CN108134051B - 一种硅碳复合负极材料及其制备方法 - Google Patents

一种硅碳复合负极材料及其制备方法 Download PDF

Info

Publication number
CN108134051B
CN108134051B CN201611087259.XA CN201611087259A CN108134051B CN 108134051 B CN108134051 B CN 108134051B CN 201611087259 A CN201611087259 A CN 201611087259A CN 108134051 B CN108134051 B CN 108134051B
Authority
CN
China
Prior art keywords
silicon
sio
spherical
preparation
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611087259.XA
Other languages
English (en)
Other versions
CN108134051A (zh
Inventor
薛永
谢志懋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Xinyuan Graphene Technology Co ltd
Original Assignee
Inner Mongolia Xinyuan Graphene Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Xinyuan Graphene Technology Co ltd filed Critical Inner Mongolia Xinyuan Graphene Technology Co ltd
Priority to CN201611087259.XA priority Critical patent/CN108134051B/zh
Publication of CN108134051A publication Critical patent/CN108134051A/zh
Application granted granted Critical
Publication of CN108134051B publication Critical patent/CN108134051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种硅碳复合负极材料及其制备方法,尤其涉及锂离子电池的负极材料领域,其特征是:硅碳复合负极材料由内核、中间层和外层组成,呈核壳结构;所述的内核为多孔Si@C球状材料,中间层为偏铝酸锂混合材料,外层为炭层;所述的偏铝酸锂混合材料是采用偏铝酸锂、石墨烯、粘结剂、溶剂混合而成:所述的粘结剂为聚偏氟乙烯、溶剂为N‑甲基吡咯烷酮;本发明解决了目前硅碳负极材料存在膨胀率高、导电率差等方面存在的问题,具有克容量高、循环性能好、倍率性能佳的优点。

Description

一种硅碳复合负极材料及其制备方法
技术领域
本发明涉及电池材料制备领域,尤其涉入锂离子电池的负极材料领域。
背景技术
石墨负极材料是组成锂离子电池的关键材料,并以其循环性能好、稳定性强、价格低廉及其与电解液相容性高等优点而成为负极材料的首要选择,而目前石墨负极材料在克容量、倍率性能等参数已经无法满足市场化锂离子电池对负极材料的要求,因此开发出高容量的负极材料以满足高比能量密度的锂离子电池。
而目前的高容量负极材料主要有硅碳负极、锡基负极等,而又以硅碳负极材料技术相对成熟,目前的硅碳负极由于在充放电过程中体积膨胀较大,产品难以产业化应用。针对硅碳负极存在的缺点,国内研究者主要通过硅材料表面包覆等措施降低硅材料的膨胀,比如专利(CN105118974 A)提供了一种硅基负极材料及其制备方法,其由于引入碳纳米纤维制降低硅纳米颗粒的体积膨胀,避免了硅颗粒破碎和SEI膜重复生成的现象,提高了负极材料的机械强度,但是其存在制备过程复杂、稳定性差、工艺复杂及其导电率差等缺陷。为制备出容量高、倍率型能好、制备工艺简单、易产业化的硅碳复合负极材料,在硅材料中包覆碳材料以提高材料与电解液的相容性,同时在外层包覆一层锂离子导电率高的物质又可以提高材料的导电率,从而提高材料的循环性能和倍率性能。
发明内容
本发明一种硅碳复合负极材料及其制备方法,解决了目前硅碳负极材料存在膨胀率高、导电率差等方面存在的问题,具有克容量高、循环性能好、倍率性能佳的优点。
一种硅碳复合负极材料,由内核、中间层和外层组成,呈核壳结构;所述的内核为多孔Si@C球状材料,中间层为偏铝酸锂混合材料,外层为炭层;
所述的所偏铝酸锂混合材料是采用以下材料比例混合而成:
偏铝酸锂1~10g、石墨烯1~10g、粘结剂10~20g、溶剂100~200mL;
所述的粘结剂为聚偏氟乙烯、溶剂为N-甲基吡咯烷酮。
所述的硅碳复合负极材料的制备方法依次有:球状SiO2前驱体制备步骤、SiO2@C球的制备步骤、多孔Si@C球状复合材料制备步骤。
有益效果:
1)制备出的多孔硅碳复合负极材料可以降低硅材料在充放电过程中的膨胀率,提高其材料的循环性能,同时多孔结构也有利于电解液的吸收和储存,提高其材料的循环、倍率性能。
2)在多孔硅碳负极材料表面包覆一层偏铝酸锂,可以利用其偏铝酸锂中锂离子导电率高的特性提高其材料在大倍率充放电过程中锂离子导电性。
附图说明
图1是实施例1制备出的硅碳负极材料的SEM图。
具体实施方式
实施例1
步骤①偏铝酸锂溶液配置:
称取5g偏铝酸锂、5g石墨烯、15g聚偏氟乙烯添加到150ml的N-甲基吡咯烷酮中,搅拌均匀后,再通过高速分散机分散3h,最后得到偏铝酸锂溶液。步骤②球状SiO2前驱体制备:
在磁力搅拌下,向100ml乙醇、6mL H2O,0.6mL NH3·H2O的混合液体中缓慢滴加3mL四乙基原硅酸盐(TEOS),搅拌5h后离心洗涤、烘干待用,得到球状SiO2前驱体,即为球状二氧化硅粉末。
步骤③SiO2@C球的制备:
将0.6g的球状SiO2前驱体与0.1g的聚偏氟乙烯PVDF粉末混合均匀后分散在6mL的N-甲基吡咯烷酮(NMP)中,之后在烘箱中120℃真空干燥2h,随后将干燥的样品放入管式炉中,并在氮气气氛下400~600℃煅烧1~3h,即可得到中间产物SiO2@C球。
步骤④多孔Si@C球状复合材料的制备:
将50g的SiO2@C球和50g镁粉均匀混合,并放置在500ml的偏铝酸锂混合液中浸泡1h,之后在氩气气氛中650℃煅烧6h,将煅烧后得到的产物用1mol/L的HC1处理,即得到产物多孔Si@C球状复合材料。
实施例2
步骤①偏铝酸锂配置:
称取1g偏铝酸锂、1g石墨烯、10g聚偏氟乙烯添加到100ml的N-甲基吡咯烷酮中,并高速分散均匀3h得到偏铝酸锂溶液。
步骤②球状SiO2前驱体制备:
在磁力搅拌下,向100ml乙醇、6mL H2O,0.6mL NH3·H2O的混合液体中缓慢滴加1.0mL四乙基原硅酸盐(TEOS),搅拌5h后离心洗涤、烘干待用,得到球状SiO2前驱体,即为球状二氧化硅粉末。
步骤③SiO2@C球的制备:
将0.2g的球状SiO2前驱体与0.0 5g的聚偏氟乙烯PVDF粉末混合均匀后分散在6mL的N-甲基吡咯烷酮(NMP)中,之后在烘箱中120℃真空干燥2h,随后将干燥的样品放入管式炉中,并在氮气气氛下400℃煅烧3h,即可得到中间产物SiO2@C球。
步骤④多孔Si@C球状复合材料的制备:
将30g的SiO2@C球和50g镁粉均匀混合,并放置在500ml的偏铝酸锂混合液中浸泡1h,之后在氩气气氛中500℃煅烧8h,将煅烧后得到的产物用1mol/L的HC1处理,即得到产物多孔Si@C球状复合材料。
实施例3
步骤①偏铝酸锂溶液制备:称取10g偏铝酸锂、10g石墨烯、20g聚偏氟乙烯添加到200ml的N-甲基吡咯烷酮中,高速分散均匀3h后得到偏铝酸锂溶液。
步骤②球状SiO2前驱体制备:
在磁力搅拌下,向100ml乙醇、6mL H2O,0.6mL NH3·H2O的混合液体中缓慢滴加5mL四乙基原硅酸盐(TEOS),搅拌5h后离心洗涤、烘干待用,得到球状SiO2前驱体,即为球状二氧化硅粉末。
步骤③SiO2@C球的制备:
将0.8g的球状SiO2前驱体与0.2g的聚偏氟乙烯PVDF粉末混合均匀后分散在6mL的N-甲基吡咯烷酮(NMP)中,之后在烘箱中120℃真空干燥2h,随后将干燥的样品放入管式炉中,并在氮气气氛下600℃煅烧3h,即可得到中间产物SiO2@C球。
步骤④多孔Si@C球状复合材料的制备:
将50g的SiO2@C球和30g镁粉均匀混合,并放置在500ml的偏铝酸锂混合液中浸泡1h,之后在氩气气氛中800℃煅烧4h,将煅烧后得到的产物用1mol/L的HC1处理,即得到产物多孔Si@C球状复合材料。
对比例:称取将0.6g的二氧化硅粉末(厂家:佛山市某材料有限公司,型号:LJ-11061)与0.1g聚偏氟乙烯均匀后分散在6mL的N-甲基吡咯烷酮(NMP)中,之后在烘箱中120℃真空干燥,随后将干燥的样品放入管式炉中在氮气气氛下500℃煅烧2h,即可得到中间产物SiO2@C实心材料。之后称取50g的SiO2@C实心球和50g镁粉均匀混合,之后在氩气气氛中650℃煅烧6h,即得到产物Si@C复合材料。
(1)扣电测试
分别将实施例1~3和对比例所得锂离子电池硅碳负极材料组装成扣式电池A1、A2、A3和B1;其制备方法为:在负极材料中添加粘结剂、导电剂及溶剂,进行搅拌制浆,涂覆在铜箔上,经过烘干、碾压制得。所用粘结剂为LA132粘结剂,导电剂SP,负极材料为实施例1~3制备出的负极材料,溶剂为二次蒸馏水,其比例为:负极材料:SP:LA132:二次蒸馏水=95g:1g:4g:220ml;电解液是LiPF6/EC+DEC(1:1),金属锂片为对电极,隔膜采用聚乙烯(PE),聚丙烯(PP)或聚乙丙烯(PEP)复合膜,模拟电池装配在充氢气的手套箱中进行,电化学性能在武汉蓝电新威5v/10mA型电池测试仪上进行,充放电电压范围为0.005V-2.0V,充放电速率为0.1C。
表1实施例与对比例扣电测试结果对比
扣电电池 A1 A2 A3 B1
负极材料 实施例1 实施例2 实施例3 对比例
首次放电容量(mAh/g) 452.4 446.1 438.7 401.9
首次效率(%) 92.1 91.8 91.3 88.7
从表1可以看出,采用实施例1~3所得负极材料制得的扣电电池,其放电容量及效率都明显高于对比例。实验结果表明,本发明的负极材料能使电池具有良好的放电容量和效率;原因在于:掺杂硅提高了材料的克容量,同时多孔结构的硅材料可以吸收更多的电解液,从而提高材料的克容量和首次效率
(2)软包电池测试
分别以实施例1、实施例2、实施例3和对比例所得材料作为负极材料,以磷酸铁锂为正极材料,采用LiPF6/EC+DEC(体积比1:1)为电解液,Celgard 2400膜为隔膜,制备出5AH软包电池C1、C2、C3、D及其相对应的负极极片,并测试其负极极片的吸液保液能力、及其软包电池的循环性能。
软包电池测试如表2、3和图1所示。
表2不同材料的吸液保液能力对比表
对象 吸液速度(ml/min) 保液率(24h电解液量/0h电解液量)
实施例1 6.7 92.3%
实施例2 6.6 92.2%
实施例3 6.1 91.4%
对比例 3.1 85.7%
从表2可以看出,实施例1~3所得负极材料的吸液保液能力明显高于对比例。实验结果表明,本发明的负极材料具有较高的吸液保液能力,原因在于:实施例制备出的材料具有多孔结构具有较大的比表面积,从而提高其材料的吸液保液能力。
表3不同材料的循环比较图
Figure SMS_1
从表3可以看出,采用实施例1~3所得负极材料制备的软包电池在多次循环后的容量及容量保持率均高于对比例,容量衰减速度与衰减率明显低于对比例。实验结果表明,采用本发明的负极材料所得电池具有良好的循环性能,原因在于:本发明的负极材料中存在较多的纳米、微米孔,提高了材料的吸液保液能力;同时由于外层包覆的偏铝酸锂又可以提高材料的锂离子传输速率,并最终提高材料的循环性能。

Claims (2)

1.一种硅碳复合负极材料,其特征是:由内核、中间层和外层组成,呈核壳结构;所述的内核为多孔Si@C球状材料,中间层为偏铝酸锂混合材料,外层为炭层;
所述的偏铝酸锂混合材料是采用以下材料比例混合而成:
偏铝酸锂1~10g、石墨烯1~10g、粘结剂10~20g、溶剂100~200mL;
所述的粘结剂为聚偏氟乙烯、溶剂为N-甲基吡咯烷酮。
2.根据权利要求1所述的一种硅碳复合负极材料,其特征是:所述的硅碳复合负极材料的制备方法依次有:球状SiO2前驱体制备步骤、SiO2@C球的制备步骤、多孔Si@C球状复合材料制备步骤;
步骤①球状SiO2前驱体的制备:
在磁力搅拌下,向100ml乙醇、6mL H2O,0.6mL NH3·H2O的混合液体中缓慢滴加1~5mL四乙基原硅酸盐(TEOS),搅拌5h后离心洗涤、烘干待用,得到球状SiO2前驱体;
步骤②SiO2@C球的制备:
将0.2~0.8g的球状SiO2前驱体与0.05~0.2g的聚偏氟乙烯PVDF粉末混合均匀后分散在6mL的N-甲基吡咯烷酮(NMP)中,之后在烘箱中120℃真空干燥2h,随后将干燥的样品放入管式炉中,并在氮气气氛下400~600℃煅烧1~3h,即可得到中间产物SiO2@C球;
步骤③多孔Si@C球状复合材料的制备:
将30~50g的SiO2@C球和30~50g镁粉均匀混合,并放置在500ml的偏铝酸锂混合液中浸泡1h,之后在氩气气氛中500~800℃煅烧4~8h,将煅烧后得到的产物用1mol/L的HC1处理,即得到产物多孔Si@C球状复合材料。
CN201611087259.XA 2016-12-01 2016-12-01 一种硅碳复合负极材料及其制备方法 Active CN108134051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611087259.XA CN108134051B (zh) 2016-12-01 2016-12-01 一种硅碳复合负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611087259.XA CN108134051B (zh) 2016-12-01 2016-12-01 一种硅碳复合负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108134051A CN108134051A (zh) 2018-06-08
CN108134051B true CN108134051B (zh) 2023-06-06

Family

ID=62388019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611087259.XA Active CN108134051B (zh) 2016-12-01 2016-12-01 一种硅碳复合负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108134051B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784680A (zh) * 2016-12-20 2017-05-31 山东精工电子科技有限公司 一维硅碳负极材料及其制备方法
CN111697219B (zh) * 2020-06-30 2023-04-21 深圳市金牌新能源科技有限责任公司 一种硅碳复合材料及其制备方法、负极及其应用
CN112928259B (zh) * 2021-02-09 2022-05-24 中创新航技术研究院(江苏)有限公司 石墨材料及其制备方法和应用
CN115548325B (zh) * 2022-11-29 2023-03-14 瑞浦兰钧能源股份有限公司 一种硅负极材料及其制备方法和应用
CN117352704B (zh) * 2023-11-30 2024-06-25 瑞浦兰钧能源股份有限公司 一种硅负极材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311524A (zh) * 2013-06-26 2013-09-18 冯林杰 一种碳硅包覆LiAlO2复合负极材料的制备方法
CN104332632A (zh) * 2014-08-22 2015-02-04 新乡远东电子科技有限公司 一种锂离子电池硅碳负极材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515640B (zh) * 2008-02-22 2011-04-20 比亚迪股份有限公司 一种负极和包括该负极的锂离子二次电池
US9139441B2 (en) * 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311524A (zh) * 2013-06-26 2013-09-18 冯林杰 一种碳硅包覆LiAlO2复合负极材料的制备方法
CN104332632A (zh) * 2014-08-22 2015-02-04 新乡远东电子科技有限公司 一种锂离子电池硅碳负极材料及其制备方法

Also Published As

Publication number Publication date
CN108134051A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN113130896B (zh) 一种钠离子电池用正极材料及包括该正极材料的钠离子电池
CN108134051B (zh) 一种硅碳复合负极材料及其制备方法
CN107994225B (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
WO2022166059A1 (zh) 一种硼掺杂树脂包覆人造石墨材料
CN104934579B (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
CN103456929A (zh) 一种锂硫电池正极材料及其制备方法
CN104332632A (zh) 一种锂离子电池硅碳负极材料及其制备方法
CN110854379B (zh) 一种硅碳复合负极材料及其制备方法、负极极片、锂离子电池
CN109659511B (zh) 一种SiO2包覆三元正极材料及其制备方法
CN106058173A (zh) 一种锂硫电池用类石墨烯碳材料/硫复合正极材料及其制备方法和应用
CN105355849A (zh) 锂电池负极添加剂、锂离子电池、制备方法及应用
CN105226267B (zh) 三维碳纳米管修饰尖晶石镍锰酸锂材料及其制备方法和应用
CN107968195A (zh) 一种磷酸铁锂包覆的富锂正极材料及其制备方法
CN108134052B (zh) 一种动力电池所用高容量硅碳负极材料及其制备方法
CN114695894A (zh) 一种高容量硬碳快充负极材料及其制备方法和应用
CN108923046B (zh) 一种纳米多孔富锂磷酸铁锂材料的制备方法
CN105633403A (zh) 一种高倍率磷酸铁锂正极材料及其制备方法
CN111029549A (zh) 一种高性能锂离子电池负极结构及其制备方法
CN111180704A (zh) 一种钠离子电池正极材料及其制备方法和应用
CN108390025B (zh) 一种石墨烯包覆的碳/硫复合材料及其制备方法
CN108963245A (zh) 一种层片状介孔四氧化三钴电极材料及其制备方法
CN105047894A (zh) 一种卤素掺杂的碳硅纳米材料的制备方法及其应用
CN116544376A (zh) 一种低膨胀硅碳材料及其制备方法
CN108281629B (zh) 使用石墨烯包覆的碳纳米纤维/硫复合材料作为正极材料的锂硫电池
CN108417787B (zh) 一种石墨烯包覆的碳纳米纤维/硫复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 012400 factory area of original Huacheng company, Baizhen building materials chemical industry park, Chahar right wing rear banner, Wulanchabu City, Inner Mongolia Autonomous Region

Applicant after: Inner Mongolia Xinyuan graphene Technology Co.,Ltd.

Address before: 012400 factory area of original Huacheng company, Baizhen building materials chemical industry park, Chahar right wing rear banner, Wulanchabu City, Inner Mongolia Autonomous Region

Applicant before: INNER MONGOLIA XIN YUAN GRAPHENE TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant