CN108083237B - 一种制备铁硒超导体的方法 - Google Patents

一种制备铁硒超导体的方法 Download PDF

Info

Publication number
CN108083237B
CN108083237B CN201611046060.2A CN201611046060A CN108083237B CN 108083237 B CN108083237 B CN 108083237B CN 201611046060 A CN201611046060 A CN 201611046060A CN 108083237 B CN108083237 B CN 108083237B
Authority
CN
China
Prior art keywords
selenium
iron
superconductor
crystal structure
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611046060.2A
Other languages
English (en)
Other versions
CN108083237A (zh
Inventor
李达
李少杰
潘德胜
李勇
韩拯
耿殿禹
刘伟
张志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201611046060.2A priority Critical patent/CN108083237B/zh
Publication of CN108083237A publication Critical patent/CN108083237A/zh
Application granted granted Critical
Publication of CN108083237B publication Critical patent/CN108083237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种制备具有四方晶体结构的铁硒(β‑FeSe)超导体的方法,该方法采用可溶解的铁和硒的前驱体为原材料,与适量具有还原性的有机溶剂、氢氧化钠以及表面活性剂在反应釜中混合。在无氧环境下密封后,混合物被加热到反应温度,保温一定时间,可以获得具有超导电性的β‑FeSe超导纳米片。该方法工艺简单、制备温度低、反应时间短,原料无毒无害,能够合成厚度为10‑200纳米,边长为500纳米至十几微米的四方晶体结构β‑FeSe片状超导材料,可用于制备纳米尺度超导器件。

Description

一种制备铁硒超导体的方法
技术领域
本发明属于无机功能纳米材料领域,具体涉及到一种制备铁硒超导体的方法。
背景技术
在铁硒二元化合物中,具有六方晶体结构的NiAs-型FeSe高温相是一种磁性半导体材料,而具有四方晶体结构的PbO-型β-FeSe低温相是一种铁基超导材料。由于β-FeSe超导体具有铁基超导体中最简单的晶体结构,对理解铁基超导体结构与超导性能之间的关系非常重要,在物理和材料领域研究中被广泛使用。
通过传统的固态反应方法[如美国科学学院学报(P.Natl.Acad.Sci.USA)2008,105,14262-14264]、熔盐方法[晶体生长与设计(Cryst.Growth Des.)2009,9,3260-3264]以及气相传输方法[美国化学会NANO杂志(ACS Nano)2013,7,1145-1154]能够制备得到块体β-FeSe超导体,但是这些方法需要高温(大于700℃)和长时间的反应过程,NiAs-型FeSe高温相作为磁性杂质相总是会出现在这些β-FeSe超导体中。采用金属有机化学气相沉积[超导科学与技术(Supercond.Sci.Tech.)2011,24,015010]和电化学沉积[日本物理学会杂志(J.Phys.Soc.Jpn.)2012,81,043702]等方法能够生长β-FeSe超导体薄膜和纳米棒阵列[材料快报(Mater.Lett.)2011,65,1741-1743]。低温溶液化学方法制备β-FeSe材料能够避免NiAs-型FeSe磁性杂质相的出现,并且获得片状结构单相β-FeSe[应用物理杂志(J.Appl.Phys.)2014,115,17B502;材料化学(Chem.Mater.)2009,21,3655-3661;晶体工程通讯(Cryst.Eng.Comm.)2010,12,4386-4391;欧洲无机化学(Eur.J.Inorg.Chem.)2011,2098-2102;Cryst.Eng.Comm.2010,12,3138-3144;美国化学会志(J.Am.Chem.Soc.)2014,136,7189-7192.]。但是,由于β-FeSe超导电性对成分非常敏感,从前所有通过化学溶液过程制备的β-FeSe材料都没有超导性质。J.T.Greenfield等[Chem.Mater.2015,27,588-596]认为可溶解到溶剂中的硒和铁的原材料是溶液化学法制备的β-FeSe材料没有超导性质的原因。采用不溶的原材料铁和硒元素颗粒,在矿化剂NH4Cl的辅助下通过溶剂热方法,他们制备了具有超导性质的β-FeSe纳米颗粒[Chem.Mater.2015,27,588-596]。
本发明正是克服已有技术不足产生的。采用可溶性硒和铁的前驱体为原材料,通过溶剂热法在低温合成了具有超导电性的β-FeSe超导体,这种通过化学溶液制备β-FeSe超导体的方法未见报导。本发明打破了原有可溶性铁、硒前驱体不能制备β-FeSe超导材料的限制,具有工艺简单、制备温度低、反应时间短,原料无毒无害等优点。
发明内容
本发明的目的是提供一种制备铁硒超导体的方法,该方法为化学液相法制备铁硒超导体,制备操作简单、原料无毒无害,制备周期短、温度低,可以用于合成厚度为10-200纳米,边长为500纳米至十几微米的具有四方晶体结构的β-FeSe片状超导材料,适用于制备纳米尺度超导器件。
本发明提供了一种制备铁硒超导体的方法,其特征在于:采用溶剂热法制备所述铁硒超导体,制备原材料为可溶解于有机溶剂的铁和硒的前驱体。
其中,所述的有机溶剂是具有还原性的有机溶剂,优选为乙二醇、丙三醇、四甘醇中的一种。所述可溶解于有机溶剂的铁的前驱体为硫酸亚铁、氯化亚铁、硝酸铁、醋酸铁中的一种或多种。所述可溶解于有机溶剂的硒的前驱体为硒粉、硒酸钠和硒化钠材料中的一种或多种。
本发明所述方法的具体步骤如下:
(1)将硒的前驱体与氢氧化钠、有机溶剂、表面活性剂混合,其中硒与氢氧化钠的质量比为2:9-2:13,升温至393-513K,并保温0.5小时以上,制备得到含硒的溶液;
(2)将铁的前驱体与有机溶剂混合,制备得到含铁的溶液;
(3)将含硒的溶液与含铁的溶液按照一定的铁/硒摩尔比(优选1:1―3:4)混合,在无氧气氛下密封到反应釜中;
(4)将反应釜加热至反应温度(433-513K),在该温度保温到反应结束,或分段保温到反应结束(优选为两段保温,第一段保温时间为3-12h,升温后再保温24-72h直到反应结束),将反应釜降至室温;
(5)离心分离反应产物溶液,弃上清,得到沉淀产物;用无水乙醇洗涤三遍,在真空中干燥,得到产物粉末。
其中,步骤(1)中所述表面活性剂为聚乙烯吡咯烷酮(分子式:(C6H9NO)n,简称PVP)、十六烷基三甲基溴化铵(分子式:C19H42BrN,简称CTAB)、十二烷基硫酸钠(分子式:C12H25SO4Na,SDS)中的一种或多种;
采用本发明所述方法制备的铁硒超导体,其特征在于:该铁硒超导体具有超导电性,且具有二维纳米片状结构。
本发明所述的一种制备铁硒超导体的方法,优点在于:过程简单,成本低廉、无须昂贵或有特殊要求的试剂和设备,打破了之前化学溶液液相法制备四方晶体结构β-FeSe不具有超导电性的限制,获得了起始超导转变温度为6-10K的超导纳米片。
附图说明
图1为具有超导电性的β-FeSe纳米片的X-射线衍射图;
图2为具有超导电性的β-FeSe纳米片的(a)扫描电镜(SEM)照片,(b)铁元素和(c)硒元素分布图;
图3为β-FeSe纳米片的零场冷(Zero Field Cooling,ZFC)和场冷(FieldCooling,FC)磁化强度M(emu/g)与温度T(K)在磁场为100奥斯特下的关系曲线;
图4为使用混合表面活性剂制备的具有超导电性的β-FeSe纳米片的透射电镜(TEM)照片;
图5为混合表面活性剂制备的β-FeSe纳米片的零场冷(Zero Field Cooling,ZFC)和场冷(Field Cooling,FC)磁化强度M(emu/g)与温度T(K)在磁场为10奥斯特下的关系曲线;
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
将硒粉(1mmol)、聚乙烯吡咯烷酮(60mg)、氢氧化钠(11mmol)和乙二醇(10ml)混合,将反应釜密封加热至433K,并保温3小时,获得含硒-乙二醇溶液。将硫酸亚铁(0.75mmol)和乙二醇(10ml)混合,超声溶解获得含铁-乙二醇溶液。将含硒-乙二醇溶液和含铁-乙二醇溶液混合,在氮气气氛下密封于50ml溶剂热反应釜中,将反应釜加热至493K,并保温24小时,获得β-FeSe纳米片。将β-FeSe纳米片离心分离,并用无水乙醇洗涤3遍,在真空中干燥,并保存到真空中。
采用x-射线衍射测定了产物的晶体结构,确定了物相为四方晶体结构的β-FeSe,如图1所示。其扫描电镜(SEM)照片,铁元素和硒元素在纳米片中的分布,如图2所示。β-FeSe纳米片的磁化强度-温度(2-20K)依赖性,表明其超导临界转变温度TC=6K,如图3所示。
实施例2
将硒粉(0.5mmol)、聚乙烯吡咯烷酮(50mg)、十六烷基三甲基溴化铵(5mg),氢氧化钠(5.5mmol)和乙二醇(10ml)混合,将反应釜密封加热至433K,并保温3小时,获得含硒-乙二醇溶液。将硫酸亚铁(0.375mmol)和乙二醇(10ml)混合,超声溶解获得含铁-乙二醇溶液。将含硒-乙二醇溶液和含铁-乙二醇溶液混合,在氮气气氛下密封于50ml溶剂热反应釜中,将反应釜加热至433K,并保温12小时,再加热至493K,并保温72小时,获得β-FeSe纳米片。将β-FeSe纳米片离心分离,并用无水乙醇洗涤3遍,在真空中干燥,并保存到真空中。
透射电镜(TEM)照片,高分辨透射电镜(TEM)照片,选区电子衍射(SADE)图和纳米片边缘透射电镜(TEM)照片,如图4所示。β-FeSe纳米片的厚度为10-200纳米,边长为500纳米至十几微米。β-FeSe纳米片的磁化强度-温度(2-20K)依赖性如图5所示,表明其超导临界转变温度TC=10K。
实施例3
将硒粉(0.5mmol)、十六烷基三甲基溴化铵(35mg),氢氧化钠(5.5mmol)和乙二醇(10ml)混合,将反应釜密封加热至433K,并保温3小时,获得含硒-乙二醇溶液。将硫酸亚铁(0.375mmol)和乙二醇(10ml)混合,超声溶解获得含铁-乙二醇溶液。将含硒-乙二醇溶液和含铁-乙二醇溶液混合,在氮气气氛下密封于50ml溶剂热反应釜中,将反应釜加热至513K,并保温24小时,获得β-FeSe纳米片。将β-FeSe纳米片离心分离,并用无水乙醇洗涤3遍,在真空中干燥,并保存到真空中。
实施例4
将硒化钠(1mmol)、聚乙烯吡咯烷酮(100mg)、氢氧化钠(10mmol)和乙二醇(10ml)混合,将反应釜密封加热至453K,并保温12小时,获得含硒-乙二醇溶液。将氯化亚铁(0.75mmol)和乙二醇(10ml)混合,超声溶解获得含铁-乙二醇溶液。将含硒-乙二醇溶液和含铁-乙二醇溶液混合,在氮气气氛下密封于50ml溶剂热反应釜中,将反应釜加热至513K,并保温24小时,获得β-FeSe纳米片。将β-FeSe纳米片离心分离,并用无水乙醇洗涤3遍,在真空中干燥,并保存到真空中。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种制备具有四方晶体结构铁硒超导体的方法,其特征在于:采用溶剂热法制备所述铁硒超导体,具体步骤如下:
(1)将可溶解于有机溶剂的硒的前驱体与氢氧化钠、有机溶剂、表面活性剂混合,其中硒与氢氧化钠的质量比为2:9-2:13,升温至393-513K,并保温0.5小时以上,制备得到含硒的溶液;
(2)将可溶解于有机溶剂的铁的前驱体与有机溶剂混合,制备得到含铁的溶液;
(3)将含硒的溶液与含铁的溶液,按照一定的铁/硒摩尔比混合,在无氧气氛下密封到反应釜中;
(4)将反应釜加热至反应温度,在该温度保温到反应结束,或分段保温到反应结束,将反应釜降至室温;
(5)离心分离反应产物溶液,弃上清,得到沉淀产物;用无水乙醇洗涤三遍后,在真空中干燥,得到产物粉末。
2.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:所述的有机溶剂是具有还原性的乙二醇、丙三醇、四甘醇中的一种。
3.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:所述可溶解于有机溶剂的铁的前驱体为硫酸亚铁、氯化亚铁、硝酸铁、醋酸铁中的一种或多种。
4.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:所述可溶解于有机溶剂的硒的前驱体为硒粉、硒酸钠和硒化钠材料中的一种或多种。
5.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:步骤(1)中所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十二烷基硫酸钠中的一种或多种。
6.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:步骤(3)中铁/硒摩尔比为1:1―3:4。
7.按照权利要求1所述制备具有四方晶体结构铁硒超导体的方法,其特征在于:步骤(4)中所述反应温度为433-513K。
8.一种采用权利要求1~7任一所述方法制备的铁硒超导体,其特征在于:该铁硒超导体具有超导电性。
9.按照权利要求8所述的铁硒超导体,其特征在于:所述的铁硒超导体具有二维纳米片状结构。
CN201611046060.2A 2016-11-22 2016-11-22 一种制备铁硒超导体的方法 Active CN108083237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611046060.2A CN108083237B (zh) 2016-11-22 2016-11-22 一种制备铁硒超导体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611046060.2A CN108083237B (zh) 2016-11-22 2016-11-22 一种制备铁硒超导体的方法

Publications (2)

Publication Number Publication Date
CN108083237A CN108083237A (zh) 2018-05-29
CN108083237B true CN108083237B (zh) 2020-12-18

Family

ID=62171078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611046060.2A Active CN108083237B (zh) 2016-11-22 2016-11-22 一种制备铁硒超导体的方法

Country Status (1)

Country Link
CN (1) CN108083237B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650351B (zh) * 2018-12-25 2020-06-02 台州学院 一种FeSe基超导体及制备方法
CN113562703B (zh) * 2020-04-28 2023-08-01 北京大学 卤素诱导生长超薄铁硒化合物纳米片
CN114485965A (zh) * 2020-11-12 2022-05-13 中国科学院微电子研究所 FeSe超导纳米线及其制备方法
CN114807956B (zh) * 2022-04-11 2024-05-17 西南石油大学 应用于硫化氢制氢的原位生长纳米阵列催化剂的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759162A (zh) * 2010-01-11 2010-06-30 中山大学 单分散四方晶相硒化铁四方纳米片的低温液相合成方法
CN102556984A (zh) * 2010-12-07 2012-07-11 北京有色金属研究总院 一种新型有机合成FeSe超导体前驱粉末的方法
CN102698739A (zh) * 2012-06-15 2012-10-03 南开大学 一种太阳光响应的介孔Bi2WO6微米球的制备方法
CN102828162A (zh) * 2012-08-30 2012-12-19 西北有色金属研究院 一种FeSe超导薄膜的制备方法
CN103466565A (zh) * 2013-08-30 2013-12-25 天津大学 一种在多元醇基溶液中合成二硒化铁纳米晶的方法
CN103663391A (zh) * 2013-12-07 2014-03-26 西北有色金属研究院 一种FeSe纳米粉的制备方法
CN104086177A (zh) * 2014-07-29 2014-10-08 西北有色金属研究院 一种FeSe基超导材料的制备方法
CN105314686A (zh) * 2015-09-25 2016-02-10 浙江大学宁波理工学院 一种FeS纳米片的制备方法
US10309027B2 (en) * 2014-02-17 2019-06-04 Ucl Business Plc Method for producing dispersions of nanosheets

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759162A (zh) * 2010-01-11 2010-06-30 中山大学 单分散四方晶相硒化铁四方纳米片的低温液相合成方法
CN102556984A (zh) * 2010-12-07 2012-07-11 北京有色金属研究总院 一种新型有机合成FeSe超导体前驱粉末的方法
CN102698739A (zh) * 2012-06-15 2012-10-03 南开大学 一种太阳光响应的介孔Bi2WO6微米球的制备方法
CN102828162A (zh) * 2012-08-30 2012-12-19 西北有色金属研究院 一种FeSe超导薄膜的制备方法
CN103466565A (zh) * 2013-08-30 2013-12-25 天津大学 一种在多元醇基溶液中合成二硒化铁纳米晶的方法
CN103663391A (zh) * 2013-12-07 2014-03-26 西北有色金属研究院 一种FeSe纳米粉的制备方法
US10309027B2 (en) * 2014-02-17 2019-06-04 Ucl Business Plc Method for producing dispersions of nanosheets
CN104086177A (zh) * 2014-07-29 2014-10-08 西北有色金属研究院 一种FeSe基超导材料的制备方法
CN105314686A (zh) * 2015-09-25 2016-02-10 浙江大学宁波理工学院 一种FeS纳米片的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A Solution for Solution-Produced β-FeSe: Elucidating and Overcoming Factors that Prevent Superconductivity";Joshua T. Greenfield et al;《Chem. Mater.》;20141217;第27卷;第588-596页 *
"Superconductivity in PbO-type tetragonal FeSe nanoparticles";Chung-Chieh Chang et al;《Solid State Communications》;20120124;第152卷;第649-652页 *
"铁基超导的前世今生";罗会仟;《物理》;20140701;第43卷;第430-738页 *

Also Published As

Publication number Publication date
CN108083237A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN108083237B (zh) 一种制备铁硒超导体的方法
Madre et al. Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method
Nath et al. Synthesis and characterization of magnetic iron sulfide nanowires
Tang et al. High-Jc YBa2Cu3O7− x-Ag superconducting thin films synthesized through a fluorine-free MOD method
Fallah-Arani et al. Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive
Schnepp et al. Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures
Zhang et al. Preparation and thermoelectric transport properties of Ba-, La-and Ag-doped Ca3Co4O9 oxide materials
Alikhanzadeh-Arani et al. Influence of the utilized precursors on the morphology and properties of YBa2Cu3O7− y superconducting nanostructures
Tsabba et al. Superconducting Hg-1223 films obtained by a sol-gel process
Kordas Sol-gel processing of ceramic superconductors
Lee et al. Effect of Sr substitution on irreversibility line, lattice dynamics and formation of Hg, Pb-1223 superconductors
Zhang et al. Biopolymer mediated synthesis of plate-like YBCO with enhanced grain connectivity and intragranular critical current
CN109461557B (zh) 具有室温亚铁磁性的有序无机-有机杂化纳米材料及制备
Bhattacharya et al. Thermoelectric power of Na-doped La 0.7 Ca 0.3− y Na y MnO 3 both in the presence and the absence of magnetic field
Zuo et al. Intermediate Phase Evolution of YBCO Superconducting Films Fabricated by Fluorine Free MOD Method
Sato et al. New Lithium-and Diamine-Intercalated Superconductors Li x (C n H2 n+ 4N2) y MoSe2 ()
Rasaki et al. Iron based chalcogenide and pnictide superconductors: from discovery to chemical ways forward
Wang et al. High performance fluorine-free MOD YBa2Cu3O7-z film preparation by partial melting process
Zhao et al. Surface defects on the Gd2Zr2O7 oxide films grown on textured NiW technical substrates by chemical solution method
Rasti et al. Fabrication of YBCO thin films by fluorine-free MOCSD method: influence of sintering near the melting point
Zhang et al. Effect of Er/Y addition on the growth and superconductivity of Bi2212 films
Diez et al. Effect of Ag additions on the Bi1. 6Pb0. 4Sr 2Co1. 8Ox thermoelectric properties
Qi et al. Fabrication and characterization of Ca 3 Co 4 O 9 nanoparticles by sol-gel method
Mao et al. The combination of the polymeric solution-sol-gel process and combustion synthesis to manufacture BiPbSrCaCuO powder
Hong et al. Thermal decomposition of precursor of YBa2Cu3O7-δ superconducting layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant