置且经定尺寸以具有约20mm或更小的自第一热电冷却器的主动面至散热器的相对表面侧的厚度。有利地,在一些实施方案中,热控设备可适合与反应容器接合以用于在其单侧上的反应容器的热循环,进而允许在热循环期间从反应容器的相对侧光学检测目标分析物。在一些实施方案中,使用两个热控设备以加热反应容器的相对平面侧。在于反应容器的相对侧上使用两个热控设备(如两侧加热)的一些实施方案中,通过穿过反应容器的镜墙(minor walls)传输和接收光能来进行光学检测,从而允许同时对反应容器加热和光学询问(optical interrogation)。
在一些实施方案中,本文提供了控制温度的方法。此类方法包括以下步骤:操作具有主动面和基准面的第一热电冷却器以从初始温度加热和/或冷却主动面至目标温度;和操作第二热电冷却器(具有主动面和基准面),以便提高当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时第一热电冷却器的效率,所述第二热电冷却器的主动面通过热电容器热耦合至第一热电冷却器的基准面。此类方法还可包括以下步骤:操作第一热电冷却器,其包括操作具有来自第一热电冷却器的主动面处的温度传感器的温度输入的初级控制回路,和操作第二热电冷却器,其包括操作具有来自在热电容器内的温度传感器的温度输入的次级控制回路。在一些实施方案中,该方法还包括:在加热模式(其中将第一热电设备的主动面加热至升高的目标温度)与冷却模式(其中将主动面冷却至降低的目标温度)之间循环;和储存来自热电容器中的加热与冷却模式之间的热波动的热能,所述热电容器包括具有分别相较于第一和第二热电冷却设备的主动面和基准面增加的热导性的层。
本发明的一些实施方案提供了在热循环反应中控制温度的方法。例如,在一些实施方案中,本发明提供与第一热电设备的加热模式与冷却模式之间的循环并行的第二热电设备的加热模式与冷却模式之间的循环,从而维持循环期间第一热电设备的效率。在一些实施方案中,控制器经配置使得用于第一热电设备的初级控制回路的带宽响应比用于第二热电设备的次级控制回路的带宽响应更快。控制器可经进一步配置使得通过控制器将循环定时以使在将第一热电设备在模式之间切换之前,将第二热电设备在模式之间切换,使得热加载热电容器。在一些应用中,升高的目标温度是约90℃或更大,且降低的目标温度是约75℃或更小。
在一些实施方案中,控制温度的方法还包括:通过在第一热电冷却器的循环期间,通过第二热电冷却器的受控操作,将热电容器的温度维持在与第一热电冷却器的主动面的温度相差约40℃内以维持循环期间第一热电冷却器的效率。在一些实施方案中,通过第二热电冷却器的操作维持第一热电冷却器的效率,使得用第一热电冷却器的主动面以10℃/秒内或更小的缓变率进行加热和/或冷却。此类方法还可包括:在第一和第二热电冷却器进行热循环期间,操作与第二热电冷却器的基准面耦合的散热器以防止热逃逸。
在一些实施方案中,本文提供了用于在聚合酶链式反应过程中热循环的方法。此类方法可包括以下步骤:使热控设备与用于进行聚合酶链式反应以扩增流体样品中所含的目标多核苷酸的其中含有流体样品的反应容器接合,使得第一热电冷却器的主动面热接合反应容器;以及根据特定方案热循环热控设备以在PCR过程期间加热和冷却流体样品。在一些实施方案中,使热控设备与反应容器接合包括,使第一热电冷却器的主动面抵靠反应容器的一侧接合,使得相对侧保持不被热设备覆盖以允许从相对侧进行光学检测。在一些实施方案中,加热模式和冷却模式中的每一个具有一个或多个操作参数,其中所述一个或多个操作参数在加热与冷却模式之间不对称。例如,加热模式和冷却模式中的每一个具有带宽和回路增益,其中加热模式和冷却模式的带宽和回路增益是不同的。
在一些实施方案中,提供了使用热控设备控制温度的方法。此类方法包括以下步骤:向热控设备的第一和第二热电冷却器之间提供热电容器,其中第一和第二热电冷却器中的每一个都具有主动面和基准面;加热主动面;冷却主动面;加热基准面;和冷却基准面。在一些实施方案中,每个主动加热面和每个主动冷却面都由一个或多个操作参数控制。在一些实施方案中,一个或多个操作参数的量值在加热主动面期间相较于冷却主动面期间是不同的。
在包括第一和第二热电冷却器的所述实施方案的任一个中,第二热电冷却器可被热操控设备替代。此类热操控设备包括加热器、冷却器或任一种适用于调节温度的工具。在一些实施方案中,热操控设备被包含在与第一热电冷却器共同的微环境中,使得热操控设备的操作相对于环境温度改变微环境温度。在此方面,设备改变周边环境以允许第一热电冷却器在第一温度(如60-70℃之间的扩增温度)与第二更高的温度(如约95℃的变性温度)之间循环,从而在这些温度之间尽可能快地循环。如果第一和第二温度均高于真正的环境温度,对于微环境内的第二热源(如热电冷却器或加热器)更高效的是升高微环境内的温度以高于环境温度。或者,如果环境温度超过第二更高的温度,热操控设备可将微环境冷却至理想温度以允许更有效地在第一与第二温度之间快速循环。在一些实施方案中,微环境包括在第一热电设备与热操控设备之间的热中介层。
在一些实施方案中,热控设备包括具有主动面和基准面的第一热电冷却器、热操控设备和可操作地耦合至第一热电冷却器和热操控设备中的每一个的控制器。控制器可经配置与热操控设备协同地操作第一热电冷却器以当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时,提高第一热电冷却器的效率。热操控设备可包括热阻加热元件或第二热电冷却器或任一种适用于调节温度的工具。
在一些实施方案中,热控设备还包括一个或多个温度传感器,其与控制器耦合且沿着或靠近第一热电冷却器、热操控设备和/或第一热电冷却器和热操控设备共同的微环境进行设置。热操控设备可通过分析设备内限定的微环境(其可包括热电容器)与第一热电冷却器热耦合,在所述分析设备内设置热操控设备,使得可依分析设备外部的环境温度控制和调节微环境的温度。
在一些实施方案中,热控设备包括与热电冷却器和热操控设备中的每一个耦合的控制器,其经配置以控制温度,使得控制与热控设备热连通的反应容器的室中的温度。在一些实施方案中,控制器经配置以基于反应容器内的原位反应室温度的热模拟来操作第一热电冷却器。热模拟可实时进行,且可根据模型的准确度利用卡尔曼滤波(Kalmanfiltering)。
在一些实施方案中,热控设备设置在分析设备内且经定位以与设置在分析设备内的样品盒的反应容器热连通。控制器可经配置在反应容器室内于聚合酶链式反应过程中进行热循环。
在一些实施方案中,热控设备包括具有主动面和基准面的第一热电冷却器、热操控设备、设置在第一热电冷却器与热操控设备之间的热中介层,使得第一热电冷却器的基准面通过热中介层与热操控设备热耦合,且第一温度传感器适合感测第一热电冷却器的主动面的温度。该设备还可包括可操作地耦合至第一热电冷却器和热操控设备中的每一个的控制器。控制器可经配置以与第一热电冷却器协同地操作热操控设备,以便当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时,提高第一热电冷却器的速度和效率。在一些实施方案中,控制器经配置具有闭合控制回路,所述闭合控制回路具有基于热模型的预测温度的反馈输入,其包括来自第一温度传感器的输入。
附图简述
图1A-1B提供了样品分析系统的概略图,其包括具有反应容器的样品盒和热控设备,根据本发明的一些实施方案,所述热控设备被配置为适合用于与反应容器耦合的可移除模块。
图2说明了根据本发明的一些实施方案的热控设备的示意图。
图3显示了根据本发明的一些实施方案的热控设备的原型。
图4A-4B显示了多孔样品反应容器的平面区域,其适合与本发明的一些实施方案一起使用,且可根据本发明的一些实施方案配置用于其的热控设备模块。
图5显示了根据本发明的一些实施方案的热控设备原型的CAD模型。
图6显示了用于与根据本发明的一些实施方案的反应容器耦合的热控设备的夹紧固定装置。
图7显示了根据本发明的一些实施方案的闭合回路控制下的热循环。
图8显示了根据本发明的一些实施方案的PCR热循环的整个范围内的十个连续热循环。
图9显示了热循环开始时以及两天连续热循环之后的五个循环的热循环性能。
图10显示了根据本发明的一些实施方案的控制回路中所用的设定点的图解。
图11显示了根据本发明的一些实施方案的控制回路中所用的设定点的图解。
图12显示了在由根据本发明的一些实施方案的热模型控制的热循环期间的输入和经测量的温度值的图。
图13-15显示了根据本发明的一些实施方案的控制热循环的方法。
发明详述
本发明通常涉及用于控制化学反应中的热循环的系统、设备和方法,尤其是适合用于控制核酸扩增反应中的热循环的热控设备模块。
在第一方面,本发明提供了热控设备,所述热控设备提供了提高的热循环控制和效率。在一些实施方案中,此类热控设备可经配置以进行用于反应容器中的流体样品的聚合酶链式反应的热循环。此类设备可包括经定位与反应容器直接接触或与反应容器紧密相邻的至少一个热电冷却器,使得热电冷却器的主动面的温度配置对应于反应容器内流体样品的温度。该方法假定有足够的热传导时间用于平衡反应容器内的流体样品的温度。此类经改良的热控设备可用于替代现存的热控设备并从而提供进行常见热循环程序的经改良的控制、速度和效率。
在第二方面,由本文所述的热控设备提供的经改良的控制和效率允许此类设备经配置以进行经优化的热循环程序。在一些实施方案中,此类热控设备可经配置进行热循环,其利用反应容器室内的温度的热模型以进行反应容器中的流体样品的聚合酶链式反应。可在热控设备的控制器内实施该热模拟。此类热模拟可利用基于理论值和/或经验值的模型或可利用实时模拟。此类模拟还可使用卡尔曼滤波以提供更准确的反应容器内温度估值。该方法允许比常见的热循环程序更快速且更高效地进行热循环。
以上热循环方法中的任一种可由本文所述的热控设备实施。在一些实施方案中,热控设备利用具有与生物样品分析设备内的反应容器热接合的主动面的第一热电冷却器,并利用另一热操控设备(如第二热电冷却器、加热器、冷却器)以控制第一热电冷却器的相对基准面的温度。在一些实施方案中,热控设备包括第一和第二热电冷却器,所述第一和第二热电冷却器通过具有足够的热导性和热质量的热电容器热耦合以转移和储存热能使得减少在加热与冷却之间切换的时间,从而提供更快且更高效的热循环。在一些实施方案中,设备利用第一热电冷却器设备内的热敏电阻器和热电容器层内的另一热敏电阻器,并且分别基于第一和第二热敏电阻器的温度来使用第一和第二闭合控制回路进行操作。为了利用热电容器层中储存的热能,第二控制回路可配置为领先于或滞后于第一控制回路。通过使用本文所述的这些方面中的一个或多个,本发明的实施方案提供更快、更强的热控设备用于进行快速热循环,优选在约2小时或更小内,甚至在上述存在问题的高温环境中。
I.示例性系统综述
A.生物样品分析设备
在一些实施方案中,本发明涉及热控设备,其适合与样品分析设备中的反应容器一起使用且配置为控制用于进行核酸扩增反应的反应容器中的热循环。在一些实施方案中,将热控设备配置为可移除的模块,所述可移除的模块与反应容器耦合和/或与反应容器维持接触以允许如特定分析所需的热循环,例如从而允许设置在反应容器内的流体样品中的目标分析物的扩增。在一些实施方案中,热控设备具有平面配置,并且经定尺寸和经尺寸设定以对应于需要热循环的反应容器的平面部分。在一些实施方案中,热控设备包括耦合部分或结构,通过所述耦合部分或结构将热控设备维持与反应容器的至少一侧接触和/或与反应容器的至少一侧紧密相邻,从而促进其中所含的流体样品的加热和冷却。在其它实施方案中,将热控设备通过固定装置或其它设施固定在适当位置以控制反应容器内的热循环。例如,可将热控设备附加在其中放置有一次性样品盒的样品分析设备内,使得当样品盒处于用于进行针对目标分析物的测试的适当位置时,热控设备处于用于控制其中的热循环的适当位置。
在一些实施方案中,将热控设备配置为可移除的模块,所述可移除的模块可与从经配置用于检测核酸扩增测试(NAAT)(如聚合酶链式反应(PCR)测定)中的核酸目标的样品分析盒延伸的反应容器或管耦合。在此类盒中,流体样品的制备通常涉及一系列处理步骤,其可包括根据特定方案的化学、电学、机械学、热学、光学或声学处理步骤。此类步骤可用于进行各种样品制备功能,诸如细胞捕获、细胞裂解、纯化、分析物的结合和/或非所需材料的结合。此类样品处理盒可包括适用于进行样品制备步骤的一个或多个室。适合与本发明一起使用的样品盒示于且描述于2000年8月25日提交的标题为“Fluid Control andProcessing System”的美国专利第6,374,684号以及2002年2月25日提交的标题为“FluidProcessing and Control”的美国专利第8,048,386号中,其全部内容出于所有目的通过引用整体并入本文。
在一个方面,将热控设备配置为与包括反应容器的一次性测定盒一起使用。在一些实施方案中,热控设备经配置与促进复杂的液流管理和处理任务的非仪器化的一次性组件一起使用。该包括反应容器的一次性组件(assemply)实现复杂但又协调的混合、裂解和多路递送试剂盒样品至最终检测终点(反应容器中的室)。在该反应室中进行错综复杂的生化过程,使得维持准确的环境条件对于使反应成功和高效是至关重要的。对于PCR和rtPCR反应尤其重要的是快速且准确地循环温度,且在反应位点处无物理传感器的情况下如此做证明是具有挑战性的(如果不是不可能的话)。当前方法使用来自位于附近的温度传感器的温度偏移量(刻度)以估计反应室内的温度是多少。这种方法有相当多的缺点。即使在温度传感器与反应容器之间存在小的物理分离,偏移量也是在稳定状态下确定的,并且由于热系统的物理动力学加上反应的快速温度循环时间,大多数反应从来没有达到真正的稳定状态。因此,从未真正知道反应容器内的温度。为了应对这一挑战,目前的方法通常通过连续地迭代热条件直到成功来优化热循环,以找到“理想的”反应温度和热设定点保持时间。这个过程非常繁琐,并且由于测定的设计者从未真正知道测定期间的实际反应室温度是多少,所以经优化的测定性能可能永远不会实现。这个过程通常会导致设定点保持时间超过确保流体样品的温度达到所需温度所必需的时间。
热模拟是一种不同的方法,且可通过使用本文所述的改良的热控设备在分析系统内实施。模拟允许准确且精确地实时预测原位反应室温度。此外,热模拟也阐明动力学,其可用于更好地控制速度(循环时间)并为今后的测定发展所使用的更强大的系统奠定基础。更重要的是,这些模型可以被验证和调整,以准确地反映真实世界的温度,如同该反应室用物理传感器实际上被仪器化一样。最后,热模拟可考虑环境温度的变化,这在未考虑高(或低)环境温度对反应室温度的影响的定点照护系统部署中是至关重要的。因此,测定的设计者可以确保反应室内的温度将始终精确地控制在所需的水平。
卡尔曼滤波是一种控制方法,其可以通过使用系统模型、离线获取的测量数据(如系统元件的效率、材料特性、适当的输入功率等)以及实时测量的温度来获得最佳估值。本质上,该算法采用模型预测其所有状态(如温度),并结合现实世界的测量状态(如一个或多个温度传感器)。适当的模型也考虑到这些测量(传感器)中的噪声和固有过程中的噪声。该算法采用所有这些信息并应用动态加权方法,所述动态加权方法利用对测量结果的模型预测,或反之亦然,这取决于如何将当前测量值与之前的值进行比较。为了使用卡尔曼算法(Kalman algorithms)进行最佳预测,模型必须是物理系统的准确表现。
图1A显示了示例性样品分析设备100,其用于测试在设备100内所容纳的一次性样品盒110内制备的流体样品中的目标分析物。该盒包括反应容器20,通过所述反应容器20,经制备的流体样品流动以在目标分析物的PCR分析期间用于扩增、激发和光学检测。在一些实施方案中,反应容器可以包括多个单独的反应孔和/或附加室,诸如,如图4B所示的预扩增室(pre-amp chamber)。该系统还包括经设置与反应容器20相邻的热控设备10,用于控制在分析期间其中的流体样品的热循环。图1B说明了热控设备10作为可移除的模块,所述可移除的模块允许热控设备10可以在后续的分析中的其它样品盒上使用。可将热控设备10配置为与样品分析设备100内的电触点连接,以便在热循环期间给热控设备供电。
在一些实施方案中,热控设备可经配置与反应容器一起使用,如图4A-4B中所示的反应容器,其说明了示例性样品处理盒110和允许在样品处理设备100内进行样品制备和分析的相关的反应容器20,所述样品处理设备100进行样品制备以及分析物检测和分析。如在图4A中可见,示例性样品处理盒110包括各种组件,其包括具有一个或多个用于样品制备的室的主壳体,其中附接有反应容器20(如图4B所示)。在组装样品处理盒110和反应容器20(如图4A所示)之后,将流体样品放置于盒的室内,并且将盒插入到样品分析设备中。然后设备实施进行样品制备所需的处理步骤,并且将制备的样品通过一对传送口中的一个转移至附接于盒壳体的反应容器的流体导管中。制备的流体样品被输送至反应容器20的室内,使用激发工具和光学检测工具以光学感测感兴趣的一种或多种目标核酸分析物(如细菌、病毒、病原体、毒素或其它目标)的存在或不存在。应理解,此类反应容器可包括各种区分室(differing chambers)、导管、处理区和/或微孔以用于检测一种或多种目标分析物。此类反应容器用于分析流体样品的示例性用途描述于2000年5月30日提交的标题为“Cartridgefor Conducting a Chemical Reaction”的共同转让的美国专利申请第6,818,185号中,其全部内容出于所有目的通过引用并入本文。
适合与本发明一起使用的非限制性示例性核酸扩增方法包括聚合酶链式反应(PCR)、逆转录酶PCR(RT-PCR)、连接酶链式反应(LCR)、转录介导的扩增(TMA)和核酸序列基扩增(NASBA)。适合与本发明一起使用的另外的核酸测试是本领域技术人员熟知的。流体样品的分析通常涉及一系列步骤,其可包括根据特定方案的光学或化学检测。在一些实施方案中,第二样品处理设备可用于进行涉及美国专利申请第6,818,185号中描述的目标的分析和检测的方面中的任一个,所述美国专利申请第6,818,185号先前已引用并且通过引用以其整体并入本文。
B.热控设备
在一个方面,本发明提供了热控设备,其适合提供提高的温度控制同时也提供快速且高效的在至少两个不同的温度区之间的循环。此类热控设备可包括热电冷却器,其与另一个热操控设备被协同地控制。热操控设备可包括加热器、冷却器、另一个热电冷却器或任何适用于修改温度的工具。在一些实施方案中,该设备包括使用透明的绝缘材料以允许通过设备的绝缘部分进行光学检测。热控设备还可包括使用一个或多个热传感器(如热电偶)、热电容器、热缓冲器、热绝缘体或这些元件的任何组合。在一些实施方案中,热操控设备包括热电阻加热器。在一些实施方案中,热控设备适合用于反应容器(vesel)的一侧加热,而在其它实施方案中,该设备适合用于两侧加热(如相对主要面)。应理解,本文描述的任何特征可以适用于任一种方法,并且不限于描述特征的特定实施方案。
在一些实施方案中,根据本发明的实施方案的热控设备包括由热电容器分开的第一热电冷却器和第二热电冷却器。热电容器包含具有足够的热导性和热质量以传导且储存热能的材料,以便当在用第一和第二热电冷却器进行加热与冷却循环之间切换时,提高加热和/或冷却的效率和速度。在一些实施方案中,第一和第二热电冷却器中的每一个都具有主动面和基准面,并将热电容器设置在第一与第二热电冷却器之间,使得热电冷却器的基准面通过热电容器与第二热电冷却器的主动面热耦合。在一些实施方案中,热电容器与第一和第二热电冷却器中的每一个直接接触。
在一些实施方案中,热控设备包括控制器,所述控制器可操作地耦合至第一和第二热电冷却器中的每一个以便并行地操作第一和第二热电冷却器,进而维持和/或提高热循环期间的第一热电冷却器的效率。此类热循环包括从初始温度加热主动面到所需的目标温度和/或从初始温度冷却主动面到更低的所需的目标温度。
在一些实施方案中,热电容器包括具有足够的热质量和热导性的材料层以充足地吸收和储存热能进而提高第一热电冷却器的效率,以便当用第一热电冷却器加热和/或冷却时且尤其当在热循环期间的加热与冷却之间切换时维持或提高效率。在一些实施方案中,热电容器层比第一和第二热电冷却器中的任一个都薄,且具有比第一或第二热电冷却器的任一个更高的热质量/单位厚度。例如,热电容器可包含金属,例如铜,其相较于第一和第二热电冷却器的陶瓷层具有足够的热导性和更高的热质量/单位厚度。尽管更厚、更低的热质量材料可以用作热传导层,但是相对于热电容器层使用热质量更高的材料是有利的,因为它允许整个热控设备具有适合的尺寸和厚度以供与减小尺寸的化学分析系统一起使用。铜尤其可用作热电容器,因为它具有相对高的热导性和相对高的热质量以允许热电容器层储存热能。在一些实施方案中,铜层的厚度为约5mm或更小,通常为约1mm或更小。适合与本发明一起用作热电容器的非限制性示例性材料包括:铝、银、金、钢、铁、锌、钴、黄铜、镍以及各种非金属选项(如石墨、高传导性碳、传导性陶瓷)。适用与本发明一起使用的其它材料对于本领域技术人员而言是熟知的。
在一些实施方案中,热控设备包括第一热电冷却器和热操控设备,所述热操控设备包括热电阻加热元件。应理解,该热操控设备可以替代在本文任一个实施方案中所描述的第二热电冷却器设备。
II.热控设备原型
本节描述和总结了根据本发明的一些实施方案的非限制性示例性原型热控设备的初始设计、构造和性能表征。该示例性原型是集成的加热/冷却模块,其经配置用于对流体样品进行PCR分析的减小尺寸的样品分析仪器。
由于原型经配置所用于的样品分析设备的仪器规格所规定的空间限制和材料成本限制,实现了用于加热和冷却反应容器的可替代的方法。开发了一种集成的全固态加热和冷却模块,其由以下组成:两个热电冷却器(两个珀尔帖模块(Peltier modules))、驱动电子元件、尺寸适合于包装在样品分析仪器中的散热器系统及在仪器硬件中实现的双重控制回路。在该原型中,热控设备模块被设计成仅与反应容器的一侧接触,剩下另一侧可用于PCR产物的光学询问。应理解,可以实现这种设计的其它变化,例如可将热控设备布置成在反应容器的每个主要面上进行双重加热,其中光学检测通过反应容器的次要面进行。下表1总结了原型系统测试和满足的初级规格:
表1.测试概述
Figure GDA0002578646520000161
A.基本设计原理
在一些实施方案中,本发明的热控设备模块利用热电冷却器(TEC),也被称为珀尔帖冷却器(Peltier cooler)。TEC是一种由两块陶瓷板组成的固态电子设备,两块陶瓷板夹在交替堆叠的p-掺杂的和n-掺杂的半导体柱之间,所述半导体柱呈棋盘状模式排列、串联连接以及热并联连接。当将电压施加到半导体的端部时,电流流过设备导致两个陶瓷板之间显著的温度差异。对于正向电压偏置,顶板将相较于底板变得更冷(传统认为与带电面相对的面是“冷”面)并用作固态冷箱。反转电压(Reversing voltage)导致“冷”面现在变得比底面显著更热。因此,TEC设备一直是热循环应用的热门选择。对于小型低功率设备,TEC加热/冷却效率急剧增加。
材料进步使得具有显著增加的冷却/加热效率和与GX反应容器(10x10mm)相当的有效面积的极薄(~3mm)TEC的生产成为可能。可商购获得的小型TEC通常具有~60%的效率;降低的废热和小尺寸降低了热应力破坏、对于PCR所需的重复循环的主要失败模式。小型TEC对于尺寸减小的核酸测定测试系统具有吸引力,因为它们是小型、廉价、集成的加热/冷却解决方案,并且将在大的环境温度范围内产生高效的冷却性能,不像强制通风冷却,其效率受更高的环境温度影响。
高效的TEC加热/冷却取决于三种因素。首先,必须小心限制放置在TEC设备上的热负荷。由于反应容器的小尺寸和典型的小反应体积(<100ul),热负荷并不是一个重要的问题,虽然设备应该适当地装载缓冲液填充的反应容器以进行测试。其次,冷和热交换器的性能应足以消除重复循环的废热(约40%的输入系统电功率)。未能管理废热可显著降低热效率,并且在最坏的情况下,可诱导整个TEC组件内的系统热逃逸。在实践中,热逃逸可以在几分钟内发生,其中热面和冷面的温度都变得足够热以去除设备内电气连接的焊接。由于尺寸减小的分析系统内的空间限制,散热器的尺寸是受限的。因此,具有最大表面积(翅片)的铝散热器(由于其高的热导性和热容量而被选中)与小型风扇一起集成,以进一步将热空气从散热器的铝/空气界面驱散。这一单元经定尺寸以在空间上适用于一次性的尺寸减小的核酸分析系统。
对于性能良好的TEC系统,珀尔帖设备的热面与冷面之间可实现的温度差(dT)存在物理限制;对于可商购获得的最高效的TEC,峰值dT~70℃。这一dT足以用于PCR,因为所需的热循环温度通常在45-95℃之间。因此,大多数基于珀尔帖的PCR系统在稍高于环境温度(~30℃)下都具有散热器,并且从此基准温度循环相对面。然而,随着达到最大dT,热效率开始滞后。为了维持加热/冷却速度、最大化系统效率并最小化系统应力,已开发了热管理,其使用多个根据本发明的实施方案的TEC设备,例如在图2所示的示例性实施方案中。
图2显示了示例性热控设备,其包括通过热电容器层13热耦合的第一TEC 11(初级TEC)和第二TEC 12(次级TEC)。TEC经配置使得第一TEC 11的主动面11a与PCR反应容器20热耦合以促进控制其中的热循环。该设备可任选地包括用于将设备安装于反应容器上的耦合固定装置19。在一些实施方案中,可将该设备固定至固定装置,所述固定装置将该设备定位与反应容器相邻。第一TEC的相对基准面11b通过热电容器层与第二TEC 12的主动面热耦合。该配置还可被描述为基准面11b,其与热电容器层13的一侧直接接触;以及主动面12a,其与热电容器层13的相对侧直接接触。在一些实施方案中,第二TEC的基准面12b与如图3的实施方案中所示的散热器17和/或冷却风扇18热耦合。在该实施方案中,热控设备10经配置使得将其沿着反应容器20的平面部分的一侧热耦合,以便允许用光学激发工具30(诸如激光器)从另一方向(如反应容器的一侧)进行光学激发,并用光学检测工具31从另一方向(如反应容器的相对侧)进行光学检测。此类配置的另一视图显示于图5和图6中。
热敏电阻器16包括于第一TEC 11中,其位于或靠近主动面11a处以允许精确控制反应容器的温度。这种热敏电阻器的温度输出用于初级控制回路15,所述初级控制回路15用主动面11a控制加热和冷却。第二热敏电阻器16′包括于热电容器层内或其附近,并且相关的温度输出用于第二控制回路15′,其用第二TEC的主动面12a控制加热和冷却。在一个方面,第一控制回路比第二控制回路要快(如第二控制回路滞后于第一控制回路),这说明了热能转移并存储于热电容器层内。通过使用这两个控制回路,可以控制第一TEC 11的主动面11a与基准面11b之间的温度差,以便优化和提高第一TEC的效率,这允许用第一TEC进行更快和更一致的加热和冷却,而热电容器允许在加热与冷却之间进行更快速的切换,如本文所述并在下面给出的实验结果中被证明。
代替将标准散热器粘结到反应容器相对的陶瓷板,使用另一个(次级)TEC将温度维持在初级TEC的主动面的约40℃内。在一些实施方案中,两个PID(比例积分微分增益(Proportional Integral Derivative gain))控制回路用于维持这个操作。在一些实施方案中,非PID控制回路用于维持初级TEC的主动面的温度。通常,快速PID控制回路将初级TEC驱动到由安装至与反应容器接触的陶瓷板下面的热敏电阻器监测的预定的温度设定点。这个环路以最大速度进行操作,以确保可快速且准确地达到控制温度。在一些实施方案中,第二(更慢的)PID控制回路维持初级TEC的底面温度,以使热效率最大化(经实验确定为在与主动面温度相差~40℃内)。如上所讨论,也可以使用非PID控制回路来维持TEC的温度以使热效率最大化。在一些实施方案中,抑制两个控制回路之间的相互作用以控制另一回路消除一个回路是有利的。通过使用热电容器层来吸收和储存自第一和/或第二TEC的热能以促进加热与冷却之间的快速切换也是有利的。
本文详述了如在本发明的一些实施方案中所用的实现加热与冷却之间的快速和高效切换的两个非限制性示例性方法。首先,次级控制回路的带宽响应有意地被限制在比快速初级回路低得多(所谓的"惰环(lazy loop)")。其次,热电容器夹在两个TEC之间。尽管希望整个热控设备相对较薄以允许在PCR过程中通常所使用的小反应容器上使用设备,但是应理解热电容器层可以更厚,只要其提供足够的质量和传导性以起到用于热电容器任一侧上的TEC的热电容器的功能。在一些实施方案中,热电容器层是约1mm或更小厚度的薄铜板。铜由于其极高的热导性而具有优势,而经实验确定1mm厚度足以抑制两个TEC,同时为薄层提供足够的质量以储存热能而充当热电容器。虽然铜由于其热导性和高质量而尤其有用,但应理解可使用具有类似的热导性性质和高质量的各种其它金属或材料,优选热导性(即使小于任一TEC)且具有与任一TEC相同或更高的质量的材料,以允许该层作为热电容器用于储存热能。在另一方面,热电容器层可含有第二热敏电阻器,所述第二热敏电阻器用于监测由次级PID控制回路所用的"背侧"温度(如基准面)。两个控制回路都是在单个PSoC(芯片上的可编程系统)芯片内数字化实现的,该芯片将控制信号发送给两个双极珀耳帖电流源。技术人员将理解在一些实施方案中,非PSOC芯片可用于控制,如现场可编程门阵列(FPGA)以及其它适合与本发明一起使用的。在一些实施方案中,双重TEC模块包括散热器以防止热逃逸,所述散热器可以使用如热导性银环氧树脂粘结至次级TEC的背侧。适合与本发明一起使用的可选的粘结方法和材料是本领域技术人员所熟知的。
图2显示了双重TEC设计的示意图。PCR反应容器的温度(由热敏电阻器测量,(16)椭圆阴影)由初级TEC管理并由PSoC固件中的环路控制。通过与铜层热接触的第二热敏电阻器(16’)(椭圆阴影)来维持初级TEC的最佳热效率,其馈入次级PSoC环路,控制第二TEC。
B.初始原型制造
图3显示了原型双重TEC加热/冷却模块的照片。初级和次级TEC两者(Laird,OptoTEC HOT20,65,F2A,1312,下面的数据表)测量13(w)x13(I)x 2.2(t)mm,并且具有最大热效率~60%。图4比较了TEC与GX反应容器的平面尺寸。在一些实施方案中,受TEC模块影响的平面区域与GX反应容器匹配。它可容纳具有约25μl(图示)至约100μl的流体体积的反应容器。
图3显示了示例性原型双重TEC模块,其用于化学分析系统中的反应容器的单侧加热和冷却。如可看出,散热器包括一个迷你风扇来冲洗热并维持TEC效率。初级TEC(顶部)循环反应容器中的温度,所述温度由安装在与管接触的陶瓷下侧的热敏电阻器所监测。“背侧”TEC维持了间隙铜层的温度(通过使用热敏电阻器),以确保初级TEC的最佳热效率。具有集成的迷你风扇的散热器保持整个模块处于热平衡。
在一些实施方案中,使用银环氧树脂将具有+/-0.1℃温度容限的小热敏电阻器粘结至初级TEC的顶面的下侧。该热敏电阻器探测施加到反应容器的温度并且是PSoC中初级控制回路的输入,其控制驱动电流到初级TEC。使用银环氧树脂,将初级TEC的底表面粘结至1mm厚的铜板。铜板具有一个插槽,所述插槽含有用银环氧树脂封装的第二TR136-170热敏电阻器以监测"背侧温度",即PSoC中次级控制回路的信号输入。然后,将由次级控制回路控制的次级TEC夹在铜板与铝散热器之间。将散热器加工成整体厚度=6.5mm,保持整个包装厚度<13mm,以及平面尺寸=40.0(1)x 12.5(w)mm,其是在尺寸减小的仪器内空间局限所必需的。将12x 12mm Sunon Mighty迷你风扇粘合在加工至散热器中的内层内,其中TEC与散热器相互作用。注意,迷你风扇不需要直接冷却散热器;安静、耐用、便宜、低压(3.3V最大值)无刷电机足以通过使用剪切流而不是直接空气冷却(如在一些常见的分析设备,诸如GX或其它此类设备中)从铝/空气界面去除热表面空气来维持散热器性能。
原型单元的测试将决定加热/冷却速度、热稳定性、随着增加的环境温度的稳健性,以及整体系统可靠性是否足以满足工程要求规格。热性能已显示是可以接受的,使得对示例性尺寸减小的原型系统的设计目标得到满足:尺寸更小、坚固和便宜(与双侧加热/冷却相比所需的部件更少)。此外,单侧加热/冷却可以通过反应容器的侧面实现更高效的光学检测。图5显示了示例性原型系统中双重TEC模块、LED激发模块和检测模块以及反应容器的CAD图。
图5显示了双重TEC加热/冷却模块的CAD模型。反应容器在一侧(反应容器的第一主要面)进行热循环,并通过相对侧(反应容器的第二主要面)进行荧光检测。通过反应容器的边缘(次要面)保持LED照明。
C.初始加热/冷却性能
示例性原型TEC组件的加热和冷却性能是使用定制固定装置来测量的,所述定制装置将TEC组件抵靠反应容器的一个表面牢固地夹住(图6)。通过使其具有绝缘材料诸如Delrin,小心地将TEC组件与固定装置热隔离。为了模拟热负荷,将反应容器用流体样品填充,并同与TEC组件相对的反应容器表面上的荧光检测块原型安全接触而放置。应注意,在这个结构中,接触反应容器的顶TEC表面上的温度被独立地测量为等于或高于在初级TEC热敏电阻器上所测得的温度。因此,使用初级TEC热敏电阻器的读数温度来初步表征双重TEC加热/冷却系统的热性能是合理的。使用初级TEC热敏电阻器与反应容器中流体样品的温度之间的反馈回路,可表征和调整热敏电阻器与反应容器温度之间的任何不匹配。
图6显示了示例性夹紧固定装置,其用于将热控设备固定到PCR管以用于热表征。在一个实例中,可将反应容器用流体样品填充并固定以使加热/冷却模块与反应容器的一面之间形成热接触。将反应容器的另一面抵靠荧光检测块夹住。LED激发模块通过反应容器的次要面(如边缘)照亮溶液。
原型PSoC控制板采用PID控制来维持初级TEC热敏电阻器的温度设定点,并提供双重极性驱动电流至TEC设备(加热时为正电压,冷却时为负电压)并向迷你风扇供电。该PID回路被调整以最大化初级TEC的性能。编写脚本来在表征PCR热循环的高温极值与低温极值之间循环反应容器的设定点。具体来说,低温度设定点=50℃,停留时间12秒,一旦测得的温度在+/-0.1℃内持续1秒就开始。同样地,高温设定点=95℃,持续12秒,一旦温度维持在相对于设定点+/-0.1℃持续1秒就开始。脚本在50℃与95℃之间无穷地循环。
还将次级控制回路维持在相同的PSoC芯片内,其读取与铜阻尼/热电容器层(见图2)热接触的次级热敏电阻的温度并作用于次级TEC。通过控制此铜层温度(所谓的"背侧"温度),发现了一组不同的PID调整参数,以适当维持系统热性能。如预期的那样,该控制回路具有比初级TEC控制回路显著更低的带宽。PSoC及其相关程序还允许多个背侧温度设定点,其通过保持初始TEC操作在最佳高效热条件下可用于最大化缓变率性能。
图7显示了来自反应容器温度的示例性热循环,测量的在闭合回路控制下热循环50℃→95℃→50℃的轨迹。闭合回路加热和冷却速率为~7℃/秒。方形轨迹是所需的温度设定点,且另一条轨迹是测量的反应容器的温度。经测定,初级TEC的热效率最高,其中PCR管与背侧之间的温度差不高于30℃,因此当加热到最大温度(PCR管95℃)时将背侧温度控制至65℃,并当将PCR管冷却至50℃时将背侧温度控制至45℃(见轨迹)。一旦初级TEC升高到更高的温度,就可将背侧温度缓慢且可控地驱动到更低的温度,进而等待下一个热循环(见曲线)。该方案类似于使用背侧TEC适当地加载作用于初级TEC上的“温泉”,并且适合与PCR系统一起使用,因为测定的设计者先验地已知用于特定PCR测定的热曲线。注意,稳定且可重复的加热和冷却的闭合回路缓变率对于在45℃范围为~6.5秒,如十个连续热循环所示,如图8所示,对应于加热和冷却两者的真正闭合回路缓变率~7℃/秒。在多个循环内于整个热循环范围内维持性能。
D.早期和近期的可靠性实验
典型的PCR测定具有从退火温度(~65℃)至DNA变性温度(~95℃)和回到退火温度的约40个热循环。为了评估可靠性,将原型模块在50℃(大约为用于PCR实验的最小温度)与95℃之间循环,在每个温度下有10秒等待时间以实现系统达到热平衡。
图9显示了5,000次循环测试的前5次和最后5次循环的比较。注意,右边轨迹的时间轴是来自小数据-采样范围;5,000个循环花费大约2天。该模块已经以维持的性能循环了10,000次以上。如可以看出,循环1-5(左)的热循环性能在5,000次循环(在右边,4,995-5,000次循环)后保持恒定,并且在初始与最终循环之间的热性能没有变化。这出于两个原因是令人鼓舞的。首先,快速加热/冷却的闭合回路参数在重复热循环下相当稳定。即使小的热不稳定性也会导致初级与背侧TEC两者的测量温度曲线漂移,迅速升高到热逃逸(这将在固件中诱导过流停机故障)。经适当调整的系统没有展现出这种行为,这证明了系统的稳健性。其次,模块的热效率在5,000个循环内是稳定的。事实上,这个单元随后被循环>10,000次,没有突然故障或性能的逐渐削弱。
E.可替代的设计
模块构建的可变性可能会造成设备性能的细微差异。例如,现有的模块是手工组装的,带有经加工的散热器和间隙铜层,并且将所有组件使用传导性环氧树脂手工粘结在一起。环氧树脂厚度的变化或模块夹层构造内各组件之间小角度的产生会导致不同的热性能。最重要的是,还使用热环氧树脂将热敏电阻器附接至陶瓷。热敏电阻器与陶瓷之间的小间隙导致控制温度与测量温度之间的误差。
在一些实施方案中,热设备包括在反应容器的每个主要面(相对侧)上的加热和冷却表面(如前所述的TEC设备)。在此类实施方案中,可以沿着次要面(如边缘)进行光学检测。在一些实施方案中,沿着第一次要面进行光学检测,且沿着与第一次要面正交的第二次要面进行光学激发。当需要更大流体体积的加热和冷却(大于25μl流体样品)时,此类实施方案可能是特别有用的。
在一些实施方案中,热控设备模块使用定制的珀尔帖设备,所述珀尔帖设备含有安装在与反应容器接触的陶瓷板底侧上的集成的表面安装的热敏电阻器。微小的0201封装热敏电阻器(0.60(l)x 0.30(w)x 0.23(t)mm)可用于通过限制部件厚度将珀耳帖设备内部导致温度变化的对流减至最少。此外,由于可以精确控制表面安装的热敏电阻器的热接触和位置,所以这些部件在测量的陶瓷温度和实际的陶瓷温度之间将具有非常一致的可表征差异。
在一些实施方案中,热控设备可以包括经设计使用半导体批量生产技术(“取放”机器和回流焊接)完全集成到加热/冷却模块中的定制的珀耳帖。可以用间隙铜基板代替具有精确控制铜厚度和焊盘尺寸的Bergquist热界面PC板(1mm厚的铜基板)。Bergquist基板还为背侧热敏电阻器及所有电气连接至模块内外提供焊盘导线(pad leads)。背侧帕尔帖仍然是类似于目前使用的设备。最后,整个TEC组件可以被封装在硅树脂中以使其具有防水性。在一些实施方案中,铝安装支架也可以兼作散热器。
F.用原型设备控制热循环的示例性命令
1.综述
该系统可包括诸如在系统的可记录存储器上的可以在系统内执行以根据本文所述的原理操作热控设备的命令列表。这些命令是基本功能,其可以加在一起成为块(block),以组建在反应容器内执行加热/冷却和光学检测的最终功能。光学块可以有5个不同的LED和6个光电探测器(用颜色标识),以及维持LED温度的小型热电冷却器(TEC)。热循环硬件是双重TEC模块。命令由功能、热循环和光学询问断开。
2.热循环命令:
为了清楚起见,用于PCR的双重TEC组件的示意图如图1所示。注意,初级TEC与反应容器相互作用,并且次级TEC管理系统的总热效率以优化性能。使用初级热敏电阻器监测初级TEC温度,并且次级热敏电阻器监测次级TEC。
图2显示了根据本发明的一些实施方案的热控设备的示意图,尤其是本文所述的原型双重TEC设计。PCR反应容器的温度(由热敏电阻器测量,(16)椭圆阴影)由初级TEC管理并由PSoC固件中的回路控制。通过与铜层热接触的第二热敏电阻器(16’)(椭圆阴影)来维持初级TEC的最佳热效率,其馈入次级PSoC回路,控制第二TEC。图11说明了与第一和第二热敏电阻器有关的设定点的上升和下降。
设定点1:初级TEC的温度设定点(以1/100℃/计)。格式XXXX。
设定点2:次级TEC的温度设定点(以1/100℃/计)。格式XXXX。
PGAINR1:初级TEC的控制回路P增益设定,用于增加(INCREASING)温度。4个有效数字。
IGAINR1:初级TEC的控制回路I增益设定,用于增加温度。4个有效数字。
DGAINR1:初级TEC的控制回路D增益设定,用于增加温度。4个有效数字。
PGAINR2:次级TEC的控制回路P增益设定,用于增加温度。4个有效数字。
IGAINR2:次级TEC的控制回路I增益设定,用于增加温度。4个有效数字。
DGAINR2:次级TEC的控制回路D增益设定,用于增加温度。4个有效数字。
PGAINF1:初级TEC的控制回路P增益设定,用于降低(DECREASING)温度。4个有效数字。
IGAINF1:初级TEC的控制回路I增益设定,用于降低温度。4个有效数字。
DGAINF1:初级TEC的控制回路D增益设定,用于降低温度。4个有效数字。
PGAINF2:次级TEC的控制回路P增益设定,用于降低温度。4个有效数字。
IGAINF2:次级TEC的控制回路I增益设定,用于降低温度。4个有效数字。
DGAINF2:次级TEC的控制回路D增益设定,用于降低温度。4个有效数字。
DELTARISE:如上所述,对于增加温度,初级与次级TEC的温度设定点之间的时间差(以ms计)。对于正DELTARISE值,次级TEC的激活设定点在初级TEC的温度步骤之前增加一个用户输入值。在初级TEC活动后,负DELTARISE值增加次级TEC设定点。格式XXXX。
DELTAFALL:如上所述,对于降低温度,初级与次级TEC的温度设定点之间的时间差(以ms计)。对于正DELTAFALL值,次级TEC的激活设定点在初级TEC的温度步骤之前增加一个用户输入值。在初级TEC活动后,负DELTAFALL值增加次级TEC设定点。格式XXXX。
SOAKTIME:指定时间(以ms计)以实现反应容器与TEC模块热平衡。在浸泡期间不进行光学读取。格式XXXXX。
HOLDTIME:在分配每个温度步骤以在标准热循环期间产生光学读数之后指定时间(以ms计)。格式XXXXXX。
RAMPPOS:由用户指定的稳态缓变率(以十分之一度/秒计)。这将只用于传统测定,以使缓升率减缓到小于在标准PID控制下可达到的最大值。格式XXX。
RAMPNEG:由用户指定的稳态缓变率(以十分之一度/秒计)。这将只用于传统测定,以使缓降率减缓到小于在标准PID控制下可达到的最大值。格式XXX。
WAITTRIGGER:将ICORE置于空闲状态,直到接收到外部触发脉冲。
ADDTRIGGER:一个步骤完成后追加一个外部触发脉冲。
MANUAL TRIGGER:执行手动触发脉冲。
FANPCR:用于支持PCR的双重TEC模块上的散热器的风扇的开/关位。
3.光学命令:
设定点3:光学模块(Optics Block)TEC的温度设定点(以1/100℃/计)。格式XXXX。
PGAIN3:光学(Optics)TEC的控制回路P增益设定。4个有效数字。
IGAIN3:光学TEC的控制回路I增益设定。4个有效数字。
DGAIN3:光学TEC的控制回路D增益设定。4个有效数字。
FANOPTICS:用于支持光学模块TEC上的散热器的风扇的开/关位。
每个LED/检测器对的光学读数的矩阵值。针对合适的LED,有效的荧光通道以每种颜色显示。更详细参见下表2。
表2.光学检测的荧光通道
Figure GDA0002578646520000271
READCHANNEL:对于每个光学读数,指定读取哪一个LED/检测器对。在1与30个矩阵对之间容纳字符串,空间分隔。例如,用红(Red)LED照明读取深红色(Deep Red)和IR检测器,命令将是"READCHANNEL 44 45"。荧光信号只在比激发颜色更长的波长下产生;在上表中,针对每个LED以颜色显示有效信号。
READFLUORESCENCE 0:对于UV激发,读取所有合适的检测器(00、01、02、03、04和OS)。
READFLUORESCENCE 1:对于蓝色激发,读取所有合适的检测器(11、12、13、14和15)。
READFLUORESCENCE 2:对于绿色激发,读取所有合适的检测器(22、23、24和25)。
READFLUORESCENCE 3:对于黄色激发,读取所有合适的检测器(33、34和35)。
READFLUORESCENCE 4:对于红色激发,读取所有合适的检测器(44和45)。
LEDWU:开始光学读取之前LED的预热时间(以ms计)。格式XXXX。
OPTICSINT:光学读数的积分时间(以ms计)。格式XXXX。
PLL:锁相回路检测模式(另外也称为AC模式)的开/关位。
AC模式脉冲
使用锁相回路方案,读取固定频率下的LED(在PSoC中产生)和检测器。
LEDCURRENT X:设置LED电流(以mA计),XXXX。格式实例:LEDCURRENT 0 300:设置UV LED为300mA。当实现AC模式(PLL开)时,LEDCURRENT设置其上叠覆有脉冲的LED电流的DC偏移量水平。
LEDSLEWDEPTH X:对于仅AC模式,LEDSLEWDEPTH设置LED驱动信号的AC组成的量值(以mA计)。将扭转深度(Slew depth)指定为施加至LED的平均电流与最大电流之间的量值,并结合LEDCURRENT命令使用。例如,为了用0-100mA范围内的对称脉冲驱动Red LED,存在50mA的DC偏移量(LEDCURRENT 4SO)和+/-50mA的脉冲(LEDSLEWDEPTH 4 50)。
LEDPULSESHAPE X:指定呈AC模式的LED的输入驱动电流的形状(正弦、三角形、δ函数,其它形状)。
G.用于控制热循环的热模拟方法
在另一方面,热控设备可经配置为基于热模拟来控制温度。这方面可用于经配置用于一侧加热或两侧加热的热控设备中。在一些实施方案中,此类设备包括第一热电冷却器和另一个热操控设备,其每一个都耦合至控制器,所述控制器与热操控设备协同地控制第一热电冷却器以提高用第一热电冷却器进行的加热和/或冷却的控制、速度和效率。然而,应理解,这种热模拟方面可并入本文描述的任何配置的控制中。
在图11所示的状态模型图解中说明了此类方法的一个实例。该图说明了与热控设备的单侧型式一起使用的七种状态模型。该模型将电气理论应用于温度的模型真实世界的热系统,所述热系统包括热电冷却器面的温度、反应容器以及反应容器内的流体样品。图解显示了卡尔曼算法中所用的七种模型状态和三种测量状态,以得出反应容器内含物(假设是水)的最佳估计。
在图11的电路模型中,电容器代表材料热容,电阻代表材料热导性,每个电容器和源处的电压代表温度,且电流源表示来自与反应容器面相邻的前侧热电冷却器(TEC)的热功率输入。在该实施方案中,向模型的输入可以是从模型T1-T7预测的背侧TEC温度、前侧热电冷却器热输入(瓦特)以及位于与相对容器面相邻的“块”温度。这完成了算法的模型部分。如前所述,卡尔曼算法通常将模型结合所测量的传感器信号一起使用,所述传感器信号也是模型输出的一部分。在此,转化为温度的所测量的热敏电阻器信号可用于前侧热电冷却器,并且也可用于背侧热电冷却器。对于背侧测量的温度的情况,其不是模型的输出,但是假设它们是相同的。这个假设的一个原因是,就整个热导而言,R1是可以忽略的。
图12说明了一侧加热和冷却系统,其证明了该模型当与最佳估计技术相结合时的高水平的准确度。显示了模型输入(T1测量的,块温度和输入瓦特(T1 Measured,BlockTemp,and Input Watts),来自前侧热电冷却器)以及实际测量值(T1测量的,T3测量的,T5测量的和块温度(T1Measured,T3Measured,T5Measured,and BlockTemp)),其用于微调R和C参数,使得所有预测曲线和测量曲线在运行模型时重叠。
从图中显而易见的是,有可能获得非常准确和实际预测的反应容器温度,然后所述温度可在闭合回路热控制中用作反馈。该数据也表明了了解在过程的加热和冷却阶段期间温度如何动态变化的能力以及环境温度对产生特定反应容器温度所必需的热控设定点的影响。这些特征证明是用于未来测定和仪器开发努力的有力工具。此外,虽然本文所示的模型对于一侧加热/冷却系统是有效的,但这个概念可以扩展到解释双侧主动加热/冷却模块(dual-sided active heating/cooling module)。
为了验证,可以使用仪器化的反应容器,从而将热电偶插入容器的反应室。可以通过进行一系列实验进行验证,其中C和R值的初始条件取自已知的物理材料性质。
本文还提供了根据本发明的实施方案的热循环方法,如图13-15的实例所示。图13中所述的方法包括:操作具有主动面和基准面的第一热电冷却器,以将主动面从初始温度加热和/或冷却到目标温度;操作另一个热操控设备(如热电冷却器、加热器、冷却器),以便当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时,提高第一热电冷却器的效率;在其中第一热电设备的主动面加热至升高的目标温度的加热模式与其中将主动面冷却到降低的目标温度的冷却模式之间进行热循环。该方法还包括通过两种方法中的一种来控制热循环。第一种方法,其至少部分地基于在第一热电冷却器的主动面处或附近获得的温度来控制热循环。第二种方法,其控制热循环至少部分地是基于沿着或靠近第一热电冷却器的主动面设置的反应容器内的流体样品的温度的热模型。
图14描绘了一种方法,其包括:操作具有主动面和基准面的第一热电冷却器,以将主动面从初始温度加热和/或冷却至目标温度;以及操作具有与第一热电冷却器热耦合的主动面的第二热电冷却器,以便当第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时提高第一热电冷却器的效率。如前所述,可以使用热操控设备诸如热阻加热器替代第二热电冷却器。通常,此类方法还包括在其中第一热电设备的主动面加热至升高的目标温度的加热模式与其中主动面被冷却至降低的目标温度的冷却模式之间循环。在一些实施方案中,该方法包括抑制加热与冷却模式之间的热波动,并将热能用热电容器或中介层储存,所述热电容器或中介层包括分别与第一和第二热电冷却设备的主动面和基准面相比具有增加的热导性的层。此类方法还可包括使用控制回路,所述控制回路利用来自主动面和/或热中介层的温度传感器输入,以进一步提高循环时的速度和效率。
图15描述了一种方法,其包括:操作热控设备,其间有热电容器的第一和第二热电冷却器,第一和第二热电冷却器中的每一个都具有主动面和基准面;并加热第一热电冷却器的主动面。此类方法还可利用热操控设备如热阻加热器来替代第二热电冷却器。然后,此方法包括:用第二热电冷却器和热电容器冷却第一热电冷却器的基准面,并冷却第一热电冷却器的主动面,然后用第二热电冷却器和热电容器加热第一热电冷却器的基准面。此类方法还可利用热电冷却器之间的热电容器或热中介层来进一步提高热循环时的速度和效率。
在前面的说明书中,参考其具体实施方案描述了本发明,但是本领域技术人员将认识到本发明不限于此。上述发明的各种特征、实施方案和方面可以单独或联合使用。此外,本发明可以在除了本文描述的那些环境和应用之外的任何数量的环境和应用中使用,而不偏离本说明书的更广泛的精神和范围。因此,说明书和附图被认为是说明性的而不是限制性的。应认识到,如本文所使用的术语“包含/包括”、“包括”和“具有”特别旨在被认为是本领域的开放式的术语。

Claims (28)

1.热控设备,其包括:
第一热电冷却器,其具有主动面和基准面;
第二热电冷却器,其具有主动面和基准面;
热电容器,其设置在所述第一热电冷却器与所述第二热电冷却器之间,使得所述第一热电冷却器的基准面通过所述热电容器与所述第二热电冷却器的主动面热耦合,其中所述热电容器由热导材料层形成,所述热导材料层具有比所述第一热电冷却器和第二热电冷却器的主动面和基准面更高的热导性;
第一温度传感器,其被配置为感测所述第一热电冷却器的主动面的第一温度;
第二温度传感器,其被配置为感测所述热电容器的第二温度;和
控制器,其可操作地耦合至所述第一热电冷却器和第二热电冷却器中的每一个,其中所述控制器被配置为操作与所述第一热电冷却器并行的所述第二热电冷却器,以便当所述第一热电冷却器的主动面的温度从初始温度变化至所需的目标温度时,提高所述第一热电冷却器的效率;
其中所述第一温度传感器和第二温度传感器与所述控制器耦合,使得所述第一热电冷却器和第二热电冷却器的操作至少部分基于来自所述第一温度传感器和第二温度传感器的输入,
其中所述控制器被配置为根据初级控制回路操作所述第一热电冷却器,所述第一温度传感器的输入提供至所述初级控制回路中,并且所述控制器被配置为根据次级控制回路操作所述第二热电冷却器,所述第二温度传感器的输入提供至所述次级控制回路中,
其中所述初级控制回路被配置为在所述第一热电冷却器的加热模式与冷却模式之间循环,在所述加热模式中,所述第一热电冷却器的主动面加热至升高的目标温度,在所述冷却模式中,所述第一热电冷却器的主动面被冷却至降低的目标温度,并且并行地,所述次级控制回路被配置为在所述第二热电冷却器的加热模式与冷却模式之间循环,并且
其中在所述第二热电冷却器的加热模式与冷却模式过程中,所述次级控制回路在时间上领先于或滞后于所述初级控制回路,使得在所述第一和第二热电冷却器的并行循环过程中,所述热电容器的温度变化,从而所述热电容器有利于热能的受控储存和释放,以提高所述第一热电冷却器的主动面的热循环的速度和效率。
2.如权利要求1所述的设备,其中所述第二温度传感器与所述热电容器的热导材料热接触。
3.如权利要求1所述的设备,其中所述热电容器是厚度为5 mm或更小的铜层。
4.如权利要求1所述的设备,其中所述热电容器是厚度为1 mm或更小的铜层。
5.如权利要求1所述的设备,其中所述控制器经配置使得所述初级控制回路的带宽响应比所述次级控制回路的带宽响应在定时时更快。
6.如权利要求1所述的设备,其中所述初级控制回路和次级控制回路中的每一个是闭合回路。
7.如权利要求1所述的设备,其中所述控制器经配置使得所述次级控制回路在加热与冷却模式之间切换所述第二热电冷却器,之后在加热与冷却之间切换所述第一热电冷却器,以便热加载所述热电容器。
8.如权利要求1所述的设备,其中所述次级控制回路使所述热电容器的温度维持在与所述第一热电冷却器的主动面的温度相差40°C内。
9.如权利要求1所述的设备,其中所述控制器经配置使得通过所述第二热电冷却器的操作维持所述第一热电冷却器的效率,使得用所述第一热电冷却器的主动面的加热和冷却以10°C/秒或更小的缓变率发生。
10.如权利要求1所述的设备,其中所述升高的目标温度是90°C或更大,以及所述降低的目标温度是40°C或更小。
11.如权利要求1所述的设备,其还包括:
散热器,其与所述第二热电冷却器的基准面耦合以防止循环期间的热逃逸。
12.如权利要求11所述的设备,其从所述第一热电冷却器的主动面至所述散热器的相对表面侧具有20 mm或更小的厚度。
13.如权利要求12所述的设备,其中所述热控设备具有长度为45 mm或更小且宽度为20mm或更小的平面尺寸。
14.如权利要求12所述的设备,其具有长度40 mm × 12.5 mm的平面尺寸。
15.如权利要求1所述的设备,其中所述第一热电冷却器的主动面是11 mm × 13 mm。
16.如权利要求15所述的设备,其适合与用于热循环的反应容器在所述反应容器单侧上接合,以允许自所述反应容器的相对侧光学检测目标分析物。
17.热管理系统,其包括:
两个或更多个热控设备,其各自如权利要求1所述;和
固定装置,其适合将所述两个或更多个热控设备交替地定位于主动位置处以用相应的控制设备实现加热和/或冷却循环,并在所述两个或更多个热控设备之间选择性地交替。
18.控制温度的方法,所述方法包括:
操作具有主动面和基准面的第一热电冷却器,其中所述第一热电冷却器被配置为将所述主动面从初始温度加热至升高的目标温度以及将所述主动面冷却至相对于所述升高的目标温度而言的降低的目标温度,并且其中在所述第一热电冷却器的加热和冷却中,第一热电冷却器以初级控制回路操作,所述初级控制回路接收来自配置为感测所述第一热电冷却器的主动面处或附近的温度的第一温度传感器的第一温度输入;
操作具有主动面和基准面的第二热电冷却器,其中所述第二热电冷却器的主动面通过热电容器热耦合至所述第一热电冷却器的基准面,其中所述热电容器具有比所述第一热电冷却器和第二热电冷却器的主动面和基准面更高的热导性,第二热电冷却器以次级控制回路操作,所述次级控制回路接收来自配置为感测所述热电容器的温度的第二温度传感器的第二温度输入;和
在所述第一热电冷却器的加热模式与冷却模式之间循环,在所述加热模式中,所述第一热电冷却器的主动面加热至升高的目标温度,在所述冷却模式中,所述第一热电冷却器的主动面被冷却至降低的目标温度,并且并行地在所述第二热电冷却器的加热模式与冷却模式之间循环,
其中在所述第二热电冷却器的加热模式与冷却模式过程中,所述次级控制回路在时间上领先于或滞后于所述初级控制回路,使得在所述第一和第二热电冷却器的并行循环过程中,所述热电容器的温度变化,从而所述热电容器有利于热能的受控储存和释放,以提高所述第一热电冷却器的主动面的热循环的速度和效率。
19.如权利要求18所述的方法,其中所述初级控制回路的带宽响应被控制器控制为比所述次级控制回路的带宽响应更快。
20.如权利要求18所述的方法,其中循环被控制器定时以在模式之间切换所述第二热电冷却器,之后在模式之间切换所述第一热电冷却器,以热加载所述热电容器。
21.如权利要求18所述的方法,其中所述升高的目标温度是95°C或更大,以及所述降低的目标温度是50°C或更小。
22.如权利要求18所述的方法,其还包括:
通过在所述第一热电冷却器的循环期间所述第二热电冷却器的控制操作,将所述热电容器的温度维持在与所述第一热电冷却器的主动面的温度相差40°C内,以便维持循环期间所述第一热电冷却器的效率。
23.如权利要求22所述的方法,其中通过所述第二热电冷却器的操作维持所述第一热电冷却器的效率,使得用所述第一热电冷却器的主动面的加热和/或冷却以10°C/秒或更小的缓变率发生。
24.如权利要求18所述的方法,所述方法还包括:
在用所述第一热电冷却器和第二热电冷却器循环期间,操作与所述第二热电冷却器的基准面耦合的散热器以防止热逃逸。
25.在聚合酶链式反应过程中热循环的方法,所述方法包括:
使权利要求1所述的热控设备与其中具有样品的反应容器接合,使得所述第一热电冷却器的主动面热接合所述反应容器,所述反应容器进行用于扩增目标多核苷酸的聚合酶链式反应;和
根据用于扩增所述目标多核苷酸的特定方案热循环所述热控设备。
26.如权利要求25所述的方法,其中使所述热控设备与所述反应容器接合包括使所述第一热电冷却器的主动面抵靠所述反应容器的一侧接合,使得相对侧保持不被所述热控设备覆盖以允许从所述相对侧进行光学检测。
27.如权利要求25所述的方法,其中加热模式和冷却模式中的每一个具有一个或多个操作参数,其中所述一个或多个操作参数在所述加热与冷却模式之间是不对称的。
28.如权利要求25所述的方法,其中所述加热模式和冷却模式中的每一个具有带宽和回路增益,其中所述加热模式和冷却模式的带宽和回路增益是不同的。
CN201680052768.0A 2015-07-23 2016-07-22 热控设备及其使用方法 Active CN108136401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110588690.7A CN113275057B (zh) 2015-07-23 2016-07-22 热控设备及其使用方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562196267P 2015-07-23 2015-07-23
US62/196,267 2015-07-23
PCT/US2016/043761 WO2017015640A1 (en) 2015-07-23 2016-07-22 Thermal control device and methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110588690.7A Division CN113275057B (zh) 2015-07-23 2016-07-22 热控设备及其使用方法

Publications (2)

Publication Number Publication Date
CN108136401A CN108136401A (zh) 2018-06-08
CN108136401B true CN108136401B (zh) 2021-06-15

Family

ID=56694217

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110588690.7A Active CN113275057B (zh) 2015-07-23 2016-07-22 热控设备及其使用方法
CN201680052768.0A Active CN108136401B (zh) 2015-07-23 2016-07-22 热控设备及其使用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110588690.7A Active CN113275057B (zh) 2015-07-23 2016-07-22 热控设备及其使用方法

Country Status (14)

Country Link
US (3) US10544966B2 (zh)
EP (1) EP3325161B1 (zh)
JP (2) JP6856619B2 (zh)
KR (1) KR102627913B1 (zh)
CN (2) CN113275057B (zh)
AU (1) AU2016297656B2 (zh)
BR (1) BR112018001173B1 (zh)
CA (1) CA2992978C (zh)
EA (1) EA036930B1 (zh)
ES (1) ES2843532T3 (zh)
HK (1) HK1256066A1 (zh)
MX (1) MX2018000785A (zh)
WO (1) WO2017015640A1 (zh)
ZA (1) ZA201801049B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201806505D0 (en) * 2018-04-20 2018-06-06 Q Linea Ab Analysis instrument and sample preparation cartridge
CN110456842B (zh) * 2018-05-08 2022-03-01 北京中科生仪科技有限公司 一种用于核酸反应的温度控制装置和方法
US11169583B2 (en) * 2018-08-07 2021-11-09 Western Digital Technologies, Inc. Methods and apparatus for mitigating temperature increases in a solid state device (SSD)
AU2019344001B2 (en) 2018-09-20 2023-11-16 Cepheid System, device and methods of sample processing using semiconductor detection chips
WO2020066165A1 (ja) 2018-09-27 2020-04-02 株式会社日立ハイテクノロジーズ 自動分析装置用反応容器
WO2020112230A1 (en) * 2018-09-27 2020-06-04 Temple University-Of The Commonwealth System Of Higher Education Silicon photomultiplier light detection and measurement system and method for cooling the same
US11121125B2 (en) 2018-12-12 2021-09-14 Micron Technology, Inc. Thermal chamber for a thermal control component
USD893484S1 (en) 2018-12-12 2020-08-18 Micron Technology, Inc. Thermal control component
AU2019398452A1 (en) * 2018-12-14 2021-07-08 Cepheid Diagnostic detection chip devices and methods of manufacture and assembly
CN113301996B (zh) * 2019-01-09 2023-11-10 普雷斯基因组有限公司 用于可变形珠富集和自调节式排序以及在液滴中包封的微流体装置
EP3942064A4 (en) 2019-03-22 2022-05-04 Siemens Healthcare Diagnostics, Inc. BIOLOGICAL SAMPLE ANALYZER WITH DETECTION OF COLD CONSUMABLES
WO2020197815A1 (en) * 2019-03-22 2020-10-01 Siemens Healthcare Diagnostics Inc. Biological sample analyzer with accelerated thermal warming
CN110724631B (zh) * 2019-10-30 2021-01-19 宁波胤瑞生物医学仪器有限责任公司 一种核酸扩增仪加热控制装置
US11334129B2 (en) * 2019-12-11 2022-05-17 Micron Technology, Inc. Temperature control component for electronic systems
US11493550B2 (en) 2019-12-11 2022-11-08 Micron Technology, Inc. Standalone thermal chamber for a temperature control component
CN111187713B (zh) * 2020-02-21 2020-11-27 厦门大学 微流控芯片的刺破装置及微流控芯片检测系统
US20210278887A1 (en) 2020-03-05 2021-09-09 Samsung Electronics Co., Ltd. Thermal control for electronic devices
US20220253079A1 (en) 2021-01-13 2022-08-11 Cepheid Thermal control device and methods utilizing temperature distribution modeling
WO2023148074A1 (de) * 2022-02-03 2023-08-10 Robert Bosch Gmbh Vorrichtung und computergestütztes verfahren zum bestimmen eines ansteuerungsprotokolls für ein mikrofluidisches system
WO2023177748A1 (en) 2022-03-15 2023-09-21 Cepheid Unitary cartridge body and associated components and methods of manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061630A (en) * 1988-05-13 1991-10-29 Agrogen Foundation, Seyffer & Co. & Ulrich C. Knopf Laboratory apparatus for optional temperature-controlled heating and cooling
CN101558145A (zh) * 2006-08-30 2009-10-14 戴克斯纳有限责任公司 快速热循环仪
CN102164674A (zh) * 2008-09-23 2011-08-24 皇家飞利浦电子股份有限公司 热循环设备
CN103635568A (zh) * 2011-06-24 2014-03-12 株式会社日立高新技术 核酸扩增装置和核酸分析装置
CN103781551A (zh) * 2011-05-24 2014-05-07 英捷尼公司 用于改变物质温度的系统和方法
CN204625602U (zh) * 2013-09-16 2015-09-09 生命科技股份有限公司 热框组件和热循环系统

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236506B1 (ko) * 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 폴리머라제 연쇄 반응 수행 장치
ES2544455T3 (es) * 1997-02-28 2015-08-31 Cepheid Montaje para reacción química con intercambio de calor, ópticamente interrogada
US7133726B1 (en) 1997-03-28 2006-11-07 Applera Corporation Thermal cycler for PCR
EP2090366B1 (en) * 1997-03-28 2012-12-19 Life Technologies Corporation Improvements in thermal cycler for PCR
US6935409B1 (en) 1998-06-08 2005-08-30 Thermotek, Inc. Cooling apparatus having low profile extrusion
US6121539A (en) 1998-08-27 2000-09-19 International Business Machines Corporation Thermoelectric devices and methods for making the same
US6818185B1 (en) 1999-05-28 2004-11-16 Cepheid Cartridge for conducting a chemical reaction
US7305843B2 (en) 1999-06-08 2007-12-11 Thermotek, Inc. Heat pipe connection system and method
US6657169B2 (en) 1999-07-30 2003-12-02 Stratagene Apparatus for thermally cycling samples of biological material with substantial temperature uniformity
US6337435B1 (en) * 1999-07-30 2002-01-08 Bio-Rad Laboratories, Inc. Temperature control for multi-vessel reaction apparatus
WO2001021310A2 (en) * 1999-09-21 2001-03-29 Genome Therapeutics Corporation Device for rapid dna sample processing with integrated liquid handling, thermocycling, and purification
US6403037B1 (en) * 2000-02-04 2002-06-11 Cepheid Reaction vessel and temperature control system
US8048386B2 (en) 2002-02-25 2011-11-01 Cepheid Fluid processing and control
US6374684B1 (en) 2000-08-25 2002-04-23 Cepheid Fluid control and processing system
US6345507B1 (en) 2000-09-29 2002-02-12 Electrografics International Corporation Compact thermoelectric cooling system
US20020121094A1 (en) 2001-03-02 2002-09-05 Vanhoudt Paulus Joseph Switch-mode bi-directional thermoelectric control of laser diode temperature
EP1384035A4 (en) 2001-04-09 2006-07-26 Nextreme Thermal Solutions Inc THERMOELECTRIC HEATING AND COOLING THERMAL FILM DEVICES FOR GENOMIC AND PROTEOMIC DNA CHIPS, THERMO-OPTICAL SWITCHING CIRCUITS, AND IR MARKERS
US20020156509A1 (en) 2001-04-23 2002-10-24 Stephen Cheung Thermal control suit
CN1515066B (zh) 2001-06-07 2010-05-05 株式会社明电舍 热电效应装置、能量直接转换系统、能量转换系统
US6556752B2 (en) 2001-08-15 2003-04-29 Agility Communications, Inc. Dual thermoelectric cooler optoelectronic package and manufacture process
US6859471B2 (en) 2002-10-30 2005-02-22 Fibersense Technology Corporation Method and system for providing thermal control of superluminescent diodes
JP4261890B2 (ja) 2002-12-06 2009-04-30 義臣 近藤 熱電効果装置,エネルギー直接変換システム,エネルギー変換システム
JP4758891B2 (ja) 2003-06-06 2011-08-31 マイクロニクス, インコーポレイテッド 微小流体デバイス上の加熱、冷却および熱サイクリングのためのシステムおよび方法
CA2432860A1 (en) 2003-06-16 2004-12-16 Dupont Canada Inc. Distributed electronic personal heat management system
US7082772B2 (en) 2003-08-20 2006-08-01 Directed Electronics, Inc. Peltier temperature control system for electronic components
EP1697972A2 (en) 2003-11-18 2006-09-06 Washington State University Research Foundation Micro-transducer and thermal switch for same
CN1969398A (zh) 2004-06-17 2007-05-23 阿鲁策株式会社 热电转换模块
US7232694B2 (en) 2004-09-28 2007-06-19 Advantech Global, Ltd. System and method for active array temperature sensing and cooling
EP1810107B1 (en) 2004-11-02 2009-07-01 Koninklijke Philips Electronics N.V. Temperature control system and method
US8695355B2 (en) 2004-12-08 2014-04-15 California Institute Of Technology Thermal management techniques, apparatus and methods for use in microfluidic devices
US8686277B2 (en) 2004-12-27 2014-04-01 Intel Corporation Microelectronic assembly including built-in thermoelectric cooler and method of fabricating same
WO2006110858A2 (en) 2005-04-12 2006-10-19 Nextreme Thermal Solutions Methods of forming thermoelectric devices including superlattice structures and related devices
US8039726B2 (en) 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same
EP1917839A4 (en) 2005-06-24 2011-01-05 Carrier Corp DEVICE FOR CONTROLLING A THERMOELECTRIC SYSTEM
EP1878503A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Temperature sensor element for monitoring heating and cooling
JP4967781B2 (ja) * 2007-04-20 2012-07-04 凸版印刷株式会社 温度制御装置および温度制御方法
US7865751B2 (en) 2007-06-18 2011-01-04 Intel Corporation Microarchitecture controller for thin-film thermoelectric cooling
US20090000652A1 (en) 2007-06-26 2009-01-01 Nextreme Thermal Solutions, Inc. Thermoelectric Structures Including Bridging Thermoelectric Elements
US7832944B2 (en) 2007-11-08 2010-11-16 Finisar Corporation Optoelectronic subassembly with integral thermoelectric cooler driver
EP2060324A1 (en) * 2007-11-13 2009-05-20 F.Hoffmann-La Roche Ag Thermal block unit
KR101524544B1 (ko) 2008-03-28 2015-06-02 페어차일드코리아반도체 주식회사 펠티어 효과를 이용한 열전기 모듈을 포함하는 전력 소자패키지 및 그 제조 방법
EP2127751B1 (en) * 2008-05-19 2012-05-16 Roche Diagnostics GmbH Improved cooler / heater arrangement with solid film lubricant
US20100006132A1 (en) 2008-07-14 2010-01-14 Lucent Technologies, Inc. Stacked Thermoelectric Modules
EP2382045A1 (en) * 2008-12-23 2011-11-02 STMicroelectronics S.r.l. Method for detecting the presence of liquids in a microfluidic device, detecting apparatus and corresponding microfluidic device
US20120174956A1 (en) 2009-08-06 2012-07-12 Laird Technologies, Inc. Thermoelectric Modules, Thermoelectric Assemblies, and Related Methods
GB2472455B (en) * 2009-08-08 2016-07-06 Bibby Scient Ltd A method of controlling an apparatus having a thermoelectric cooler
CN102859298B (zh) 2010-01-06 2016-08-03 诺瓦特安斯集团有限公司 热电冷却系统及电子装置冷却方法
SG184539A1 (en) 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control
US8248173B2 (en) 2010-04-27 2012-08-21 The Charles Stark Draper Laboratory, Inc. Devices, systems, and methods for controlling the temperature of resonant elements
US8945843B2 (en) * 2010-12-09 2015-02-03 Analogic Corporation Thermocooler with thermal breaks that thermally isolate a thermocycling region from at least one guard heat region
US8378453B2 (en) 2011-04-29 2013-02-19 Georgia Tech Research Corporation Devices including composite thermal capacitors
WO2013033654A1 (en) 2011-08-31 2013-03-07 De Rochemont L Pierre Fully integrated thermoelectric devices and their application to aerospace de-icing systems
KR101928005B1 (ko) 2011-12-01 2019-03-13 삼성전자주식회사 열전 냉각 패키지 및 이의 열관리 방법
US20150128614A1 (en) 2012-05-08 2015-05-14 Sheetak, Inc. Thermoelectric heat pump
US8952480B2 (en) 2012-09-13 2015-02-10 Stmicroelectronics Asia Pacific Pte. Ltd. Electronic device including thermal sensor and peltier cooler and related methods
KR20160123356A (ko) 2014-02-18 2016-10-25 라이프 테크놀로지스 코포레이션 스케일러블 유전자증폭기를 제공하고 열전 장치를 격리시키기 위한 장치, 시스템 및 방법
US20150316298A1 (en) 2014-05-02 2015-11-05 United Arab Emirates University Thermoelectric Device And Method For Fabrication Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061630A (en) * 1988-05-13 1991-10-29 Agrogen Foundation, Seyffer & Co. & Ulrich C. Knopf Laboratory apparatus for optional temperature-controlled heating and cooling
CN101558145A (zh) * 2006-08-30 2009-10-14 戴克斯纳有限责任公司 快速热循环仪
CN102164674A (zh) * 2008-09-23 2011-08-24 皇家飞利浦电子股份有限公司 热循环设备
CN103781551A (zh) * 2011-05-24 2014-05-07 英捷尼公司 用于改变物质温度的系统和方法
CN103635568A (zh) * 2011-06-24 2014-03-12 株式会社日立高新技术 核酸扩增装置和核酸分析装置
CN204625602U (zh) * 2013-09-16 2015-09-09 生命科技股份有限公司 热框组件和热循环系统

Also Published As

Publication number Publication date
KR20180033259A (ko) 2018-04-02
EA201890371A1 (ru) 2018-08-31
ZA201801049B (en) 2023-12-20
JP6856619B2 (ja) 2021-04-07
US20170023281A1 (en) 2017-01-26
JP2021106009A (ja) 2021-07-26
EA036930B1 (ru) 2021-01-15
US11073310B2 (en) 2021-07-27
KR102627913B1 (ko) 2024-01-22
WO2017015640A1 (en) 2017-01-26
MX2018000785A (es) 2018-08-29
CA2992978A1 (en) 2017-01-26
AU2016297656B2 (en) 2021-10-21
AU2016297656A1 (en) 2018-03-08
BR112018001173A2 (pt) 2018-09-11
US20210364196A1 (en) 2021-11-25
US20200116398A1 (en) 2020-04-16
US10544966B2 (en) 2020-01-28
CN113275057A (zh) 2021-08-20
BR112018001173B1 (pt) 2023-03-21
EP3325161B1 (en) 2020-10-14
JP2018524015A (ja) 2018-08-30
CN108136401A (zh) 2018-06-08
EP3325161A1 (en) 2018-05-30
CA2992978C (en) 2023-09-19
CN113275057B (zh) 2023-04-07
HK1256066A1 (zh) 2019-09-13
ES2843532T3 (es) 2021-07-19

Similar Documents

Publication Publication Date Title
CN108136401B (zh) 热控设备及其使用方法
JP6655539B2 (ja) サーモサイクラー熱均一性を提供するための器具、システム、及び方法
US9266109B2 (en) Thermal control system and method for chemical and biochemical reactions
CN103421688B (zh) 聚合酶连锁反应装置
US20200101461A1 (en) Apparatuses, systems and methods for providing scalable thermal cyclers and isolating thermoelectric devices
US8962306B2 (en) Instruments and method relating to thermal cycling
US20150321195A1 (en) Temperature control devices and methods
KR20060017850A (ko) 마이크로 유체 장치상에서의 가열, 냉각 및 열 순환 시스템및 방법
US20220253079A1 (en) Thermal control device and methods utilizing temperature distribution modeling
İnce et al. Polymerase Chain Reaction Microchip and PID Controller Based Thermal Cycler Design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1256066

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant