CN108080637A - 一种层间激光改性的激光选区熔化成型梯度材料的方法 - Google Patents

一种层间激光改性的激光选区熔化成型梯度材料的方法 Download PDF

Info

Publication number
CN108080637A
CN108080637A CN201711454417.5A CN201711454417A CN108080637A CN 108080637 A CN108080637 A CN 108080637A CN 201711454417 A CN201711454417 A CN 201711454417A CN 108080637 A CN108080637 A CN 108080637A
Authority
CN
China
Prior art keywords
laser
modified
molded
melted
selective laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711454417.5A
Other languages
English (en)
Other versions
CN108080637B (zh
Inventor
杨永强
白玉超
张明康
肖泽锋
陈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201711454417.5A priority Critical patent/CN108080637B/zh
Publication of CN108080637A publication Critical patent/CN108080637A/zh
Application granted granted Critical
Publication of CN108080637B publication Critical patent/CN108080637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种层间激光改性的激光选区熔化成型梯度材料的方法;将激光表面改性工艺与激光选区熔化工艺进行整合,通过每激光选区熔化成型一定层数后激光束重新扫描已成型零件进行激光改性的方式,来改变零件不同区域的微观组织和性能,从而获得具有不同性能梯度的高性能零件。同时经过激光束的重新扫描,可以消除层内的空洞、微裂纹、表面凸起等缺陷,提高成型件的致密度和表面质量。零件组织和性能的变化可以通过调整设定的层数、激光重扫描功率、激光束扫描速度和激光束扫描间距的方式实现。因此,本发明在提高成型零件致密度的同时,实现了多性能梯度材料的激光选区熔化技术直接成型,对推动工业技术的发展起到重大作用。

Description

一种层间激光改性的激光选区熔化成型梯度材料的方法
技术领域
本发明涉及激光选区熔化成型领域,尤其涉及一种层间激光改性的激光选区熔化成型梯度材料的方法。
背景技术
传统的激光改性技术主要针对零件的表面进行性质的改变,从而获得满足一定要求的零部件,虽然能够满足部分工业需求,但是由于其仅仅改变了零件表面很薄的一层材料性质而无法改变零件内部材料性质,所以应用范围受到严重限制。
激光选区熔化(SLM)成形技术是一种增材制造技术,是快速成型技术的最新发展技术。该技术基于离散材料逐层堆积成型原理,依据三维设计软件设计的数字化零件的三维数据,采用高能激光束对原材料粉末逐点、逐线、逐层熔化直接制造出功能零件。目前SLM技术多用于成型整体性能相同的零件,没有能够直接成型出具有性能梯度性质的零件,而且存在少量的空洞、微裂纹以及表面凸起等缺陷。
发明内容
本发明的目的在于提供一种层间激光改性的激光选区熔化成型梯度材料的方法。解决激光选区熔化过程中存在的空洞、微裂纹以及表面凸起等缺陷,实现使用单种材料进行激光选区熔化成型时获得具有不同性能梯度的零件。
本发明通过下述技术方案实现:
一种层间激光改性的激光选区熔化成型梯度材料的方法,
步骤一:根据零件属性要求,对数字化三维模型进行切片和路径处理,以获取进行激光选区熔化成型数据和激光改性数据,然后导入激光选区熔化成型与激光表面改性系统中;该激光选区熔化成型与激光表面改性系统包括激光选区熔化成型模式、激光改性模式;
步骤二:首先,在激光选区熔化成型模式下,根据零件的激光选区熔化成型数据,在密封成型室内的成型基板上,通过激光束成型预定层数的实体,以完成该层实体的激光选区熔化成型作业;
步骤三:完成步骤二所述该层实体的激光选区熔化成型作业后,切换至激光改性模式,根据激光改性数据所设定的改性区域,对步骤二激光选区熔化成型的实体表面,通过激光束进行区域选择性激光改性处理,以完成该层实体改性区域作业;
步骤四:完成步骤三中该层实体的激光改性区域作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;
步骤五:重复步骤二至步骤四,直到完成整个零件的加工作业,获得集多种性能于一体的梯度功能零件。
步骤一所述激光改性数据包括:该层实体整个成型表面的全区域改性数据和该层实体成型表面的局部区域改性数据。
步骤三所述区域选择性激光改性处理包括:该层实体整个成型表面的全区域改性和该层实体成型表面的局部区域改性;
所述全区域改性,是根据全区域改性数据,对该层实体在垂直方向的整个实体表面,进行全覆盖激光改性,即层间梯度改性;完成该层间梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有垂直梯度性能的梯度功能零件;
所述局部区域改性,是根据局部区域改性数据,在该层已成型的实体表面,沿水平方向所选定的局部区域,进行局部区域激光改性,即层内梯度改性;完成该层内梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有水平梯度性能的梯度功能零件。
所述预定层数是指一层或者一层以上;其中,每层的层厚为20μm-50μm。
在步骤一激光选区熔化成型模式中,采用的激光束扫描方式为正交层错扫描;在激光改性模式中,采用的激光束扫描方式为层错扫描。
激光选区熔化成型模式中设定参数为:激光功率190W,扫描速度500mm/s,扫描间距0.08mm,铺粉层厚0.035mm;
激光改性模式中设定参数为:激光功率100-190W,扫描速度300-600mm/s,扫描间距0.06-0.1mm。
本发明相对于现有技术,具有如下的优点及效果:
1、将激光改性技术与激光选区熔化技术结合在一起,通过对成型若干层后的实体表面进行激光改性的方式,改变激光扫描区域的微观组织和力学性能,以此循环获得具有不同性能梯度的零件。
2、不同区域位置的组织和性能的变化可以通过修改激光改性工艺时的激光功率、扫描速度、扫描间距以及设定的改性层数来实现,因此具有极大的灵活性,可以通过工艺的自由组合来获得具有复杂性能梯度的零件。
3、由于激光改性过程中对已成型层的实体进行加热,因此可以消除层内的空洞、微应力以及表面凸起等缺陷,从而调高零件的致密度和表面质量。
4、通过激光选区熔化成型模式与激光改性模式之间的切换作业,从而既可实现层与层之间梯度变化,又可实现层内不同区域的梯度变化。根据激光改性模式中设定的的工艺参数不同,可获得退火组织、淬火组织、回火组织等具有不同性能的组织结构。
附图说明
图1是本发明层间激光改性的激光选区熔化成型梯度材料的方法流程示意图。
图2是水平方向的层内梯度成型过程示意图。
图3是图2中已成型的层内梯度零件截面示意图。
图4是激光选区熔化成型模式下完成的实体层。
图5是图4所示实体层在垂直方向的层间梯度成型过程示意图。
图6是图4所示已成型的层间梯度零件截面示意图。
图7是对激光选区熔化成型模式下完成的实体层进行外轮廓改性示意图。
图8是图7已成型的外轮廓改性后梯度零件截面示意图。
图中:密封成型室1;扫描振镜2;激光束3;改性区域4;成型基板5。
图中:A代表激光选区熔化成型模式下,形成的实体层。
具体实施方式
SLM技术的典型特点是分层叠加制造,每层的厚度为20-50μm,这为在微米级范围内改变零件的性质提供了可能。将激光表面改性技术改变表层材料性能的特点与激光选区熔化技术微米级分层叠加制造的特点结合起来,通过改变两者的工艺参数可以获得将不同性能聚集到一体的新型梯度材料。而随着科技的发展,复杂的环境对功能零件的要求越来越高,为了实现具有特殊功能、特殊要求的金属零件SLM打印,基于层间激光改性技术的激光选区熔化成型梯度材料的装置和方法必将会带来新的创新与突破。激光改性,实际上是对已经获得的具有一定厚度实体的表面在进行激光处理。
下面结合附图1-8对本发明作进一步详细描述。
本发明公开了一种层间激光改性的激光选区熔化成型梯度材料的方法。密封成型室1为成型过程提供无氧环境;扫描振镜2用于控制激光束3进行激光选区熔化成型过程与激光改性过程的切换;成型基板5为成型零件实体的基台。
在实施过程中,需在计算机的辅助下根据零件的实际使用要求,通过如下步骤实现:
步骤一:根据零件属性要求,对数字化三维模型进行切片和路径处理,以获取进行激光选区熔化成型数据和激光改性数据,然后导入激光选区熔化成型与激光表面改性系统中;该激光选区熔化成型与激光表面改性系统包括激光选区熔化成型模式、激光改性模式;
步骤二:首先,在激光选区熔化成型模式下,根据零件的激光选区熔化成型数据,在密封成型室内的成型基板上,通过激光束成型预定层数的实体,以完成该层实体的激光选区熔化成型作业;
步骤三:完成步骤二所述该层实体的激光选区熔化成型作业后,切换至激光改性模式,根据激光改性数据所设定的改性区域,对步骤二激光选区熔化成型的实体表面,通过激光束进行区域选择性激光改性处理,以完成该层实体改性区域作业;
步骤四:完成步骤三中该层实体的激光改性区域作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;
步骤五:重复步骤二至步骤四,直到完成整个零件的加工作业,获得集多种性能于一体的梯度功能零件。
步骤一所述激光改性数据包括:该层实体整个成型表面的全区域改性数据和该层实体成型表面的局部区域改性数据。
步骤三所述区域选择性激光改性处理包括:该层实体整个成型表面的全区域改性和该层实体成型表面的局部区域改性;
所述全区域改性,是根据全区域改性数据,对该层实体在垂直方向的整个实体表面,进行全覆盖激光改性,即层间梯度改性;完成该层间梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有垂直梯度性能的梯度功能零件;
所述局部区域改性,是根据局部区域改性数据,在该层已成型的实体表面,沿水平方向所选定的局部区域,进行局部区域激光改性,即层内梯度改性;完成该层内梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有水平梯度性能的梯度功能零件。
通过激光选区熔化成型模式与激光改性模式之间的切换作业,从而既可实现层与层之间梯度变化,又可实现层内不同区域的梯度变化。
所述预定层数是指一层或者一层以上;其中,每层的层厚为20μm-50μm。具体层厚可根据零件实际成型精度、粉末粒径等因素选择。预定层数需要根据零件的设计要求而定。比如根据零件的设计要求,完成第一层实体后在这层实体上进行区域改性,或者完成两层实体后,仅在最上层(第二层)这层实体上进行区域改性,以此类推。
在步骤一激光选区熔化成型模式中,采用的激光束扫描方式为正交层错扫描;在激光改性模式中,采用的激光束扫描方式为层错扫描。
激光选区熔化成型模式中设定参数为:激光功率190W,扫描速度500mm/s,扫描间距0.08mm,铺粉层厚0.035mm;
激光改性模式中设定参数为:激光功率100-190W,扫描速度300-600mm/s,扫描间距0.06-0.1mm。由此可见,根据激光改性模式中设定的的工艺参数不同,可获得退火组织、淬火组织、回火组织等具有不同性能的组织结构。
本发明激光改性,可以是该层整体表面的改性(如图5)、该层任意位置的局部表面改性(如图2),以及该层的外轮廓表面改性(如图7);从而获得内部和外部具有不同性能的梯度三维零件。
如上所述,本发明将激光表面改性工艺与激光选区熔化工艺进行有机整合,通过每激光选区熔化成型一定层数后,激光束重新扫描已成型零件进行激光改性的方式,来改变零件不同区域的微观组织和性能,从而获得具有不同性能梯度的高性能零件。同时经过激光束的重新扫描,可以消除层内的空洞、微裂纹、表面凸起等缺陷,提高成型件的致密度和表面质量。零件组织和性能的变化可以通过调整设定的层数、激光重扫描功率、激光束扫描速度和激光束扫描间距的方式实现。因此,本发明在提高成型零件致密度的同时,实现了多性能梯度材料的激光选区熔化技术直接成型,对推动工业技术的发展起到重大作用。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于:
步骤一:根据零件属性要求,对数字化三维模型进行切片和路径处理,以获取进行激光选区熔化成型数据和激光改性数据,然后导入激光选区熔化成型与激光表面改性系统中;该激光选区熔化成型与激光表面改性系统包括激光选区熔化成型模式、激光改性模式;
步骤二:首先,在激光选区熔化成型模式下,根据零件的激光选区熔化成型数据,在密封成型室内的成型基板上,通过激光束成型预定层数的实体,以完成该层实体的激光选区熔化成型作业;
步骤三:完成步骤二所述该层实体的激光选区熔化成型作业后,切换至激光改性模式,根据激光改性数据所设定的改性区域,对步骤二激光选区熔化成型的实体表面,通过激光束进行区域选择性激光改性处理,以完成该层实体改性区域作业;
步骤四:完成步骤三中该层实体的激光改性区域作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;
步骤五:重复步骤二至步骤四,直到完成整个零件的加工作业,获得集多种性能于一体的梯度功能零件。
2.根据权利要求1所述层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于,步骤一所述激光改性数据包括:该层实体整个成型表面的全区域改性数据和该层实体成型表面的局部区域改性数据。
3.根据权利要求1所述层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于,步骤三所述区域选择性激光改性处理包括:该层实体整个成型表面的全区域改性和该层实体成型表面的局部区域改性;
所述全区域改性,是根据全区域改性数据,对该层实体在垂直方向的整个实体表面,进行全覆盖激光改性,即层间梯度改性;完成该层间梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有垂直梯度性能的梯度功能零件;
所述局部区域改性,是根据局部区域改性数据,在该层已成型的实体表面,沿水平方向所选定的局部区域,进行局部区域激光改性,即层内梯度改性;完成该层内梯度改性作业后,再切换至激光选区熔化成型模式继续进行下一个预定层数的实体成型;以此循环切换作业,直至获得具有水平梯度性能的梯度功能零件。
4.根据权利要求1所述层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于:所述预定层数是指一层或者一层以上;其中,每层的层厚为20μm-50μm。
5.根据权利要求1所述层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于:在步骤一激光选区熔化成型模式中,采用的激光束扫描方式为正交层错扫描;在激光改性模式中,采用的激光束扫描方式为层错扫描。
6.根据权利要求5所述层间激光改性的激光选区熔化成型梯度材料的方法,其特征在于,激光选区熔化成型模式中设定参数为:激光功率190W,扫描速度500mm/s,扫描间距0.08mm,铺粉层厚0.035mm;
激光改性模式中设定参数为:激光功率100-190W,扫描速度300-600mm/s,扫描间距0.06-0.1mm。
CN201711454417.5A 2017-12-28 2017-12-28 一种层间激光改性的激光选区熔化成型梯度材料的方法 Active CN108080637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711454417.5A CN108080637B (zh) 2017-12-28 2017-12-28 一种层间激光改性的激光选区熔化成型梯度材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711454417.5A CN108080637B (zh) 2017-12-28 2017-12-28 一种层间激光改性的激光选区熔化成型梯度材料的方法

Publications (2)

Publication Number Publication Date
CN108080637A true CN108080637A (zh) 2018-05-29
CN108080637B CN108080637B (zh) 2020-02-18

Family

ID=62180696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711454417.5A Active CN108080637B (zh) 2017-12-28 2017-12-28 一种层间激光改性的激光选区熔化成型梯度材料的方法

Country Status (1)

Country Link
CN (1) CN108080637B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317761A (zh) * 2020-10-10 2021-02-05 北京隆源自动成型系统有限公司 一种slm成形线性梯度合金智能工艺
CN112658279A (zh) * 2020-11-30 2021-04-16 华南理工大学 一种原位处理4d打印构件的方法
CN114570943A (zh) * 2022-03-02 2022-06-03 西安国宏天易智能科技有限公司 一种选区激光固化、熔化跃层扫描成形方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146407A (ja) * 2000-11-10 2002-05-22 Hitachi Tool Engineering Ltd 通電焼結方法
CN202062079U (zh) * 2011-03-29 2011-12-07 华南理工大学 一种直接制造梯度材料零件的装置
CN103480843A (zh) * 2013-09-18 2014-01-01 华南理工大学 一种基于三缸成型机的复合材料零件的3d打印方法
CN104001917A (zh) * 2014-05-26 2014-08-27 华南理工大学 一种基于铺粉加工的梯度功能材料制备装置及方法
CN104404509A (zh) * 2014-11-28 2015-03-11 中南大学 一种金属激光熔化增材制造方法
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146407A (ja) * 2000-11-10 2002-05-22 Hitachi Tool Engineering Ltd 通電焼結方法
CN202062079U (zh) * 2011-03-29 2011-12-07 华南理工大学 一种直接制造梯度材料零件的装置
CN103480843A (zh) * 2013-09-18 2014-01-01 华南理工大学 一种基于三缸成型机的复合材料零件的3d打印方法
CN104001917A (zh) * 2014-05-26 2014-08-27 华南理工大学 一种基于铺粉加工的梯度功能材料制备装置及方法
CN104404509A (zh) * 2014-11-28 2015-03-11 中南大学 一种金属激光熔化增材制造方法
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317761A (zh) * 2020-10-10 2021-02-05 北京隆源自动成型系统有限公司 一种slm成形线性梯度合金智能工艺
CN112317761B (zh) * 2020-10-10 2023-01-10 北京隆源自动成型系统有限公司 一种slm成形线性梯度合金智能工艺
CN112658279A (zh) * 2020-11-30 2021-04-16 华南理工大学 一种原位处理4d打印构件的方法
CN114570943A (zh) * 2022-03-02 2022-06-03 西安国宏天易智能科技有限公司 一种选区激光固化、熔化跃层扫描成形方法
CN114570943B (zh) * 2022-03-02 2024-01-12 西安国宏玖合科技有限公司 一种选区激光固化、熔化跃层扫描成形方法

Also Published As

Publication number Publication date
CN108080637B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN104084584B (zh) 用于高温合金结构件快速成型的激光扫描方法
CN108080637A (zh) 一种层间激光改性的激光选区熔化成型梯度材料的方法
JP6190038B2 (ja) レーザ粉末積層造形装置及びレーザ粉末積層造形方法及び3次元積層造形装置
CN106041079B (zh) 一种选择性激光熔化成形操作方法
JP4977710B2 (ja) 義歯の製造方法
CN105618936B (zh) 一种采用激光刻划玻璃加工方法
Jaiganesh et al. Manufacturing of PMMA cam shaft by rapid prototyping
CN108311697A (zh) 一种集成双类型激光提高slm成型件表面质量的装置与方法
CN106077639A (zh) 一种激光选区熔化成形设备及其成形方法
CN105386037B (zh) 一种采用选区激光熔化成形技术成形功能梯度零件的方法
CN105817625A (zh) 一种熔融涂覆增减材复合成形装置
CN106182772B (zh) 多种材料快速原型成型装置及方法
CN103240414B (zh) 激光熔化技术制造金属零件参数的选择方法及基板试样
CN105983786B (zh) 一种采用激光实现玻璃加工的方法
CN108817386A (zh) 用于多光束激光选区熔化成形的层间梳状拼接方法
JP2017100304A (ja) 3次元積層造形装置及び3次元積層造形方法
KR20190101404A (ko) 기판을 분리하는 방법
CN107866568A (zh) 一种适用于液压阀块的激光选区熔化成形方法
CN108772562A (zh) 基于选区激光熔化的钴铬合金粉末成型方法
CN206415601U (zh) 一种双激光四工位转盘式激光选区熔化成型装置
CN110576602B (zh) 一种聚醚醚酮的3d打印方法及其打印样件
CN111590074B (zh) 基于金属3d打印多孔结构随形冷却水路的制造方法
JP2003321704A (ja) 積層造形法およびそれに用いる積層造形装置
JP2018095955A (ja) 三次元的な物体を付加的に製造するための方法
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant