CN108132288A - 一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法 - Google Patents

一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法 Download PDF

Info

Publication number
CN108132288A
CN108132288A CN201711399709.3A CN201711399709A CN108132288A CN 108132288 A CN108132288 A CN 108132288A CN 201711399709 A CN201711399709 A CN 201711399709A CN 108132288 A CN108132288 A CN 108132288A
Authority
CN
China
Prior art keywords
muc1
solution
mucoproteins
immunosensor
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711399709.3A
Other languages
English (en)
Other versions
CN108132288B (zh
Inventor
毛昌杰
柳星培
韦玉平
牛和林
宋吉明
金葆康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201711399709.3A priority Critical patent/CN108132288B/zh
Publication of CN108132288A publication Critical patent/CN108132288A/zh
Application granted granted Critical
Publication of CN108132288B publication Critical patent/CN108132288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Peptides Or Proteins (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明公开了一种检测MUC1粘蛋白的光电化学免疫传感器及其制备方法和检测方法,该免疫传感器是在FTO导电玻璃电极的表面覆盖有二氧化钛纳米颗粒/铕掺杂硫化镉量子点,在二氧化钛纳米颗粒/铕掺杂硫化镉量子点表面通过硫‑镉键固定有基础碱基序列,基础碱基序列通过碱基互补配对连接有可与目标物MUC1粘蛋白发生特异性识别的互补碱基序列,互补碱基序列与通过1‑乙基‑3‑(3‑二甲基氨基丙基)碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺处理后的信号放大因子硫化镉量子点连接。本发明通过光电化学免疫传感器实现了对MUC1粘蛋白的检测,方法简单、灵敏度高、易于操作。

Description

一种检测MUC1粘蛋白的光电化学免疫传感器及其制备方法和 检测方法
技术领域
本发明涉及一种检测MUC1粘蛋白的光电化学免疫传感器及其制备方法和检测方法,更具体地说是涉及一种基于二氧化钛纳米颗粒/铕掺杂硫化镉量子点(TiO2/CdS:Eu)复合电极的光电化学免疫传感器。
背景技术
量子点(QDs)因其独特的光学、光化学以及电学性能备受关注,尤其是在生物探针和光电材料等方面。到目前为止,已经有多种量子点应用于光电化学方面,如TiO2、ZnO、ZnSe、CdS、CdTe和CdSe等[Fan,G.C.,Ren,X.L.,Zhu,C.,Zhang,J.R.,Zhu,J.J.,Biosens.Bioelectron.,2014,59,45.]。然而单独的量子点具有一些不可避免的缺陷,如具有比较强的自淬灭以及对热和化学干扰比较敏感等,这大大限制了量子点的应用。因此对量子点进行功能化修饰,增强其生物相容性并降低带隙,使其在光电化学领域可以得到更好地应用。
光电化学是指在光的照射下,光被电极材料或者电极附近溶液中的反应剂吸收,造成能量累积或促使电极反应发生,体现为光能与电能和化学能的转换,具有仪器简单、分析速度快、分析范围广和高灵敏度等很多优点。近年来,光电化学作为一种新兴分析技术吸引了极大地关注,并得到了迅速发展[Fan,G.C.,Han,L.,Zhang,J.R.,Zhu,J.J.,Anal.Chem.2014,86,10877.]。然而传统的光电化学材料光能利用率低,生物相容性差等问题限制了其在生命分析化学中的应用,因此,寻找新型高效、价廉、生物相容性好的光电化学电极材料仍是构建光电化学免疫传感器的重要研究目标。
粘蛋白是一种高糖基化、高分子量的蛋白质,由大多数后生动物的上皮组织产生。它们通过产生凝胶基质利用完整的跨膜结构域与细胞结合。粘蛋白1(MUC1)是粘液层的主要成分,它通常在人体上皮细胞产生。MUC1是一种广为人知的肿瘤标志物,会在各种恶性肿瘤细胞中产生[Guo,P.,Xiong,J.,Zheng,D.,Zhang,W.H.,Liu,L.,Wang,S.F.,Gu,H.S.,RSCAdv.,2015,5,66355.],并会在各种不同来源的上皮癌细胞,如:乳腺癌、胃癌、结肠癌、肺癌、前列腺癌、卵巢癌、胰腺癌和膀胱癌等中过表达。由于在肿瘤患者的血清中发现MUC1,因此肿瘤患者血清中的MUC1增加使得MUC1的血清检测可用于肿瘤检测[He,Y.,Lin,Y.,Tang,H.W.,Pang,D.W.,Nanoscale 4,2012,2054.]。传统的检测MUC1粘蛋白的方法是酶联免疫法。该方法虽然准确,但是它的检测步骤繁琐、分析时间长、样品消耗量大、需要专业的实验室,且需要昂贵的仪器和专门的底物显色剂,不利于进行现场检测。因此,急需发展一种简单、快速和高灵敏度的分析方法实现人MUC1粘蛋白的快速检测。
将二氧化钛纳米颗粒与铕掺杂硫化镉量子点结合起来,制备层层组装修饰电极,可充分发挥二者优点,扩大光谱吸收范围,提高光能利用率并增强稳定性,是发展光电化学免疫传感器的新型策略,在免疫生物学和临床诊断等领域将会有广阔的应用前景。目前基于二氧化钛纳米颗粒/铕掺杂硫化镉量子点的光电化学免疫传感器还尚无报道。
发明内容
本发明为解决上述现有技术所存在的不足之处,提供一种基于二氧化钛纳米颗粒/铕掺杂硫化镉量子点的检测MUC1粘蛋白的光电化学免疫传感器及其制备方法和检测方法,以期可以以高光电化学电流、高生物相容性的光电化学免疫传感器实现对MUC1粘蛋白的简单、快速的检测。
本发明解决技术问题采用如下技术方案:
本发明首先公开了一种检测MUC1粘蛋白的光电化学免疫传感器,其特点在于:所述免疫传感器是在FTO导电玻璃电极的表面覆盖有二氧化钛纳米颗粒/铕掺杂硫化镉量子点,在所述二氧化钛纳米颗粒/铕掺杂硫化镉量子点表面通过硫-镉键固定有基础碱基序列(5’-SH-(CH2)6-TTT C CAG GGT ATC CA-3’),所述基础碱基序列通过碱基互补配对连接有可与目标物MUC1粘蛋白发生特异性识别的互补碱基序列(5’-NH2-(CH2)6-GCA GTT GAT CCTTTG GAT ACC CTG G-3’),所述互补碱基序列与通过1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺处理后的信号放大因子硫化镉量子点连接。
本发明检测MUC1粘蛋白的光电化学免疫传感器,其结构特点也在于:所述二氧化钛纳米颗粒/铕掺杂硫化镉量子点是以二氧化钛P25原材料,通过煅烧反应得到二氧化钛纳米颗粒修饰电极,再通过连续离子层吸附反应在二氧化钛纳米颗粒修饰电极表面吸附合成铕掺杂硫化镉量子点。
如图1所示,本发明检测MUC1粘蛋白的光电化学免疫传感器的制备方法,是按如下步骤进行:
步骤一、将FTO导电玻璃分别用丙酮、水和乙醇超声清洗,然后在60℃条件下干燥过夜,得到FTO导电玻璃电极备用,有效工作面积为45mm2
步骤二、将200mg二氧化钛分散在100mL去离子水中,超声处理0.5h后得到均匀分散的二氧化钛溶液;
步骤三、在步骤一清洗好的FTO导电玻璃电极表面均匀滴加36μL步骤二所制备的二氧化钛溶液,室温晾干后,在450℃的马弗炉中煅烧0.5h,得到二氧化钛纳米颗粒修饰电极;
步骤四、分别配制0.1mol/L的硝酸镉甲醇溶液,0.08mol/L的硝酸铕甲醇溶液和0.1mol/L的硫化钠甲醇-水溶液(V甲醇:V=1:1);取15μL硝酸铕甲醇溶液加入到4mL硝酸镉甲醇溶液中搅拌均匀获得混合阳离子溶液,另取4mL硫化钠甲醇-水溶液作为阴离子溶液;将步骤三中制备的二氧化钛纳米颗粒修饰电极依次浸入到混合阳离子溶液和阴离子溶液中各4min,循环6次,得到二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极;
步骤五、在步骤四所制备的二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极上滴加36μL巯基修饰的基础碱基序列,反应12-13小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;然后滴加36μL、10-15mmol/L的6-巯基己-1-醇溶液封闭1-2小时,取出用10mmol/L、pH7.4的磷酸缓冲溶液冲洗;再滴加36μL可与目标物MUC1粘蛋白发生特异性识别的氨基修饰的互补碱基序列,反应1小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;最后滴加36μL用20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL的N-羟基琥珀酰亚胺的混合溶液活化处理过的硫化镉量子点,反应1小时,取出后用10mmol/L、pH7.4的磷酸缓冲溶液冲洗清洗,即得到检测MUC1粘蛋白的光电化学免疫传感器。
其中,步骤五中,所述的用20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL N-羟基琥珀酰亚胺的混合溶液活化处理过的硫化镉量子点是按如下方法获得:
将172μL的三巯基丙酸加入到40mL浓度为20mmol/L的氯化镉水溶液中,用1mol/L的氢氧化钠调节溶液pH到11,然后通氮气搅拌十五分钟,再加入40mL浓度为20mmol/L的硫代乙酰胺水溶液,室温下搅拌均匀;随后在80℃中反应2h,自然冷却,反应产物用乙醇沉降离心一次,并定容到8mL,获得硫化镉量子点的溶液;
配制含20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL的N-羟基琥珀酰亚胺的混合溶液,按照硫化镉量子点的溶液与混合溶液体积比为5:1,将所述混合溶液加入到硫化镉量子点的溶液中,以活化硫化镉量子点,即获得目标产品。
利用上述的免疫传感器检测MUC1粘蛋白的检测方法,其特点在于,按如下步骤获得待测MUC1粘蛋白的样品浓度:
步骤a、向所述检测MUC1粘蛋白的光电化学免疫传感器表面滴加36μL待测MUC1粘蛋白样品,在37℃下温育1小时,然后取出并用10mmol/L、pH7.4的磷酸缓冲溶液冲洗,得到待测免疫传感器;
步骤b、将步骤a所得的待测免疫传感器在含有0.1mol/L AA的0.1mol/L的pH7.4的磷酸缓冲溶液中进行光电化学测试,获得待测MUC1粘蛋白样品的光电流强度,利用光电流强度与MUC1粘蛋白样品浓度的标准关系曲线,判断待测MUC1粘蛋白样品的浓度。
其中,所述标准关系曲线是通过对以浓度分别1nmol/L、5nmol/L、50nmol/L、500nmol/L、1000nmol/L和5000nmol/L的MUC1粘蛋白样品所制备的待测免疫传感器进行光电化学的测试,获得各浓度MUC1粘蛋白样品所对应的光电流强度。如图2所示,各线条所对应浓度从左到右各线条分别为:1nmol/L、5nmol/L、50nmol/L、500nmol/L、1000nmol/L和5000nmol/L;然后以MUC1粘蛋白样品的浓度的对数值为横坐标、以光电流强度为纵坐标进行拟合,如图2的插图所示,标准关系曲线为I(μA)=103.6551-9.1938log CMUC1(nM)。检测表明当MUC1粘蛋白样品浓度在1到5000nmol/L范围内,光电流强度随着MUC1粘蛋白样品浓度的增大而降低,与浓度成线性关系,检测限达到0.3nmol/L。
所述光电化学测试是以所述免疫传感器为工作电极、以Pt电极为对电极、以饱和氯化银电极为参比电极的三电极体系,以250W氙灯为光源,波长范围为280-1000nm,外加电压为0V,用CHI660D型电化学工作站记录电流变化。
与已有技术相比,本发明的有益效果体现在:
1、本发明通过光电化学免疫传感器实现了对MUC1粘蛋白的检测,方法简单、灵敏度高、易于操作;
2、本发明对MUC1粘蛋白的检测方法所需样品量少,检测成本低;
3、本发明通过二氧化钛纳米颗粒/铕掺杂硫化镉量子点制备光电化学免疫传感器,光电化学电流高,生物相容性好,且具有极好的稳定性。
附图说明
图1为本发明检测MUC1粘蛋白的光电化学免疫传感器的制备流程示意图;
图2为本发明对浓度分别为1nmol/L、5nmol/L、50nmol/L、500nmol/L、1000nmol/L和5000nmol/L的MUC1粘蛋白样品进行光电化学转换的测试结果,插图为标准关系曲线;
图3为本发明中二氧化钛纳米颗粒修饰电极的扫描电子显微镜(SEM)表征结果;
图4为本发明中二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极的扫描电子显微镜(SEM)表征结果。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
下述实施例所用各原料如无特别说明,均为市场购得。
实施例1
本实施例首先按照如下步骤制备检测MUC1粘蛋白的光电化学免疫传感器:
步骤一、将FTO导电玻璃分别用丙酮、水和乙醇超声清洗,然后在60℃条件下干燥过夜,得到FTO导电玻璃电极备用(有效工作面积为45mm2);
步骤二、将200mg二氧化钛分散在100mL去离子水中,超声处理0.5h后得到均匀分散的二氧化钛溶液;
步骤三、在步骤一清洗好的FTO导电玻璃电极表面均匀滴加36μL步骤二所制备的二氧化钛溶液,室温晾干后,在450℃的马弗炉中煅烧0.5h,得到二氧化钛纳米颗粒修饰电极;二氧化钛纳米颗粒修饰电极的扫描电子显微镜(SEM)表征结果如图3所示;
步骤四、分别配制0.1mol/L的硝酸镉甲醇溶液,0.08mol/L的硝酸铕甲醇溶液和0.1mol/L的硫化钠甲醇-水溶液(V甲醇:V=1:1);取15μL硝酸铕甲醇溶液加入到4mL硝酸镉甲醇溶液中搅拌均匀获得混合阳离子溶液,另取4mL硫化钠甲醇-水溶液作为阴离子溶液;将步骤三种制备的二氧化钛纳米颗粒修饰电极依次浸入到混合阳离子溶液和阴离子溶液中各4min,循环6次,得到二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极;二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极的扫描电子显微镜(SEM)表征结果如如图4所示;
步骤五、在步骤四所制备的二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极上滴加36μL巯基修饰的基础碱基序列反应12小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;再滴加36μL、10mmol/L的6-巯基己-1-醇溶液封闭1小时,取出后用10mmol/L、pH7.4的磷酸缓冲溶液冲洗;再滴加36μL可与目标物MUC1粘蛋白发生特异性识别的氨基修饰的互补碱基序列,反应1小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;最后滴加36μL用20mg/mL1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和10mg/mL N-羟基琥珀酰亚胺(NHS)活化处理过的硫化镉量子点,反应1小时,取出后用10mmol/L、pH7.4的磷酸缓冲溶液冲洗,即得到检测MUC1粘蛋白的光电化学免疫传感器。
利用本实施例的免疫传感器,检测MUC1粘蛋白的方法如下:
步骤a、向检测MUC1粘蛋白的光电化学免疫传感器表面滴加36μL待测MUC1粘蛋白样品,37℃下温育1小时,然后取出并用10mmol/L、pH7.4的磷酸缓冲溶液冲洗,得到待测免疫传感器;
步骤b、将步骤a所得的待测免疫传感器在含有0.1mol/L AA的0.1mol/L、pH7.4的磷酸缓冲溶液中进行光电化学测试,获得待测MUC1粘蛋白样品的光电流强度,利用光电流强度与MUC1粘蛋白样品浓度的标准关系曲线,判断待测MUC1粘蛋白样品的浓度。
为验证本实施例方法的可行性,取已知浓度分别为1nmol/L、5nmol/L、50nmol/L、500nmol/L、1000nmol/L和5000nmol/L的待测MUC1粘蛋白样品,利用本实施例的免疫传感器按上述方法分别检测、计算各样品的浓度,依次为1.1220nmol/L、5.1280nmol/L、49.0616nmol/L、496.5923nmol/L、1051.5193nmol/L、5011.8723nmol/L,可以看出所制备免疫传感器对目标物MUC1粘蛋白有快速、灵敏、准确及高效的检测。
实施例2
本实施例是以浓度为30mg/mL的EDC按与实施例1相同的方法制备免疫传感器,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同待测MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
实施例3
本实施例是以浓度为20mg/mL的NHS按与实施例1相同的方法制备免疫传感器,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同待测MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
实施例4
本实施例将实施例1中步骤五“最后滴加36μL用20mg/mL 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10mg/mLN-羟基琥珀酰亚胺活化处理过的硫化镉量子点”改为“最后滴加36μL用30mg/mL 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和20mg/mL N-羟基琥珀酰亚胺活化处理过的硫化镉量子点”,其余条件步骤与实施例1相同,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同待测MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
实施例5
本实施例将实施例1中步骤五“在步骤四所制备的二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极上滴加36μL巯基修饰的基础碱基序列反应12小时”改为反应13小时,其余条件步骤与实施例1相同,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
实施例6
本实施例将实施例1中的步骤五所用的浓度为10mmol/L的6-巯基己-1-醇溶液改为浓度为15mmol/L的6-巯基己-1-醇溶液,其余条件步骤与实施例1相同,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同待测MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
实施例7
本实施例将将实施例1中的步骤五“再滴加36μL、10mmol/L的6-巯基己-1-醇溶液封闭1小时”改为封闭2小时,其余条件步骤与实施例1相同,所得免疫传感器与实施例1所得免疫传感器的形貌与性质类似,通过对相同待测MUC1粘蛋白样品的检测,得到相同的免疫检测结果。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种检测MUC1粘蛋白的光电化学免疫传感器,其特征在于:所述免疫传感器是在FTO导电玻璃电极的表面覆盖有二氧化钛纳米颗粒/铕掺杂硫化镉量子点,在所述二氧化钛纳米颗粒/铕掺杂硫化镉量子点表面通过硫-镉键固定有基础碱基序列,所述基础碱基序列通过碱基互补配对连接有可与目标物MUC1粘蛋白发生特异性识别的互补碱基序列,所述互补碱基序列与通过1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺处理后的信号放大因子硫化镉量子点连接。
2.根据权利要求1所述的检测MUC1粘蛋白的光电化学免疫传感器,其特征在于:所述二氧化钛纳米颗粒/铕掺杂硫化镉量子点是以现有二氧化钛P25为原材料,通过煅烧反应得到二氧化钛纳米颗粒修饰电极,再通过连续离子层吸附反应在所述二氧化钛纳米颗粒修饰电极表面吸附合成铕掺杂硫化镉量子点而获得。
3.一种权利要求1或2所述的检测MUC1粘蛋白的光电化学免疫传感器的制备方法,其特征在于,按如下步骤进行:
步骤一、将FTO导电玻璃分别用丙酮、水和乙醇超声清洗,然后在60℃条件下干燥过夜,得到FTO导电玻璃电极备用,有效工作面积为45mm2
步骤二、将200mg二氧化钛分散在100mL去离子水中,超声处理0.5h后得到均匀分散的二氧化钛溶液;
步骤三、在步骤一清洗好的FTO导电玻璃电极表面均匀滴加36μL步骤二所制备的二氧化钛溶液,室温晾干后,在450℃的马弗炉中煅烧0.5h,得到二氧化钛纳米颗粒修饰电极;
步骤四、分别配制0.1mol/L的硝酸镉甲醇溶液、0.08mol/L的硝酸铕甲醇溶液和0.1mol/L的硫化钠甲醇-水溶液,所述甲醇-水由甲醇和水按体积比1:1混合而成;取15μL硝酸铕甲醇溶液加入到4mL硝酸镉甲醇溶液中搅拌均匀获得混合阳离子溶液,另取4mL硫化钠甲醇-水溶液作为阴离子溶液;将步骤三中制备的二氧化钛纳米颗粒修饰电极依次浸入到混合阳离子溶液和阴离子溶液中各4min,循环6次,得到二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极;
步骤五、在步骤四所制备的二氧化钛纳米颗粒/铕掺杂硫化镉量子点修饰电极上滴加36μL巯基修饰的基础碱基序列,反应12-13小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;然后滴加36μL、10-15mmol/L的6-巯基己-1-醇溶液封闭1-2小时,取出后用10mmol/L、pH7.4的磷酸缓冲溶液冲洗;再滴加36μL可与目标物MUC1粘蛋白发生特异性识别的氨基修饰的互补碱基序列,反应1小时,取出后用10mmol/L、pH8.0的TE缓冲溶液冲洗;最后滴加36μL用20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL的N-羟基琥珀酰亚胺的混合溶液活化处理过的硫化镉量子点,反应1小时,取出后用10mmol/L、pH7.4的磷酸缓冲溶液冲洗,即得到检测MUC1粘蛋白的光电化学免疫传感器。
4.根据权利要求3所述的制备方法,其特征在于:步骤五中,所述的用20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL N-羟基琥珀酰亚胺的混合溶液活化处理过的硫化镉量子点是按如下方法获得:
将172μL的三巯基丙酸加入到40mL浓度为20mmol/L的氯化镉水溶液中,用1mol/L的氢氧化钠调节溶液pH到11,然后通氮气搅拌十五分钟,再加入40mL浓度为20mmol/L的硫代乙酰胺水溶液,室温下搅拌均匀;随后在80℃中反应2h,自然冷却,反应产物用乙醇沉降离心一次,并定容到8mL,获得硫化镉量子点的溶液;
配制含20-30mg/mL的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐和10-20mg/mL的N-羟基琥珀酰亚胺的混合溶液,按照硫化镉量子点的溶液与混合溶液体积比为5:1,将所述混合溶液加入到硫化镉量子点的溶液中,以活化硫化镉量子点,即获得目标产品。
5.一种利用权利要求1或2所述的免疫传感器检测MUC1粘蛋白的检测方法,其特征在于,按如下步骤获得待测MUC1粘蛋白样品的浓度:
步骤a、向所述检测MUC1粘蛋白的光电化学免疫传感器表面滴加36μL待测MUC1粘蛋白样品,37℃下温育1小时,然后取出并用10mmol/L、pH7.4的磷酸缓冲溶液冲洗,得到待测免疫传感器;
步骤b、将步骤a所得的待测免疫传感器在含有0.1mol/L AA的0.1mol/L、pH7.4的磷酸缓冲溶液中进行光电化学测试,获得待测MUC1粘蛋白样品的光电流强度,利用光电流强度与MUC1粘蛋白样品浓度的标准关系曲线,判断待测MUC1粘蛋白样品的浓度。
6.根据权利要求5所述的检测方法,其特征在于:所述标准关系曲线是通过对以浓度分别1nmol/L、5nmol/L、50nmol/L、500nmol/L、1000nmol/L和5000nmol/L的MUC1粘蛋白样品所制备的待测免疫传感器进行光电化学的测试,获得各浓度MUC1粘蛋白样品所对应的光电流强度,然后以MUC1粘蛋白样品的浓度的对数值为横坐标、以光电流强度为纵坐标进行拟合获得。
CN201711399709.3A 2017-12-22 2017-12-22 一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法 Active CN108132288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711399709.3A CN108132288B (zh) 2017-12-22 2017-12-22 一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711399709.3A CN108132288B (zh) 2017-12-22 2017-12-22 一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法

Publications (2)

Publication Number Publication Date
CN108132288A true CN108132288A (zh) 2018-06-08
CN108132288B CN108132288B (zh) 2019-09-27

Family

ID=62391486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711399709.3A Active CN108132288B (zh) 2017-12-22 2017-12-22 一种检测muc1粘蛋白的光电化学免疫传感器及其制备方法和检测方法

Country Status (1)

Country Link
CN (1) CN108132288B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709176A (zh) * 2019-02-26 2019-05-03 济南大学 一种甲胎蛋白光致电化学传感器的构建

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914142A (zh) * 2015-04-23 2015-09-16 台州学院 一种基于光电化学传感的Cu2+检测方法
CN105353006A (zh) * 2015-11-11 2016-02-24 安徽理工大学 一种光电传感器及其工作电极的制备方法和应用
CN107064509A (zh) * 2017-04-21 2017-08-18 济南大学 检测癌胚抗原的光电化学免疫传感器的制备及应用
CN107121462A (zh) * 2017-04-20 2017-09-01 济南大学 一种硫化铜/二氧化硅双重减弱硫化镉/碳掺杂二氧化钛胰岛素光电化学传感器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914142A (zh) * 2015-04-23 2015-09-16 台州学院 一种基于光电化学传感的Cu2+检测方法
CN105353006A (zh) * 2015-11-11 2016-02-24 安徽理工大学 一种光电传感器及其工作电极的制备方法和应用
CN107121462A (zh) * 2017-04-20 2017-09-01 济南大学 一种硫化铜/二氧化硅双重减弱硫化镉/碳掺杂二氧化钛胰岛素光电化学传感器的制备方法
CN107064509A (zh) * 2017-04-21 2017-08-18 济南大学 检测癌胚抗原的光电化学免疫传感器的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO-CHAO FAN ET AL.: "Enhanced Photoelectrochemical Strategy for Ultrasensitive DNA Detection Based on Two Different Sizes of CdTe Quantum Dots Cosensitized TiO2/CdS:Mn Hybrid Structure", 《ANALYTICAL CHEMISTRY》 *
黄亚辉 等: "CdS/Eu3+-TiO2复合光催化剂制备及性能研究", 《有色金属(冶炼部分)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709176A (zh) * 2019-02-26 2019-05-03 济南大学 一种甲胎蛋白光致电化学传感器的构建

Also Published As

Publication number Publication date
CN108132288B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
Tang et al. Sensitive enzymatic glucose detection by TiO 2 nanowire photoelectrochemical biosensors
Li et al. Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen
Zhou et al. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots
Zhai et al. Near-infrared-light-triggered photoelectrochemical biosensor for detection of alpha-fetoprotein based on upconversion nanophosphors
Wang et al. Ultrasensitive photoelectrochemical immunosensor for insulin detection based on dual inhibition effect of CuS-SiO2 composite on CdS sensitized C-TiO2
Park et al. Glutathione-decorated fluorescent carbon quantum dots for sensitive and selective detection of levodopa
Zuo et al. An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching
CN106501336A (zh) 一种光电化学传感器及其制备与应用
Liu et al. Hollow In2O3/In2S3 nanocolumn-assisted molecularly imprinted photoelectrochemical sensor for glutathione detection
CN104764737B (zh) 一种基于绿光辐射量子点的单色ecl免疫检测方法
Sun et al. Sensitive electrogenerated chemiluminescence biosensing method for the determination of DNA hydroxymethylation based on Ru (bpy) 32+-doped silica nanoparticles labeling and MoS2-poly (acrylic acid) nanosheets modified electrode
Huang et al. Electrochemiluminescent sensor based on Ru (bpy) 32+-doped silica nanoprobe by incorporating a new co-reactant NBD-amine for selective detection of hydrogen sulfide
Truta et al. A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination
CN111965355B (zh) 一种阴极光电化学免疫传感器及其制备方法与应用
Fan et al. Robust photoelectrochemical cytosensor in biological media using antifouling property of zwitterionic peptide
Guo et al. A label-free three potential ratiometric electrochemiluminescence immunosensor for cardiac troponin I based on N-(4-aminobutyl)-N-ethylisoluminol functionalized graphene quantum dots
Li et al. Colorimetric and fluorescent dual-mode measurement of blood glucose by organic silicon nanodots
Chen et al. Fluorescence resonance energy transfer from NaYF4: Yb, Er to nano gold and its application for glucose determination
Liu et al. An NIR light-responsive “on-off-on” photoelectrochemical aptasensor for carcinoembryonic antigen assay based on Y-shaped DNA
Zhang et al. Glucose oxidase-directed, instant synthesis of Mn-doped ZnS quantum dots in neutral media with retained enzymatic activity: mechanistic study and biosensing application
CN111273014B (zh) 一种检测前列腺特异性抗原的光电化学免疫传感器及其制备方法
Lee et al. 3D interior hotspots embedded with viral lysates for rapid and label-free identification of infectious diseases
CN109852383B (zh) 基于富勒烯的快速高效响应谷胱甘肽的荧光探针及其制备方法和应用
Shang et al. Non-enzymatic photoelectrochemical sensors based on Schiff base and chitosan co-decorated TiO2 nanosheets for dopamine detection
Li et al. “Signal-off” photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant