CN108103327A - 一种均质铀钨合金的制备方法 - Google Patents

一种均质铀钨合金的制备方法 Download PDF

Info

Publication number
CN108103327A
CN108103327A CN201711346412.0A CN201711346412A CN108103327A CN 108103327 A CN108103327 A CN 108103327A CN 201711346412 A CN201711346412 A CN 201711346412A CN 108103327 A CN108103327 A CN 108103327A
Authority
CN
China
Prior art keywords
uranium
tungsten
crucible
tungsten alloy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711346412.0A
Other languages
English (en)
Other versions
CN108103327B (zh
Inventor
邓鸿章
苏斌
马荣
赵福泽
胡贵超
杨勋刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materials of CAEP
Original Assignee
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materials of CAEP filed Critical Institute of Materials of CAEP
Priority to CN201711346412.0A priority Critical patent/CN108103327B/zh
Publication of CN108103327A publication Critical patent/CN108103327A/zh
Application granted granted Critical
Publication of CN108103327B publication Critical patent/CN108103327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00

Abstract

本发明公开了一种均质铀钨合金的制备技术,属于冶金领域,合金中钨的含量在2‑40%范围内,制备过程中,采用电弧熔炼技术,钨先熔于铀熔体中。通过对铀钨合金锭正反面多次熔炼,同时在熔炼的过程中施加电磁场对熔体进行搅拌,使钨均匀分布于铀熔体中,在再凝固的过程中弥散均匀的析出,最终钨以颗粒状均匀弥散的分布于整个铀钨合金锭中。

Description

一种均质铀钨合金的制备方法
技术领域
本发明涉及金属熔炼和成型工艺技术领域,更具体地讲,涉及一种均质铀钨合金的制备方法。
背景技术
细看近些年的局部冲突,以坦克为主的装甲部队,越来越多的成为主宰战役、乃至战争最后胜利的重要突击和保障力量。作为反坦克、反装甲武器之一的穿甲弹,在与装甲防护的斗争和较量中也得到不断的发展。铀钨合金能将铀材料良好的绝热剪切敏感性、自燃性与钨材料的高密度、高熔点特性强强结合、优势互补,具有高密度、高强度、高韧性,在超动载下塑性较好、波阻抗大等特点,是当今世界装甲和反装甲武器的理想材料,具有攻防兼备的功能,可用于穿甲弹、破甲弹、火箭增程弹,反坦克子母弹等各种常规武器弹药以及坦克装甲和常规导弹武器战斗部。
立足于铀钨合金的研制,对比金属铀与钨的基本物性参数可知,两者的熔点相差很大,达2000℃以上,两者之间不存在合金相,且钨在铀中的溶解度较低,1500℃下小于2wt%,常温下更是小于0.1wt%。此外,由铀钨的饱和蒸汽压随温度变化数据可知,当熔池温度为2000℃,钨的lgp=-9.5Pa,铀的lgp=-0.88Pa,两者相差较大。要获得组织均匀、性能优良的铀钨合金,首先需探索最佳的合金熔炼制备方法,采用传统的合金感应熔炼或粉末冶金等技术实难制备出钨颗粒均匀分布的铀钨合金。紧密围绕国防武器装备能力建设、提升的迫切需求,高强度、高密度、“自锐性”的铀钨合金材料可广泛用于破甲装备、杀爆弹丸等,而制备出高品质铀钨合金成为了关键制约因素。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种均质铀钨合金的制备方法。
为实现上述目的本发明采用如下技术方案:
一种均质铀钨合金的制备方法,包括以下步骤:
步骤一:将清洗后的铀原料装入电弧炉熔炼坩埚中,将钨原料均匀的平铺置于铀原料上部,合炉;
步骤二:以坩埚作为负电极,将正电极末端距离熔体表面20-40mm,逐步增加送电电流,使铀原料熔化,铀原料熔化完全后包裹钨原料并粘合在一起;
步骤三:在步骤二的基础上,使得电极末端距离熔体表面5-30mm继续增加电流,在增加电流的过程中对整个坩埚中施加电磁场,电磁场对坩埚内的熔体进行搅拌;
步骤四:待坩埚冷却后,将铀钨合金锭取出后翻转,将原来的铀钨合金锭顶面朝下、底面朝上放置到坩埚中重新装炉,再依次重复步骤一、二、三、四;
步骤五:多次重复熔炼后获得钨颗粒均匀弥散分布的铀钨合金锭。
在上述技术方案中,所述坩埚为水冷铜模坩埚,水冷坩埚外表面为圆柱形,内表面呈半球形,经过抛光处理,内深为坩埚总高的1/2-3/4。
在上述技术方案中,装入坩埚中的铀原料采用酒精进行清洗。
在上述技术方案中,步骤三中的电磁场由设置在坩埚底部的电磁线圈提供,电磁线圈与坩埚之间设置有绝缘石棉布。
在上述技术方案中,所述铀原料采用锭、块、或切屑的结构,钨原料采用粒径为10μm-20μm、纯度大于99.9%的粉末。
在上述技术方案中,步骤一中的合炉后抽真空,坩埚炉室真空度优于1×10-2Pa以后,向炉内充入高纯氩气,氩气纯度≥99.95%,氩气充压至0.05-0.2兆帕。
在上述技术方案中,步骤二中熔炼电流为300-500安培,熔炼时间为1-5min。
在上述技术方案中,步骤三中熔炼电流为500-1200安培,熔炼时间为3-15min,施加的电磁场强度介于0.01T-0.1T之间。
在上述技术方案中,所述步骤五中获得的均质铀钨合金中钨的含量为:2%≤W≤40%,其他余量为铀及不可避免杂质。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
(1)钨颗粒分布均匀:本发明使用电弧熔炼配合电磁搅拌的技术成功制备出了不同成分的铀钨合金,钨颗粒在合金中弥散均匀分布,熔炼效果较优,相比传统熔炼技术熔化效果更好。
(2)应用面较广:本发明方法可用于其它铀金属体系的弥散分布实验研究,所需成本较低,生产效率较高,工艺周期较短,可为铀金属二元或多元体系的制备方法进行系统分析。
附图说明
图1是本发明的铀钨合金的金相图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
结合附图1所示,对本发明进行详细的阐释。
示例1:
制备U-5W合金:
(1)装炉:按照所需质量百分比准备铀和钨的原料,将铀锭进行酒精清洗,装入电弧炉熔炼坩埚中,钨原料均匀的平铺置于铀原料上部,装料合炉后抽真空,炉室真空度优于1×10-2Pa以后,向炉内充入高纯氩气,氩气充压至0.15兆帕。
(2)预熔炼:逐步增加送电电流至350安培,电极末端距离熔体表面20mm,熔炼时间为3min,使铀原料熔化,铀原料熔化完全后包裹钨原料并粘合在一起。
(3)熔炼:待预熔炼完成后继续增加熔炼电流至800安培,电极末端距离熔体表面15mm,同时施加电磁场对熔体进行搅拌,施加的电磁场强度为0.05T,熔炼时间为7min。
(4)多次熔炼:待铀钨合金锭降温至室温后出炉,将铀钨合金锭底面朝上重新装炉,依次重复上述步骤(1)-(3)。使铀钨合金锭正反面熔炼次数各2次,最终获得钨颗粒均匀弥散分布的铀钨合金锭。
表1铀钨合金主要成分%
示例2:
制备U-10W合金:
(1)装炉:按照所需质量百分比准备铀和钨的原料,将铀锭进行酒精清洗,装入电弧炉熔炼坩埚中,钨原料均匀的平铺置于铀原料上部,装料合炉后抽真空,炉室真空度优于1×10-2Pa以后,向炉内充入高纯氩气,氩气充压至0.2兆帕。
(2)预熔炼:逐步增加送电电流至450安培,电极末端距离熔体表面24mm,熔炼时间为2min,使铀原料熔化,铀原料熔化完全后包裹钨原料并粘合在一起。
(3)熔炼:待预熔炼完成后继续增加熔炼电流至800安培,电极末端距离熔体表面18mm,同时施加电磁场对熔体进行搅拌,施加的电磁场强度为0.03T,熔炼时间为10min。
(4)多次熔炼:待铀钨合金锭降温至室温后出炉,将铀钨合金锭底面朝上重新装炉,依次重复上述步骤(1)-(3)。使铀钨合金锭正反面熔炼次数各4次,最终获得钨颗粒均匀弥散分布的铀钨合金锭。
表2铀钨合金主要成分%
示例3:
制备U-20W合金:
(1)装炉:按照所需质量百分比准备铀和钨的原料,将铀锭进行酒精清洗,装入电弧炉熔炼坩埚中,钨原料均匀的平铺置于铀原料上部,装料合炉后抽真空,炉室真空度优于1×10-2Pa以后,向炉内充入高纯氩气,氩气充压至0.2兆帕。
(2)预熔炼:逐步增加送电电流至500安培,电极末端距离熔体表面30mm,熔炼时间为5min,使铀原料熔化,铀原料熔化完全后包裹钨原料并粘合在一起。
(3)熔炼:待预熔炼完成后继续增加熔炼电流至1200安培,电极末端距离熔体表面5mm,同时施加电磁场对熔体进行搅拌,施加的电磁场强度为0.12T,熔炼时间为15min。
(4)多次熔炼:待铀钨合金锭降温至室温后出炉,将铀钨合金锭底面朝上重新装炉,依次重复上述步骤(1)-(3)。使铀钨合金锭正反面熔炼次数各2次,最终获得钨颗粒均匀弥散分布的铀钨合金锭。
表3铀钨合金主要成分%
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (9)

1.一种均质铀钨合金的制备方法,其特征在于包括以下步骤:
步骤一:将清洗后的铀原料装入电弧炉熔炼坩埚中,将钨原料均匀的平铺置于铀原料上部,合炉;
步骤二:以坩埚作为负电极,将正电极末端距离熔体表面20-40mm,逐步增加送电电流,使铀原料熔化,铀原料熔化完全后包裹钨原料并粘合在一起;
步骤三:在步骤二的基础上,使得电极末端距离熔体表面5-30mm继续增加电流,在增加电流的过程中对整个坩埚中施加电磁场,电磁场对坩埚内的熔体进行搅拌;
步骤四:待坩埚冷却后,将铀钨合金锭取出后翻转,将原来的铀钨合金锭顶面朝下、底面朝上放置到坩埚中重新装炉,再依次重复步骤一、二、三、四;
步骤五:多次重复熔炼后获得钨颗粒均匀弥散分布的铀钨合金锭。
2.根据权利要求1所述的一种均质铀钨合金的制备方法,其特征在于所述坩埚为水冷铜模坩埚,水冷坩埚外表面为圆柱形,内表面呈半球形,经过抛光处理,内深为坩埚总高的1/2-3/4。
3.根据权利要求1或2所述的一种均质铀钨合金的制备方法,其特征在于装入坩埚中的铀原料采用酒精进行清洗。
4.根据权利要求1所述的一种均质铀钨合金的制备方法,其特征在于步骤三中的电磁场由设置在坩埚底部的电磁线圈提供,电磁线圈与坩埚之间设置有绝缘石棉布。
5.根据权利要求1所述的一种均质铀钨合金的制备方法,其特征在于所述铀原料采用锭、块、或切屑的结构,钨原料采用粒径为10μm-20μm、纯度大于99.9%的粉末。
6.根据权利要求1所述的一种均质铀钨合金的制备方法,其特征在于步骤一中的合炉后抽真空,坩埚炉室真空度优于1×10-2Pa以后,向炉内充入高纯氩气,氩气纯度≥99.95%,氩气充压至0.05-0.2兆帕。
7.根据权利要求1或6所述的一种均质铀钨合金的制备方法,其特征在于步骤二中熔炼电流为300-500安培,熔炼时间为1-5min。
8.根据权利要求1或6所述的一种均质铀钨合金的制备方法,其特征在于步骤三中熔炼电流为500-1200安培,熔炼时间为3-15min,施加的电磁场强度介于0.01T-0.1T之间。
9.根据权利要求1所述的一种均质铀钨合金的制备方法,其特征在于所述步骤五中获得的均质铀钨合金中钨的含量为:2%≤W≤40%,其他余量为铀及不可避免的杂质。
CN201711346412.0A 2017-12-15 2017-12-15 一种均质铀钨合金的制备方法 Active CN108103327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711346412.0A CN108103327B (zh) 2017-12-15 2017-12-15 一种均质铀钨合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711346412.0A CN108103327B (zh) 2017-12-15 2017-12-15 一种均质铀钨合金的制备方法

Publications (2)

Publication Number Publication Date
CN108103327A true CN108103327A (zh) 2018-06-01
CN108103327B CN108103327B (zh) 2019-10-25

Family

ID=62217144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711346412.0A Active CN108103327B (zh) 2017-12-15 2017-12-15 一种均质铀钨合金的制备方法

Country Status (1)

Country Link
CN (1) CN108103327B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959194A (en) * 1989-03-28 1990-09-25 The United States Of America As Represented By The United States Department Of Energy High strength uranium-tungsten alloy process
CN101722296A (zh) * 2009-11-26 2010-06-09 上海大学 利用吸铸研究薄带连铸凝固的物理模拟方法及装置
CN103173654A (zh) * 2013-04-01 2013-06-26 中南大学 一种高强石墨与钛合金钎焊用合金及其制备方法
CN103866143A (zh) * 2014-03-26 2014-06-18 铜仁学院 一种制备三铝化锆金属间化合物的方法
CN105803254A (zh) * 2016-03-29 2016-07-27 昆明理工大学 一种大块钛铜钙生物材料的制备方法
CN106636703A (zh) * 2016-12-13 2017-05-10 中核北方核燃料元件有限公司 一种高Mo含量U基合金的熔炼制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959194A (en) * 1989-03-28 1990-09-25 The United States Of America As Represented By The United States Department Of Energy High strength uranium-tungsten alloy process
CN101722296A (zh) * 2009-11-26 2010-06-09 上海大学 利用吸铸研究薄带连铸凝固的物理模拟方法及装置
CN103173654A (zh) * 2013-04-01 2013-06-26 中南大学 一种高强石墨与钛合金钎焊用合金及其制备方法
CN103866143A (zh) * 2014-03-26 2014-06-18 铜仁学院 一种制备三铝化锆金属间化合物的方法
CN105803254A (zh) * 2016-03-29 2016-07-27 昆明理工大学 一种大块钛铜钙生物材料的制备方法
CN106636703A (zh) * 2016-12-13 2017-05-10 中核北方核燃料元件有限公司 一种高Mo含量U基合金的熔炼制备方法

Also Published As

Publication number Publication date
CN108103327B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Montgomery et al. Titanium armor applications in combat vehicles
CN105385869B (zh) 高铌TiAl系金属间化合物与TC4钛合金复合构件的制备方法
CN105177332B (zh) 一种高钨含量钨锆合金的制备方法
CN113136505B (zh) 一种高强韧耐热铝合金电枢材料及其制备方法
CN106853535A (zh) 一种高品质γ‑TiAl球形粉末的制备方法
CN103122431A (zh) 一种长周期结构相增强的镁锂合金及其制备方法
CN105734459A (zh) 碳纳米管增强铝基复合材料的制备方法
CN113073215B (zh) 一种被动重型防弹装甲用高熵合金的制备方法与应用
CN113621843A (zh) 一种高强韧耐腐蚀FeCoNiCuAl高熵合金吸波材料、制备方法及用途
CN109576638A (zh) 一种W-Cu复合材料表层梯度强化方法
CN101967577A (zh) 一种制备钨基合金的方法
CN108103327B (zh) 一种均质铀钨合金的制备方法
CN106191479B (zh) 一种钨合金的非自耗电弧熔炼制备方法
CN110108172B (zh) 一种双层复合结构球形预制毁伤元及其制备方法
CN102560187A (zh) 用于电气化铁路接触网的铜合金及其制备方法
CN103352195B (zh) 形变强化钨合金高密度脉冲电流强韧化处理方法
CN108203784A (zh) 一种具有电磁屏蔽功能的镁合金网及其制备方法
CN113736970A (zh) 一种高抗软化铜铬锆合金棒制备方法
CN105331863A (zh) 一种耐热核壳强化相镁合金及其制备方法
CN104711459A (zh) 一种高密度超高强度钨钴耐热合金及制备方法
CN107217163B (zh) 一种tb13钛合金熔炼及开坯锻造方法
CN105780000B (zh) 一种发动机燃烧室表面复合硅化物涂层的制备方法
CN107586994B (zh) 一种高导电率铜合金及其制备方法
CN109402469A (zh) 一种铝合金材料及其在制备弹壳方面的应用
CN109402468A (zh) 一种轻量化的铝合金材料及其在制备弹壳方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant