CN108114580A - 氢气和甲烷混合气体的分离方法 - Google Patents
氢气和甲烷混合气体的分离方法 Download PDFInfo
- Publication number
- CN108114580A CN108114580A CN201611057568.2A CN201611057568A CN108114580A CN 108114580 A CN108114580 A CN 108114580A CN 201611057568 A CN201611057568 A CN 201611057568A CN 108114580 A CN108114580 A CN 108114580A
- Authority
- CN
- China
- Prior art keywords
- film
- separation method
- film forming
- raw material
- forming raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
- C01B3/503—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
- B01D2257/7025—Methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/048—Composition of the impurity the impurity being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
氢气和甲烷混合气体的分离方法,使用由Zn2+与聚苯并咪唑组合而成的金属有机骨架膜进行分离。本发明在H2/CH4混合气体的分离方案中采用了新型的以Zn2+与聚苯丙咪唑组合而成的金属有机骨架膜,具有优良的H2/CH4分离性能。同时,所采用的有机配体聚苯丙咪唑成本低,溶解性好,易于成膜和易于实现放大,从而实现工业化等特点。
Description
技术领域
本发明属于膜分离领域,尤其涉及H2/CH4混合气体的分离方法。
背景技术
H2是能源体系中十分重要的组成部分。自然界中以游离态存在的H2极少,目前最有效也最环保的制备方法是CH4裂解法,其中,H2/CH4混合气体的分离是制备高纯度H2的关键工艺。同时我国工业生产中产生大量富含H2/CH4的废弃混合气体,如果能从中有效地分离出高纯H2,具有巨大的产业应用价值。
与传统的分离技术相比,气体膜分离技术具有能耗低、装置简单以及环境污染小等众多优点。金属有机骨架材料(MOF)产生于上世纪九十年代,是由金属离子或离子簇与有机配体通过配位形成的一种具有周期性网络结构的晶体材料。由于可以通过配体设计实现很多结构,因此该材料种类繁多。此外该材料具有较高的比表面积,分布均匀的微孔,而且孔道的尺寸可调可控。因此利用其制备的金属有机骨架膜材料在气体吸附与分离等领域具有很好的性能,被认为是最有希望实现工业化及应用的一类新型的膜材料,因此该类膜材料在小分子气体的分离纯化方面具有广阔的应用前景。
但是由于金属有机骨架膜材料的不稳定性以及其中的配体原料成本较高等因素,因此在某些程度上限制了其在气体分离中的应用。
发明内容
本发明的目的在于提供氢气和甲烷混合气体的分离方法,该方法在于使用由Zn2+与聚苯并咪唑组合而成的金属有机骨架膜进行分离。
上述本发明的分离方法中,所使用的金属有机骨架膜由含Zn2+、聚苯并咪唑及二甲基亚砜的成膜原料反应和成膜干燥制得。
其中,所述的成膜原料中Zn2+、聚苯并咪唑及二甲基亚砜的摩尔比为1~4:1:10~50。其中的Zn2+来自醋酸锌或硝酸锌。优选醋酸锌。
另一方面。上述本发明的分离方法中,所述的成膜原料的反应是40~180℃反应1~72小时。成膜原料反应后的反应物通过下述方法成膜:刮刀50~250微米,速度5~100mm/s,温度为60~180℃,恒温1~120小时。
比较具体地描述,本发明的分离方法中所述的金属有机骨架膜通过以下方法制备:
a.将二水合醋酸锌、聚苯丙咪唑及DMSO按照摩尔比1~4:1:10~50均匀混合,室温下搅拌1~120小时制得成膜原料;
b.步骤a所制备的成膜原料,在鼓风干燥烘箱内于40~180℃条件下反应1~72小时;
c.步骤b的反应产物成膜并干燥:刮刀50~250微米,速度5~100mm/s,温度为60~180℃,恒温时间为1~120小时。
再一方面,本发明所述的H2/CH4混合气体的分离条件包括:温度25℃,金属有机骨架膜两侧的压差为1bar。
本发明在H2/CH4混合气体的分离方案中采用了新型的以Zn2+与聚苯丙咪唑组合而成的金属有机骨架膜,具有优良的H2/CH4分离性能。同时,所采用的有机配体聚苯丙咪唑成本低,溶解性好,易于成膜和易于实现放大,从而实现工业化等特点。
附图说明
本发明附图6幅,分别为:
图1为聚合物聚苯并咪唑配体的X-射线衍射图;
图2为聚合物聚苯并咪唑配体在77K下N2吸附等温线图,其中,实心圆代表吸附,空心圆代表脱附;
图3为聚合物聚苯并咪唑配体的衰减全反射-傅立叶变换红外光谱图;
图4为实施例1合成的产品A的X-射线衍射图;
图5为实施例1合成的产品A在77K下N2吸附等温线图,其中,实心正方形代表吸附,空心正方形代表脱附;
图6为实施例1合成的产品A的衰减全反射-傅立叶变换红外光谱图;
具体实施方式
下面以具体实施例的方式对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
1.成膜原料的制备:
称取1.8378克二水合醋酸锌(Zn(Ac)2·2H2O)溶于10毫升二甲基亚砜(DMSO),0.9克聚苯并咪唑溶于10毫升二甲基亚砜中。将前者加入到后者中混合密闭条件下室温搅拌1小时,得成膜的原料液。金属离子:配体摩尔比4:1。
2.成膜反应:
将步骤1所制得的原料液密封置于鼓风干燥烘箱内自然升温至100℃,反应72小时,得成膜液。
3.刮涂并干燥成膜:
刮膜机表面自然升温至80℃,刮刀设置为250微米,刮涂速度设置为50毫米/秒,将步骤2所制得的成膜液置于已经加热好的玻璃表面,启动刮刀将膜液有玻璃的一侧轻轻推置另一侧,制备成膜,与刮膜机表面80℃烘干24小时,干燥后将膜从玻璃表面轻轻取下。所得产品编号为A。
分别对原料聚合物聚苯并咪唑及产品A以X-射线衍射、77K下N2吸附等温吸附,以及衰减全反射-傅立叶变换红外光谱进行表征,其表征结果分别如附图1、2、3和图4、5、6所示。
产品A与聚合物聚苯并咪唑配体的X-射线衍射图(图4和图1)相比,在5度左右有明显的衍射峰出现,有新的峰出现,证明形成了新的物质,该物质的晶型与聚苯并咪唑本身不一致,因此可以判断得到了心得金属有机骨架膜材料。N2吸附实验证明了产品A(图5)对气体有一定的吸附能力,其吸附量约为40.6m2/g而且吸附能力高于聚苯并咪唑配体,其吸附量约为20.5m2/g(如图2)。同时傅里叶衰减全反射红外光谱证明产品A中确实存在金属离子(如图6及图3).
实施例2
产品A的性能评价
渗透性和选择性是评价膜气体分离性能的两个重要指标,分别用渗透率(Pi)和分离系数(αij)来表征。渗透率Pi=Ji/A*ΔP,其中Ji为气体的渗透流量,单位mol m-2s-1,A为有效的膜面积,单位m2,ΔP为膜两侧的压力差,单位Pa;分离系数αij=Pi/Pj,其中Pi为气体i的渗透率,Pj为气体j的渗透率。
使用Wicke–Kallenbach(膜测试的一种方法)方法结合在线气相色谱技术对合成得到的膜产品的气体渗透性能进行系统测试。测试条件为:温度25℃,膜两侧的压差为1bar。测试结果显示:10-8mol m-2s-1Pa-1条件下,H2、CO2、CH4渗透率分别是289、52和14;H2/CH4分离系数20.6。
Claims (8)
1.氢气和甲烷混合气体的分离方法,其特征在于,使用由Zn2+与聚苯并咪唑组合而成的金属有机骨架膜进行分离。
2.根据权利要求1所述的分离方法,其特征在于,所述的金属有机骨架膜由含Zn2+、聚苯并咪唑及二甲基亚砜的成膜原料反应和成膜干燥制得。
3.根据权利2所述的分离方法,其特征在于,所述的成膜原料中Zn2+、聚苯并咪唑及二甲基亚砜的摩尔比为1~4:1:10~50。
4.根据权利要求1所述的分离方法,其特征在于,所述的成膜原料中Zn2+来自醋酸锌或硝酸锌。
5.根据权利要求2所述的分离方法,其特征在于,所述的成膜原料的反应是40~180℃反应1~72小时。
6.根据权利要求5所述的分离方法,其特征在于,所述的成膜原料反应后的反应物通过下述方法成膜:刮刀50~250微米,速度5~100mm/s,温度为60~180℃,恒温1~120小时。
7.根据权利要求1所述的分离方法,其特征在于,所述的金属有机骨架膜通过以下方法制备:
a.将二水合醋酸锌、聚苯并咪唑及DMSO按照摩尔比1~4:1:10~50均匀混合,室温下搅拌1~120小时制得成膜原料;
b.步骤a所制备的成膜原料,在鼓风干燥烘箱内于40~180℃条件下反应1~72小时;
c.步骤b的反应产物成膜并干燥:刮刀50~250微米,速度5~100mm/s,温度为60~180℃,恒温时间为1~120小时。
8.根据权利要求1所述的分离方法,其特征在于,分离条件包括:温度25℃,金属有机骨架膜两侧的压差为1bar。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611057568.2A CN108114580B (zh) | 2016-11-26 | 2016-11-26 | 氢气和甲烷混合气体的分离方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611057568.2A CN108114580B (zh) | 2016-11-26 | 2016-11-26 | 氢气和甲烷混合气体的分离方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108114580A true CN108114580A (zh) | 2018-06-05 |
CN108114580B CN108114580B (zh) | 2020-07-31 |
Family
ID=62223749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611057568.2A Active CN108114580B (zh) | 2016-11-26 | 2016-11-26 | 氢气和甲烷混合气体的分离方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108114580B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101693168A (zh) * | 2009-10-14 | 2010-04-14 | 大连理工大学 | 一种金属有机骨架膜的制备方法 |
CN101890305A (zh) * | 2010-04-01 | 2010-11-24 | 大连理工大学 | 一种金属有机框架膜的制备方法 |
CN101912737A (zh) * | 2010-08-26 | 2010-12-15 | 南京工业大学 | 一种制备金属有机骨架担载膜的方法 |
CN102652035A (zh) * | 2009-12-15 | 2012-08-29 | 环球油品公司 | 金属有机骨架聚合物混合基体膜 |
CN102898446A (zh) * | 2012-03-29 | 2013-01-30 | 珠海市吉林大学无机合成与制备化学重点实验室 | 配位聚合物、配位聚合物膜材料及其制造方法、用途 |
CN104370820A (zh) * | 2013-08-13 | 2015-02-25 | 中国科学院大连化学物理研究所 | 一种多孔金属有机骨架材料的制备方法及应用 |
CN104437116A (zh) * | 2014-12-08 | 2015-03-25 | 大连理工大学 | 一种大孔载体表面擦涂法植入同源金属氧化物粒子诱导合成MOFs膜的方法 |
CN104892518A (zh) * | 2014-03-05 | 2015-09-09 | 中国科学院大连化学物理研究所 | 多孔纳米金属有机框架材料的制备方法及其应用 |
CN105289340A (zh) * | 2015-11-27 | 2016-02-03 | 北京工业大学 | 一种用于芳烃/烷烃分离的甲酸盐管式杂化膜、制备方法及应用 |
-
2016
- 2016-11-26 CN CN201611057568.2A patent/CN108114580B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101693168A (zh) * | 2009-10-14 | 2010-04-14 | 大连理工大学 | 一种金属有机骨架膜的制备方法 |
CN102652035A (zh) * | 2009-12-15 | 2012-08-29 | 环球油品公司 | 金属有机骨架聚合物混合基体膜 |
CN101890305A (zh) * | 2010-04-01 | 2010-11-24 | 大连理工大学 | 一种金属有机框架膜的制备方法 |
CN101912737A (zh) * | 2010-08-26 | 2010-12-15 | 南京工业大学 | 一种制备金属有机骨架担载膜的方法 |
CN102898446A (zh) * | 2012-03-29 | 2013-01-30 | 珠海市吉林大学无机合成与制备化学重点实验室 | 配位聚合物、配位聚合物膜材料及其制造方法、用途 |
CN104370820A (zh) * | 2013-08-13 | 2015-02-25 | 中国科学院大连化学物理研究所 | 一种多孔金属有机骨架材料的制备方法及应用 |
CN104892518A (zh) * | 2014-03-05 | 2015-09-09 | 中国科学院大连化学物理研究所 | 多孔纳米金属有机框架材料的制备方法及其应用 |
CN104437116A (zh) * | 2014-12-08 | 2015-03-25 | 大连理工大学 | 一种大孔载体表面擦涂法植入同源金属氧化物粒子诱导合成MOFs膜的方法 |
CN105289340A (zh) * | 2015-11-27 | 2016-02-03 | 北京工业大学 | 一种用于芳烃/烷烃分离的甲酸盐管式杂化膜、制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN108114580B (zh) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A new MOF-505@ GO composite with high selectivity for CO2/CH4 and CO2/N2 separation | |
Xin et al. | A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform | |
Yang et al. | Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves | |
Štandeker et al. | Adsorption of toxic organic compounds from water with hydrophobic silica aerogels | |
Ge et al. | Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation | |
Job et al. | Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels | |
Durães et al. | Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS) | |
CN109195700A (zh) | 自支撑mof膜 | |
Si et al. | Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth | |
Wei et al. | Wettability, pore structure and performance of perfluorodecyl-modified silica membranes | |
Qiao et al. | Metal‐induced polymer framework membrane w ith high performance for CO2 separation | |
CN108114696A (zh) | 以聚合物为配体的金属有机骨架膜 | |
Sun et al. | Silica hollow spheres-based superhydrophobic PDMS composite membrane for enhanced acetone permselective pervaporation | |
Budrugeac et al. | The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood | |
Zhou et al. | Eco-friendly hierarchical porous palygorskite/wood fiber aerogels with smart indoor humidity control | |
Nawaz et al. | Effect of catalyst and substrate on the moisture diffusivity of silica-aerogel-coated metal foams | |
Nawaz et al. | Effect of catalyst used in the sol–gel process on the microstructure and adsorption/desorption performance of silica aerogels | |
Ma et al. | Preparation and characterization of catalytic TiO2–SPPESK–PES nanocomposite membranes and kinetics analysis in esterification | |
CN102775430B (zh) | 一种配位聚合物多孔材料maf-x8及其制备方法与应用 | |
Nai et al. | Ethanol recovery from its dilute aqueous solution using Fe-ZSM-5 membranes: Effect of defect size and surface hydrophobicity | |
Villarroel-Rocha et al. | Synthesis of MOF-5 using terephthalic acid as a ligand obtained from polyethylene terephthalate (PET) waste and its test in CO2 adsorption | |
Zhang et al. | Synthesis of PI/ZIF-8 aerogel with hierarchical porous structure for enhanced CO2 capture performance | |
CN108114580A (zh) | 氢气和甲烷混合气体的分离方法 | |
Liu et al. | Hierarchically Porous SIFSIX‐3‐Ni/PAN Composite Beads for Carbon Dioxide Adsorption | |
Hongtao et al. | Preparation and application of methimazole molecularly imprinted polymer based on silver-loaded dendritic fiber-type silica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |