CN108117036A - 多设备换能器模块、包括换能器模块的电子装置以及用于制造换能器模块的方法 - Google Patents

多设备换能器模块、包括换能器模块的电子装置以及用于制造换能器模块的方法 Download PDF

Info

Publication number
CN108117036A
CN108117036A CN201710481578.7A CN201710481578A CN108117036A CN 108117036 A CN108117036 A CN 108117036A CN 201710481578 A CN201710481578 A CN 201710481578A CN 108117036 A CN108117036 A CN 108117036A
Authority
CN
China
Prior art keywords
transducer
sensing element
mems transducer
support substrate
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710481578.7A
Other languages
English (en)
Inventor
M·O·格西多尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Publication of CN108117036A publication Critical patent/CN108117036A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0061Packages or encapsulation suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0067Packages or encapsulation for controlling the passage of optical signals through the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Micromachines (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

一种换能器模块(11),包括:衬底(23);在该衬底上的帽盖(27),该帽盖限定腔室(8);以及在该腔室(8)中的传感器模块(21),该传感器模块集成面向该腔室(8)的第一MEMS换能器(12’;53)和面向该支撑衬底(23)的第二MEMS换能器(12”;54)。该帽盖具有第一开口(39),该第一开口形成仅用于该第一环境量朝向该第一换能器的敏感元件的接入路径,并且该支撑衬底(23)具有第二开口(49),该第二开口形成仅用于该第二环境量朝向该第二换能器的敏感元件的接入路径。

Description

多设备换能器模块、包括换能器模块的电子装置以及用于制 造换能器模块的方法
技术领域
本发明涉及一种换能器模块、一种包括换能器模块的电子装置、以及一种用于制造换能器模块的方法。具体地,换能器模块容纳有被设计成用于对待检测环境量执行差分测量和绝对测量的多个设备。
背景技术
如已知的,MEMS(微机电系统)型压力换能器(或传感器)包括膜敏感结构,该膜敏感结构能够将环境压力的值换能成电量并且包括悬置在设置在硅体中的空腔之上的薄膜。扩散在膜内的是连接在一起以形成惠斯通电桥的压敏电阻元件。在经受压力时,膜经历了变形,导致了压敏电阻元件的电阻改变,以及因此惠斯通电桥的不平衡。读取电子器件被设计成用于执行处理该电量的适当操作(其中的放大操作和滤波操作)以供应表示检测到的环境压力的电输出信号(例如,电压)。
被设计成用于提供标识传感器本身经受的两个环境压力之间的差异的信号的差分型压力传感器是已知的。这种类型的传感器示意性地展示在图1中。参照图1,差分压力传感器10包括硅裸片1,该裸片具有环形部分2和耦合至环形部分2的顶侧的膜3(例如,圆形或四边形)。环形部分2的底侧反而例如通过粘合层耦合至保护封装体4。保护封装体4包括具有其中安装有硅裸片1的内腔室6的壳体。保护封装体4具有设置在保护封装体4的前侧上的第一贯通开口7,该第一贯通开口安排保护封装体4外部的环境与内腔室6连通。保护封装体4进一步具有设置在保护封装体4的后侧上的第二贯通开口8。安装硅裸片1使得环形部分2完全围绕第二贯通开口8,以防止与内腔室6流体连接。
差分压力传感器10因此适合安装在系统/部件中,在这些系统/部件中,第一贯通开口7直接与环境压力P1下的第一环境连通,并且第二贯通开口8直接与环境压力P2下的第二环境连通。第一贯通开口7因此形成对作用在膜3的第一侧上的压力P1的接入,导致该膜变形。第二贯通开口8形成对作用在膜3的第二侧(与第一侧相反)上的压力P2的对应接入,生成倾向于使膜3变形的力,该力抵消了压力P1所生成的力。膜3所产生的变形指示压力P1与压力P2之间的差异,并且由差分压力传感器10换能的信号为差分压力信号。
文献US 8,847,340描述了可用于对彼此隔离的环境的压力进行差分测量的已知类型的另外的差分压力传感器10。
与先前所描述的类型的传感器相关联的缺点在于以下事实:在还需要监测对应环境的绝对压力P1、P2的情况下,将有必要提供两个另外的压力传感器,一个仅经受压力P1并且另一个仅经受压力P2,或者,可替代地,提供如图1中的差分传感器、测量压力P1(或P2)的绝对传感器、以及检测压力P1与P2之间的差异和绝对压力P1(或P2)并且计算压力P2(或P1)的另外的处理芯片。在任一情况下,都将会消耗面积并且增加成本。
另一方面,在特定操作条件下(例如,在用于液压回路的控制系统中),除差分压力之外,还需要检测其中沉浸有差分传感器的环境的单独压力,例如以监测该环境的特定安全条件(例如,以防止压力P1和P2背离对应的预定义安全范围)。
可以在不同于压力传感器和换能器的类型的传感器和换能器中(例如,在用于检测光辐射(IR/UV)的传感器中)注意到上述缺点。
发明内容
本发明的目的是提供针对先前所展示的问题的解决方案。
根据本发明,因此如在所附权利要求书中所限定的提供了一种换能器模块、一种包括换能器模块的电子装置以及一种用于制造换能器模块的方法。
附图说明
为了更好地理解本发明,现在仅以非限制性示例的方式并参照附图来描述其优选实施例,在附图中:
-图1以横向截面图示出了可以用于对环境量执行差分测量的已知类型的MEMS换能器模块;
-图2以横向截面图示出了根据本公开的实施例的换能器模块,该换能器模块可以用于对环境量执行差分测量和绝对测量;
-图3以横向截面图示出了根据作为图2的实施例的替代方案的实施例的换能器模块,该换能器模块可以用于对环境量执行差分测量和绝对测量;
-图4以横向截面图示出了根据本公开的进一步实施例的换能器模块,该换能器模块可以用于对环境量执行差分测量和绝对测量;以及
-图5是根据图2至图4的实施例中的任一实施例的包括换能器模块的电子装置的示意图。
具体实施方式
参照图2,在空间坐标系X、Y和Z中以及在横向截面图中展示了根据本公开的一个方面的换能器模块11。本说明书将明确引用环境压力到电信号的换能。然而,如对本领域技术人员而言显而易见的,根据本公开的教导以类似的方式应用于不同类型的换能器。
换能器模块11包括衬底23,该衬底具有其上安排有帽盖27的顶侧23a,该帽盖限定空腔(或腔室)8。在一个实施例中,衬底23为LGA(栅格阵列)型衬底。在替代性实施例中,衬底23由半导体材料(例如,硅)制成,使用已知的微加工工艺获得。帽盖27可以由金属或预模制塑料材料制成并且具有贯通开口39,该贯通开口被设计成用于安排腔室8与其外部的环境流体连通。在本公开的上下文中,“流体连接”指的是根据生产和使用的要求使得液体和/或气体(包括空气)能够通自和通向腔室8的连接。在下文中明确地描述的进一步实施例设想不同波长的电磁辐射(IR、UV和可见频带中一个或多个)的通过。
帽盖27通过耦合区24(焊接区或胶区等)耦合至衬底23。衬底23和帽盖27一起形成封装体20。
第一芯片(或传感器芯片)21容纳在腔室8中并且集成用于将环境压力的信号换能成电信号的MEMS结构(更具体地,第一MEMS换能器12’和第二MEMS换能器12”)。具体地,在压敏电阻器的帮助下执行换能。在一个实施例中,传感器芯片21包括采用半导体材料(优选地硅,具体地例如具有晶面晶向(100)的N型单晶硅)的单体本体16。单体本体16具有例如顶部由第一表面16a界定并且底部由与第一表面16a相反且平行的第二表面16b界定的四边形截面。在一个实施例中,第一表面16a形成传感器芯片21的前侧,并且第二表面16b形成传感器芯片21的后侧。
单体本体16包括具有例如方形截面的第一掩埋空腔18。第一空腔18通过形成膜19的单体本体16的薄部与第一表面16a分离开。根据非限制性实施例,膜19的厚度小于第一空腔18的厚度,以防止可能导致膜本身失效的在膜19的约束点处的剪切应力。
存在至少部分地集成在膜19内的压敏电阻感测元件(具体地,数量为四,被安排成在膜19的中心处居中的理想交叉顶点处——未在图2中展示),这些压敏电阻感测元件例如由例如具有P型掺杂的掺杂区形成。压敏电阻感测元件可以通过适合的扩散掩模经由掺杂原子的扩散来获得并且具有例如近似于矩形的截面。进一步地,压敏电阻感测元件可以连接在一起,以形成惠斯通电桥电路。可替代地,第一压敏电阻感测元件可以形成环形振荡器电路的一部分。
单体本体16进一步包括与第一空腔18类似并且具有例如方形截面的第二掩埋空腔28。第二空腔28通过形成对应膜29的单体本体16的薄部与第二表面16b分离开。为了在膜29与封装体20外部的环境之间形成流体连接,贯通开口49延伸穿过衬底23,安排膜29与封装体20外部的环境流体连接。根据非限制性实施例,膜29的厚度小于第二空腔28的厚度,以防止可能导致膜本身失效的在膜29的约束点处的剪切应力。
至少部分地集成在膜29内的是对应的压敏电阻感测元件(具体地,数量为四,被安排成在膜29的中心处居中的理想交叉顶点处——未在图2中展示),这些压敏电阻感测元件包括例如具有P型掺杂的掺杂区。压敏电阻感测元件可以通过适合的扩散掩模经由掺杂原子的扩散来获得并且具有例如近似于矩形的截面。进一步地,压敏电阻感测元件可以连接在一起,以形成惠斯通电桥电路。可替代地,第一压敏电阻感测元件可以形成对应环形振荡器电路的一部分。
可以根据任何期望的制造工艺来获得第一空腔18和第二空腔28,在此不详细描述,因为其不形成本公开的主题。欧洲专利EP1577656描述了出于此目的而设计的用于提供掩埋空腔的方法。
在使用中,换能器模块11被配置成用于安装成使得贯通开口39定向朝向压力P1下的第一环境并且贯通开口49定向朝向压力P2下的第二环境。通常,在操作条件下,第一和第二环境彼此并不连通,使得第一环境的压力P1的值不影响第二环境的压力P2的值。
因此,膜19被配置成用于仅根据压力P1的值进行偏转,并且膜29被配置成用于仅根据压力P2的值进行偏转(不包括由于源自制造工艺的残余应力而造成的膜19、29的可能偏转)。
腔室8进一步容纳有集成处理和控制电路(具体地,ASIC(应用专用集成电路)22’)的第二处理芯片22。本身已知的ASIC 22’包括信号处理电路(例如,用于电声电容传感器的电荷放大器电路)和/或使得能够对换能器12’、12”进行适当操作(具体地关于对集成在膜19、29中或在其附近的压敏电阻元件所生成的信号进行的电气/电子换能操作)的部件。ASIC 22’通过用接线键合技术形成的对应导电接线25’(在附图中仅展示了其中一条导电接线)电耦合至第一换能器12’和第二换能器12”。接线键合25’将第一芯片21和第二芯片22的对应焊盘26a和26b连接在一起。
提供了例如用接线键合技术形成的进一步电连接25”(在附图中仅展示了其中的一个电连接),以用于将处理芯片22的一个或多个焊盘26c耦合至衬底23的对应焊盘26d。
第一芯片21和第二芯片22并排安排在封装体20的衬底23上。
在单体本体16的前侧16a之上延伸的多个焊盘26a用于向ASIC22’供应由膜19的压敏电阻器换能的信号以及由膜29的压敏电阻器换能的信号两者。因此,每个焊盘26a被设计成用于形成用于向ASIC22’供应由膜19的压敏电阻器以及由膜29的压敏电阻器换能的对应信号的电接触区。进一步地,为了将由膜29的压敏电阻器换能的信号传达朝向单体本体16的前侧16a,存在与单体本体16在方向Z上横切的至少一个导电通孔36,由此在膜29的压敏电阻器与对应电接触焊盘26a之间形成至少一条导电路径。虽然图2展示了单个导电通孔36,但是有可能提供多个类似的导电通孔。
传感器芯片21例如通过阻焊掩模38在单体本体16的后表面16b处耦合至衬底23并且通过粘合层(或胶层)31耦合至后者。同样地,处理芯片22也经由阻焊掩模38耦合至衬底23。根据需要可以设想将第一芯片21和第二芯片22耦合至衬底23的其他模态。
可以注意到,胶层31(具体地,属于非导电类型)针对单体本体16的整个外围而延伸以形成环形液密区,从而使得其在使用中将压力P2下的环境与反而处于压力P1下的腔室8完全隔离开。可以进一步注意到,阻焊掩模38和粘合层31围绕膜29,限定膜29与衬底23之间的腔室,其尺寸(具体地沿Z)如使得在使用中膜29(沿Z)的偏转成为可能。
ASIC 22’设置在处理芯片22的前表面22a(与后表面22b相反)处。适合的金属喷镀层和/导电通孔具有将电信号从腔室8内部和/或衬底23路由至封装体20外部的功能(在图2中以示例的方式展示了连接衬底23两侧上的金属喷镀的导电通孔30)。
电连接元件40a(例如,采用导电焊区的形式)设置在衬底23的底侧23b(暴露朝向腔室8的外面的一侧,与顶侧23a相反)上,用于焊接和电连接至PCB(印刷电路板)和/或用于测试操作。进一步阻焊掩模42可以应用在衬底23的底侧23b处。
综上所述,根据图2的实施例,贯通开口39和贯通开口49在封装体20的彼此相反的侧上延伸,并且以此方式,换能器模块11被配置成用于安装成使得贯通开口39和贯通开口49面向具有对应压力P1和P2的彼此隔离的对应环境。因此,在使用中,膜19将经受仅为压力P1的函数的变形,而膜29将经受仅为压力P2的函数的变形。将对应压敏电阻器所换能的对应信号发送至处理芯片22以由ASIC 22’进行处理。在对信号进行处理(在此不对该处理进行详细描述,因为其不构成本公开的主题)之后,处理芯片22在输出端处供应测量到的压力P1和P2的绝对值以及压力P1和P2的差分值两者。
图3在空间坐标系X、Y和Z中以及在横向截面图中展示了根据本公开的进一步方面的换能器模块51。换能器模块51包括(以与已参照图2的换能器模块11描述的方式类似的方式——共同的元件在此由相同的参考号来标示并且不再进一步详细描述)其上安排有帽盖27的衬底23,该帽盖限定腔室8并且连同衬底23一起形成封装体20。
传感器模块52容纳在腔室8中并且包括两个堆叠的裸片,这两个堆叠的裸片集成用于将环境压力的信号换能成电信号的对应MEMS结构。具体地,第一裸片集成第一MEMS换能器53并且第二裸片集成第二MEMS换能器54。以示例的方式,在压敏电阻器的帮助下执行换能。第一换能器53和第二换能器54各自包括对应的半导体本体55、56(优选地硅,具体地例如具有晶面晶向(100)的N型单晶硅)。半导体本体55具有例如顶部由第一表面55a界定并且底部由与第一表面55a相反且平行的第二表面55b界定的四边形截面。同样地,半导体本体56具有例如顶部由第一表面56a界定并且底部由与第一表面56a相反且平行的第二表面56b界定的四边形截面。
第一换能器53包括具有例如方形截面的第一掩埋空腔58。第一空腔58通过形成膜59的半导体本体55的薄部与第一表面55a分离开。膜59是柔性的并且能够根据与空腔8流体连接的外部环境的压力P1进行偏转。根据非限制性实施例,膜59的厚度小于第一空腔58的厚度,以防止可能导致膜本身失效的在膜59的约束点处的剪切应力。
至少部分地存在于膜59内部的是压敏电阻感测元件(具体地,数量为四,被安排成在膜59的中心处居中的理想交叉顶点处——未在图3中展示),这些压敏电阻感测元件包括例如具有P型掺杂的掺杂区。压敏电阻感测元件可以通过适合的扩散掩模经由掺杂原子的扩散来获得并且具有例如近似于矩形的截面;进一步地,压敏电阻感测元件可以连接在一起以形成惠斯通电桥电路。可替代地,第一压敏电阻感测元件可以形成环形振荡器电路的一部分。
以类似于第一换能器53的方式,第二换能器54包括具有例如方形截面的第二掩埋空腔68。第二空腔68通过形成膜69的半导体本体56的薄部与第二表面56b分离开。为了在膜69与环境压力P2下的封装体20外部的环境之间形成流体连接,存在延伸穿过衬底23的贯通开口49,安排膜69与在使用中如先前所描述的在压力P2下的封装体20外部的环境流体连接。膜69是柔性的并且能够根据压力P2的值进行偏转。根据非限制性实施例,膜69的厚度小于第二空腔68的厚度,以防止可能导致膜本身失效的在膜69的约束点处的剪切应力。
存在至少部分地在膜69内的压敏电阻感测元件(具体地,数量为四,被安排成在膜69的中心处居中的理想交叉顶点处——未在图3中展示),这些压敏电阻感测元件包括例如具有P型掺杂的掺杂区。压敏电阻感测元件可以通过适合的扩散掩模经由掺杂原子的扩散来获得并且具有例如近似于矩形的截面。进一步地,压敏电阻感测元件可以连接在一起,以形成惠斯通电桥电路。可替代地,第一压敏电阻感测元件可以形成对应环形振荡器电路的一部分。
可以根据任何期望的制造工艺来获得第一空腔58和第二空腔68,在此不详细描述,因为其不形成本公开的主题。欧洲专利EP1577656描述了出于此目的而设计的用于制造掩埋空腔的工艺。
第一换能器53和第二换能器54被安排成堆叠在彼此上使得半导体本体55的第二表面55b面向半导体本体56的第一表面56a。耦合区62在半导体本体55的第二表面55b与半导体本体56的第一表面56a之间延伸,将它们耦合在一起。在非限制性实施例中,耦合区62形状类似于框架并且沿半导体本体55的第二表面55b的以及半导体本体56的第一表面56a的外缘区延伸。
腔室8进一步容纳有根据已参照图2描述的内容并且在此没有进一步进行任何描述的集成处理电路(或ASIC 22’)的第二芯片(处理芯片)22。
为了向ASIC 22’供应由膜59的压敏电阻器换能的信号以及由膜69的压敏电阻器换能的信号两者,根据本公开的一个方面,电接触焊盘26a(在图3中仅展示了其中的一个电接触焊盘)设置在半导体本体55的第一表面55a上(或者更一般地,在第一换能器53的前侧上)。每个焊盘26a被设计成用于形成用于向ASIC 22’供应由膜59的压敏电阻器以及由膜69的压敏电阻器换能的对应信号的电接触区。具体地,为了将膜69的压敏电阻器所换能的信号传达朝向第一换能器53的前侧,提供了与半导体本体55横切的第一导电通孔63以及与半导体本体56横切的第二导电通孔64。第一导电通孔63和第二导电通孔64通过在框架62内部延伸的焊料膏区66进行相互电连接。因此在膜69的压敏电阻器与对应电接触焊盘26a之间形成导电路径。根据需要可以存在通过对应焊料膏区电耦合在一起的进一步导电通孔。
以与已参照图2的换能器模块11描述的方式类似的方式,换能器模块51也被配置成用于安装成使得贯通开口39和贯通开口49面向具有对应压力P1和P2的彼此隔离的对应环境。在使用中,膜59将经受仅为压力P1的函数的变形,而膜69将经受仅为压力P2的函数的变形(忽略由于残余应力而导致的可能变形)。将对应压敏电阻器所换能的对应信号发送至处理芯片22以由ASIC 22’进行处理,其因此可以在输出端处供应测量到的压力P1和P2的绝对值以及压力P1和P2的差分值两者。
图4示出了根据图3的实施例的变体的换能器模块91,并且其中,不存在与半导体本体55横切的第一导电通孔63以及与半导体本体56横切的第二导电通孔64。在此实施例中,在半导体本体55的第一表面55a上存在一个或多个电接触焊盘26a,该一个或多个电接触焊盘被设计成用于形成用于向ASIC 22’供应由膜59的压敏电阻器换能的信号(而非由膜69的压敏电阻器换能的那些信号)的电接触区。
膜69的压敏电阻器所换能的信号在此实施例中由导电路径82进行传达,这些导电路径形成在衬底23上并且至少部分地在第二换能器54的下面延伸。导电路径82通过一个或多个接线键合87以及集成在衬底23中的一个或多个路由路径电耦合至处理芯片22的焊盘26e。通过焊料凸块84以本身已知的方式(倒装芯片技术)形成第二换能器54的对应接触焊盘与导电路径82之间的电连接。为了保证压力P2下的环境与压力P1下的环境之间足够的流体隔离,存在沿第二换能器54的第二表面56b的外围部分形成框架的填充区90。填充区90在焊料凸块84的外面延伸并且例如由非导电胶或“底层填料”形成。
进一步导电路径85可选地在衬底23的背部23b上延伸并且通过穿过衬底23而设置的导电通孔86连接至导电路径82的对应部分。作为替代方案或另外地,进一步导电路径(未展示)可以可选地在衬底23内延伸。
在图3中所展示的焊盘26c在任何情况下在图4的实施例中都存在(但未展示)并且耦合至焊盘26d,以及因此至电路径30,以用于将电信号从腔室8内部路由至封装体20外部,如已参照图3所描述的。
根据本公开的进一步变体,图2的换能器12’、12”中的一个或两个换能器以及第一换能器53和第二换能器54中的一个或两个换能器可以是不同于先前所描述的类型的换能器,例如,在包括以下各项的组中选择的换能器:UV传感器、IR传感器和光信号通用传感器(例如,光电二极管)。
显然,在使用光辐射换能器(例如,UV或IR换能器)的情况下,贯通开口39、49被配置成以使光辐射能够通过从而使得该光辐射撞击到对应换能器的敏感区域上。在此情况下,贯通开口39、49不必使流体接入成为可能,但是可以由对待检测光辐射而言透明的材料层来保护。因此,根据特定应用和所使用的换能器的类型,贯通开口通常为使得感兴趣的环境量能够通过(可能地,选择性地通过)的窗口。
图5示出了根据先前所描述的实施例中的任一实施例的使用换能器模块的电子设备100。除了根据所描述的对应实施例的换能器模块11、51、91之外,电子设备100包括微处理器(CPU)101、连接至微处理器101的存储器块102、以及也连接至微处理器101的输入/输出接口103(例如,小键盘和/显示器)。换能器模块11、51、91与微处理器101通信,并且尤其对由共享ASIC处理的电信号进行传输。
电子设备100为例如移动通信设备(比如,手机、PDA、笔记本计算机、录音器、具有语音记录功能的音频播放器、用于视频游戏的操纵台、或者摄影机和/或摄像机);电子设备100还可以是水诊器、或者用于测量环境量的仪器(比如具体地工业绝对压力计和/或相对压力计)。
根据各实施例的先前所描述的本发明的优点从前面的描述中清楚地显现。
具体地,本公开提供了可以根据需要适用于不同配置的同时减少了成本和空间要求的换能器模块。
最后,清楚的是,可以对已在此描述和展示的内容做出修改和变化,而不会由此脱离如所附权利要求中限定的本发明的范围。
具体地,可以设想不同的MEMS换能器配置,具体地关于组成元件的几何形状。在封装体内部的空间允许的情况下,还可以有许多MEMS传感器或换能器可能容纳在同一封装体内部,每个MEMS传感器或换能器被配置成用于检测对应的环境量。
进一步地,显然的是,帽盖27中的贯通开口39可以根据需要形成在帽盖27的任何区(顶部、侧面等)中。
应进一步注意的是,也可以在存在图1中所展示的类型的单片换能器模块的情况下以类似的方式应用图4中所示出的通过焊料凸块84形成电接触。
进一步地,根据图3和图4的进一步变体实施例,分别集成第一MEMS换能器53和第二MEMS换能器54的第一芯片和第二芯片可以彼此并排地安排。在此情况下,存在更大面积占用的缺点,但是组装第一芯片和第二芯片的步骤更简单,因为不需要为了将第一芯片和第二芯片堆叠在彼此上的对齐步骤。如已参照图3和图4所描述的,第二MEMS换能器54具有敏感元件(例如,设置有压敏电阻器的膜),该敏感元件面向第二开口49并且通过将第二开口49与腔室8流体隔离开的一个或多个接口耦合层耦合至衬底23。第一MEMS换能器53具有面向腔室8的敏感元件(例如,设置有压敏电阻器的对应膜)。
最后,根据进一步实施例,处理芯片22可以至少部分地集成在衬底23中或者可以安排在腔室8外面。例如,处理芯片22可以形成其上安装有封装体20的PCB的一部分。在此情况下,由换能器12’、12”(或者由根据对应实施例的换能器53、54)生成的换能信号由电连接元件40a供应给外部处理芯片,这些电连接元件通过与换能器12’、12”(或者换能器53、54)的适当电连接来接收换能信号。以与已参照图2至图4描述的方式类似的方式,这些电连接包括接线键合和/或形成在衬底23上或集成在其中的导电路径。

Claims (22)

1.一种换能器模块(11;51;91),包括支撑衬底(23)和帽盖(27),所述帽盖在所述支撑衬底(23)之上延伸并且与其限定腔室(8),所述换能器模块的特征在于其进一步包括:
第一MEMS换能器(12’;53),所述第一MEMS换能器具有第一敏感元件(19;59),所述第一敏感元件面向所述腔室(8)并且被配置成用于检测第一环境量并根据所述检测到的环境量生成第一换能信号;以及
第二MEMS换能器(12”;54),所述第二MEMS换能器具有第二敏感元件(29;69),所述第二敏感元件面向所述支撑衬底(23)并且被配置成用于检测第二环境量并根据所述检测到的环境量生成第二换能信号,
其中,所述帽盖(27)具有第一窗口(39),所述第一窗口被配置成用于仅形成所述第一环境量朝向所述第一敏感元件(19;59)的接入路径,并且所述支撑衬底(23)具有第二窗口(49),所述第二窗口被配置成用于仅形成所述第二环境量朝向所述第二敏感元件(29;69)的接入路径。
2.根据权利要求1所述的换能器模块,其中,所述第一和第二窗口(39,49)为贯通开口,所述换能器模块(11;51;91)进一步包括隔离区(31;90),所述隔离区被安排在传感器模块(21;52)与所述支撑衬底(23)之间、被配置成用于将所述第二窗口(49)与所述腔室(8)流体隔离开。
3.根据权利要求1或权利要求2所述的换能器模块,进一步包括用于将所述第二MEMS换能器(12”;54)固定至所述支撑衬底(23)的固定结构(31,38;84),所述固定结构包括以下各项中的至少一项:围绕所述第二敏感元件(29;69)的阻焊掩模(38);围绕所述第二敏感元件(29;69)的胶层(31);围绕所述第二敏感元件(29;69)的粘合层(31);以及与所述第二敏感元件(29;69)并排安排的焊料凸块(84)。
4.根据以上权利要求中任一项所述的换能器模块,进一步包括处理芯片(22),所述处理芯片被安排在所述腔室(8)中或者集成在所述支撑衬底(23)中、功能上耦合至所述第一和第二MEMS换能器以用于在使用中分别接收所述第一和第二换能信号。
5.根据权利要求4所述的换能器模块,其中,所述处理芯片(22)包括ASIC。
6.根据权利要求4或权利要求5所述的换能器模块,其中,所述处理芯片(22)通过以下各项中的一项或两项功能上耦合至所述第一和第二换能器:接线键合和导电路径(82,85),所述导电路径在所述支撑衬底(23)上延伸和/或集成在所述支撑衬底中。
7.根据以上权利要求中任一项所述的换能器模块,其中,所述第一MEMS换能器(12’;53)和所述第二MEMS换能器(12”;54)集成在半导体材料的同一单体本体(16)的相反侧(16a,16b)上。
8.根据以上权利要求中任一项所述的换能器模块,其中,所述第一MEMS换能器(12’;53)集成在第一芯片(53)中并且所述第二MEMS换能器(12”;54)集成在第二芯片(54)中,所述第一和第二芯片堆叠在彼此上。
9.根据权利要求7或权利要求8所述的换能器模块,其中,所述第一和第二MEMS换能器集成一个或多个导电通孔(36;63,64),所述一个或多个导电通孔形成针对所述换能信号的从所述第二MEMS换能器到一个或多个对应电接触焊盘的路径,所述一个或多个对应电接触焊盘被安排在所述第一MEMS换能器上。
10.根据以上权利要求中任一项所述的换能器模块,其中,所述第一MEMS换能器(12’;53)集成在第一芯片(53)中,并且所述第二MEMS换能器(12”;54)集成在第二芯片(54)中,所述第一和第二芯片彼此并排地安排。
11.根据以上权利要求中任一项所述的换能器模块,其中,所述第一MEMS换能器(12’;53)和/或所述第二MEMS换能器(12”;54)选自以下各项:压力换能器、光辐射传感器、UV传感器和IR传感器,所述各项分别被配置成用于从环境压力、可见光辐射、UV辐射和IR辐射中检测环境量。
12.根据以上权利要求中任一项所述的换能器模块,其中,所述支撑衬底(23)由半导体材料或环氧树脂制成。
13.一种电子装置(100),包括根据权利要求1至12中任一项所述的换能器模块(11;51;91),所述电子装置选自包括以下各项的组:手机、PDA、笔记本计算机、录音器、具有语音记录功能的音频播放器、用于视频游戏的操纵台、水诊器、摄影机和/或摄像机、用于测量环境量的仪器、工业绝对压力计、工业相对压力计。
14.一种用于制造换能器模块(11;51;91)的方法,所述方法包括将帽盖(27)耦合至支撑衬底(23)的步骤,所述帽盖被配置成以与所述支撑衬底(23)限定腔室(8),所述方法的特征在于其进一步包括以下步骤:
在所述腔室(8)中安排具有第一敏感元件(19;59)的第一MEMS换能器(12’;53),所述第一敏感元件被配置成用于检测第一环境量并且根据所述检测到的环境量生成第一换能信号,使得所述第一敏感元件(19;59)面向所述腔室(8);
在所述腔室(8)中安排具有第二敏感元件(29;69)的第二MEMS换能器(12”;54),所述第二敏感元件被配置成用于检测第二环境量并且根据所述检测到的环境量生成第二换能信号,使得所述第二敏感元件(29;69)面向所述支撑衬底(23);
在所述帽盖(27)中形成第一窗口(39),所述第一窗口被配置成用于仅形成所述第一环境量朝向所述第一敏感元件(19;59)的接入路径;以及
在所述支撑衬底(23)中形成第二窗口(49),所述第二窗口被配置成用于仅形成所述第二环境量朝向所述第二敏感元件(29;69)的接入路径。
15.根据权利要求14所述的方法,其中,形成所述第一窗口(39)包括形成穿过所述帽盖(27)的第一贯通开口,并且形成所述第二窗口(49)包括形成穿过所述支撑衬底(23)的第二贯通开口,所述方法进一步包括在所述第二MEMS换能器(12”;54)与所述支撑衬底(23)之间形成隔离区(31;90)的步骤,所述隔离区被配置成用于将所述第二贯通开口(49)与所述腔室(8)流体隔离开。
16.根据权利要求15所述的方法,其中,形成所述隔离区(31;90)的所述步骤包括以下子步骤中的至少一个子步骤:形成围绕所述第二敏感元件(29;69)的胶框架;以及形成围绕所述第二敏感元件(29;69)的底层填料框架。
17.根据权利要求14至16中任一项所述的方法,进一步包括形成固定结构(31,38;84)的步骤,用于将所述第二MEMS换能器(12”;54)固定至所述支撑衬底(23),所述步骤包括以下子步骤中的至少一个子步骤:形成围绕所述第二敏感元件(29;69)的阻焊掩模(38);形成围绕所述第二敏感元件(29;69)的胶层(31);提供围绕所述第二敏感元件(29;69)的粘合层(31);以及形成与所述第二敏感元件(29;69)并排的焊料凸块(84)。
18.根据权利要求14至17中任一项所述的方法,进一步包括将处理芯片(22)耦合至所述腔室(8)中的所述支撑衬底(23)的步骤,或者替代性地将处理芯片(22)集成在所述支撑衬底(23)中的步骤,以及将所述处理芯片(22)功能上耦合至所述第一和第二MEMS换能器以用于在使用中分别接收所述第一和第二换能信号的步骤。
19.根据权利要求17所述的方法,其中,将所述处理芯片(22)功能上耦合至所述第一和第二MEMS换能器的所述步骤包括以下子步骤中的一个或两个子步骤:形成接线键合;以及形成在所述支撑衬底(23)上的和/或集成在所述支撑衬底中的导电路径(82,85)。
20.根据权利要求14至19中任一项所述的方法,其中,提供所述第一和第二MEMS换能器的所述步骤包括提供半导体材料的单体本体(16),所述单体本体将所述第一敏感元件(19;59)集成在第一侧(16a)上并且将所述第二敏感元件(29;69)集成在与所述第一侧相反的第二侧(16b)上。
21.根据权利要求14至20中任一项所述的方法,其中,提供所述第一MEMS换能器包括将集成所述第一MEMS换能器(12’;53)的第一芯片(53)耦合至所述支撑衬底(23),并且提供所述第二MEMS换能器包括将集成所述第二MEMS换能器(12”;54)的第二芯片(54)堆叠在所述第一芯片上。
22.根据权利要求20或权利要求21所述的方法,进一步包括形成一个或多个导电通孔(36;63,64)的步骤,所述一个或多个导电通孔集成在所述第一MEMS换能器(12’;53)中以及在所述第二MEMS换能器(12”;54)中,以形成针对所述换能信号的从所述第二MEMS换能器(12”;54)到一个或多个对应电接触焊盘(26a)的路径,所述一个或多个对应电接触焊盘在所述第一MEMS换能器(12’;53)上。
CN201710481578.7A 2016-11-30 2017-06-22 多设备换能器模块、包括换能器模块的电子装置以及用于制造换能器模块的方法 Pending CN108117036A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102016000121210A IT201600121210A1 (it) 2016-11-30 2016-11-30 Modulo di trasduzione multi-dispositivo, apparecchiatura elettronica includente il modulo di trasduzione e metodo di fabbricazione del modulo di trasduzione
IT102016000121210 2016-11-30

Publications (1)

Publication Number Publication Date
CN108117036A true CN108117036A (zh) 2018-06-05

Family

ID=58347834

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710481578.7A Pending CN108117036A (zh) 2016-11-30 2017-06-22 多设备换能器模块、包括换能器模块的电子装置以及用于制造换能器模块的方法
CN201720738434.0U Active CN207061866U (zh) 2016-11-30 2017-06-22 换能器模块和电子装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201720738434.0U Active CN207061866U (zh) 2016-11-30 2017-06-22 换能器模块和电子装置

Country Status (4)

Country Link
US (1) US11053115B2 (zh)
EP (1) EP3330689B1 (zh)
CN (2) CN108117036A (zh)
IT (1) IT201600121210A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923570A (zh) * 2021-12-14 2022-01-11 山东新港电子科技有限公司 一种低震动噪音、高灵敏度麦克风
CN115060412A (zh) * 2022-05-30 2022-09-16 无锡胜脉电子有限公司 一种基于二次标定的差压压力传感器制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3037142B1 (fr) * 2015-06-03 2018-11-02 Safran Electronics & Defense Dispositif de mesure de pression a fiabilite amelioree et procede de calibrage associe
KR20170112567A (ko) * 2016-03-31 2017-10-12 엘지이노텍 주식회사 복합 센서 패키지
IT201600121210A1 (it) * 2016-11-30 2018-05-30 St Microelectronics Srl Modulo di trasduzione multi-dispositivo, apparecchiatura elettronica includente il modulo di trasduzione e metodo di fabbricazione del modulo di trasduzione
US10689248B2 (en) * 2017-03-16 2020-06-23 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
US11750983B2 (en) * 2018-10-26 2023-09-05 Knowles Electronics, Llc Microphone assembly with standoffs for die bonding
JP7183700B2 (ja) 2018-10-29 2022-12-06 セイコーエプソン株式会社 感圧センサーおよびハンド
US11385118B2 (en) * 2018-12-07 2022-07-12 Vitesco Technologies USA, LLC Pressure sensor with external vertical electrical interconnection system
WO2020191576A1 (zh) * 2019-03-25 2020-10-01 共达电声股份有限公司 一种传感器
EP3715842B1 (en) * 2019-03-26 2021-05-19 Infineon Technologies AG Mems gas sensor
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
IT201900022503A1 (it) * 2019-11-29 2021-05-29 St Microelectronics Srl Sensore ambientale incapsulato
CN113075726B (zh) * 2021-05-10 2022-10-11 联合微电子中心有限责任公司 水听器及其制造方法
DE102021214285A1 (de) 2021-12-14 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanische Sensoreinrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431003B1 (en) * 2000-03-22 2002-08-13 Rosemount Aerospace Inc. Capacitive differential pressure sensor with coupled diaphragms
CN101207941A (zh) * 2006-12-22 2008-06-25 雅马哈株式会社 静电电容传感器
CN103449353A (zh) * 2012-05-31 2013-12-18 罗伯特·博世有限公司 传感器模块
CN203554647U (zh) * 2013-10-08 2014-04-16 瑞声声学科技(深圳)有限公司 芯片
CN103975608A (zh) * 2011-08-19 2014-08-06 美商楼氏电子有限公司 声学设备和制造方法
CN104333824A (zh) * 2013-07-22 2015-02-04 英飞凌科技股份有限公司 表面可安装麦克风封装和用于记录麦克风信号的方法
US20160169758A1 (en) * 2014-12-12 2016-06-16 Freescale Semiconductor, Inc. Stress isolated differential pressure sensor
US20160320426A1 (en) * 2014-01-09 2016-11-03 Motion Engine, Inc. Integrated mems system
CN207061866U (zh) * 2016-11-30 2018-03-02 意法半导体股份有限公司 换能器模块和电子装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581676A (en) * 1984-09-17 1986-04-08 General Signal Corporation Electrical contact coating for silicon pressure transducers
US4790192A (en) * 1987-09-24 1988-12-13 Rosemount Inc. Silicon side by side coplanar pressure sensors
US5969591A (en) * 1991-03-28 1999-10-19 The Foxboro Company Single-sided differential pressure sensor
DE10117142A1 (de) * 2001-04-05 2002-10-10 Endress & Hauser Gmbh & Co Kg Kapazitiver Differenz-Drucksensor
EP1577656B1 (en) 2004-03-19 2010-06-09 STMicroelectronics Srl Method for manufacturing a semiconductor pressure sensor
US7807972B2 (en) * 2005-01-26 2010-10-05 Analog Devices, Inc. Radiation sensor with cap and optical elements
ITMI20070099A1 (it) 2007-01-24 2008-07-25 St Microelectronics Srl Dispositivo elettronico comprendente dispositivi sensori differenziali mems e substrati bucati
DE102007022852A1 (de) * 2007-05-15 2008-11-20 Robert Bosch Gmbh Differenzdruck-Sensoranordnung und entsprechendes Herstellungsverfahren
US8181531B2 (en) * 2008-06-27 2012-05-22 Edwin Carlen Accessible stress-based electrostatic monitoring of chemical reactions and binding
EP2252077B1 (en) * 2009-05-11 2012-07-11 STMicroelectronics Srl Assembly of a capacitive acoustic transducer of the microelectromechanical type and package thereof
US8359927B2 (en) * 2009-08-12 2013-01-29 Freescale Semiconductor, Inc. Molded differential PRT pressure sensor
US9131325B2 (en) * 2010-08-31 2015-09-08 Freescale Semiconductor, Inc. MEMS device assembly and method of packaging same
US9006845B2 (en) * 2013-01-16 2015-04-14 Infineon Technologies, A.G. MEMS device with polymer layer, system of a MEMS device with a polymer layer, method of making a MEMS device with a polymer layer
US8701496B1 (en) * 2013-02-27 2014-04-22 Honeywell International Inc. Systems and methods for a pressure sensor having a two layer die structure
EP2806258B1 (en) * 2013-05-20 2018-09-12 ams international AG Differential pressure sensor
TWI550261B (zh) * 2014-03-17 2016-09-21 立錡科技股份有限公司 微機電壓力計以及其製作方法
FR3018916B1 (fr) * 2014-03-19 2017-08-25 Commissariat Energie Atomique Capteur de mesure de pression differentielle microelectromecanique et/ou nanoelectromecanique
ITUA20162957A1 (it) * 2016-04-28 2017-10-28 St Microelectronics Srl Modulo di trasduzione multi-dispositivo, apparecchiatura includente il modulo di trasduzione e metodo di fabbricazione del modulo di trasduzione
ITUA20162959A1 (it) * 2016-04-28 2017-10-28 St Microelectronics Srl Modulo di trasduzione multi-camera, apparecchiatura includente il modulo di trasduzione multi-camera e metodo di fabbricazione del modulo di trasduzione multi-camera
IT201600121223A1 (it) * 2016-11-30 2018-05-30 St Microelectronics Srl Modulo multi-trasduttore, apparecchiatura elettronica includente il modulo multi-trasduttore e metodo di fabbricazione del modulo multi-trasduttore

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431003B1 (en) * 2000-03-22 2002-08-13 Rosemount Aerospace Inc. Capacitive differential pressure sensor with coupled diaphragms
CN101207941A (zh) * 2006-12-22 2008-06-25 雅马哈株式会社 静电电容传感器
CN103975608A (zh) * 2011-08-19 2014-08-06 美商楼氏电子有限公司 声学设备和制造方法
CN103449353A (zh) * 2012-05-31 2013-12-18 罗伯特·博世有限公司 传感器模块
CN104333824A (zh) * 2013-07-22 2015-02-04 英飞凌科技股份有限公司 表面可安装麦克风封装和用于记录麦克风信号的方法
CN203554647U (zh) * 2013-10-08 2014-04-16 瑞声声学科技(深圳)有限公司 芯片
US20160320426A1 (en) * 2014-01-09 2016-11-03 Motion Engine, Inc. Integrated mems system
US20160169758A1 (en) * 2014-12-12 2016-06-16 Freescale Semiconductor, Inc. Stress isolated differential pressure sensor
CN207061866U (zh) * 2016-11-30 2018-03-02 意法半导体股份有限公司 换能器模块和电子装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923570A (zh) * 2021-12-14 2022-01-11 山东新港电子科技有限公司 一种低震动噪音、高灵敏度麦克风
CN115060412A (zh) * 2022-05-30 2022-09-16 无锡胜脉电子有限公司 一种基于二次标定的差压压力传感器制备方法
CN115060412B (zh) * 2022-05-30 2023-11-03 无锡胜脉电子有限公司 一种基于二次标定的差压压力传感器制备方法

Also Published As

Publication number Publication date
US11053115B2 (en) 2021-07-06
US20180148323A1 (en) 2018-05-31
EP3330689A1 (en) 2018-06-06
IT201600121210A1 (it) 2018-05-30
CN207061866U (zh) 2018-03-02
EP3330689B1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
CN207061866U (zh) 换能器模块和电子装置
CN205590278U (zh) 半导体集成设备以及电子设备
KR102070368B1 (ko) 압력 센서칩, 압력 발신기, 및 압력 센서칩의 제조 방법
CN207491212U (zh) 多换能器模块和电子装置
EP3205997B1 (en) Pressure sensor encapsulated in elastomeric material, and system including the pressure sensor
CN105842476B (zh) 用于风速计的系统和方法
US10091587B2 (en) Multi-device transducer module, apparatus including the transducer module and method of manufacturing the transducer module
US11254561B2 (en) Pressure sensor encapsulated in elastomeric material, and system including the pressure sensor
KR101870023B1 (ko) 패키징된 mems 디바이스를 위한 시스템 및 방법
US11443992B2 (en) Pressure sensors on flexible substrates for stress decoupling
WO2013156539A1 (en) Assembly of a semiconductor integrated device including a mems acoustic transducer
CN109644307B (zh) 麦克风和压力传感器封装件以及制造麦克风和压力传感器封装件的方法
JP5843302B1 (ja) 複合センサデバイスの製造方法
CN218320777U (zh) 一种封装结构和电子设备
US11597647B2 (en) Packaged die and assembling method
JP2007163501A (ja) 半導体センサおよびその製造方法
KR20050031791A (ko) 압력 검출 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination