CN108079371A - 缓释Kartogenin的三维支架及其制备方法 - Google Patents
缓释Kartogenin的三维支架及其制备方法 Download PDFInfo
- Publication number
- CN108079371A CN108079371A CN201810021729.5A CN201810021729A CN108079371A CN 108079371 A CN108079371 A CN 108079371A CN 201810021729 A CN201810021729 A CN 201810021729A CN 108079371 A CN108079371 A CN 108079371A
- Authority
- CN
- China
- Prior art keywords
- kgn
- msn
- preparation
- kartogenin
- biological material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
- A61L2300/414—Growth factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/62—Encapsulated active agents, e.g. emulsified droplets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/06—Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明属于生物材料技术领域,具体涉及一种缓释Kartogenin的三维支架及其制备方法。该三维支架包括合成生物材料和分散在所述合成生物材料中的介孔氧化硅纳米微球,且所述介孔氧化硅纳米微球的孔道内负载有Kartogenin。本发明的三维支架采用MSN包裹KGN,再分散在合成生物材料中得到三维支架,这样可使KGN稳定长期缓释,而且该三维支架具有多孔结构及较好的力学性能,可广泛应用于组织工程领域。
Description
技术领域
本发明属于生物材料技术领域,具体涉及一种缓释Kartogenin的三维支架及其制备方法。
背景技术
Kartogenin(简称KGN)是一种smad4/smad5通路激活剂,促进多功能间充质干细胞选择性分化为软骨细胞。研究表明:单独注射使用KGN时,可能很快被组织清除;另外,其疏水性和对非靶向组织的副作用也限制了其应用。
使用生物相容性良好的支架材料负载KGN用于软骨再生,不仅可以提高KGN的亲水性,还能将药物定向释放于靶组织,减少对正常组织的副作用,并通过支架材料逐渐降解使药物缓慢释放,从而延长药物作用时间,提高疗效。壳聚糖链中的氨基能和KGN分子中的羧基共价结合,从而改善KGN的亲水性和药代动力学。因此,用壳聚糖负载KGN能够提高KGN的治疗效果。Li等制备出poly(L-lactide-ε-glycolide)-poly(ethyleneglycol)-poly(L-lactide-ε-glycolide) (PLGA-PEG-PLGA)热凝胶并负载KGN和BMSCs用于修复软骨缺损。体外缓释行为研究显示196h后仅有42.4%的KGN从凝胶中释放出来。体内动物实验中,他们建立了兔子股骨髁全层软骨缺损并作不同处理。结果发现,与其他组相比,热凝胶同时负载KGN和BMSCs后植入缺损部位能使软骨平面更加完整和光滑,有更多的GAGs和COLⅡ生成,同时正常软骨组织的退化减少。Yin 等采用同轴静电纺丝方法制备出负载KGN的P(LLA-CL)/胶原纳米纤维支架用于气管软骨再生。理化性质检测结果显示该支架的亲水性得到提高,同时其拉伸强度更接近人体气管软骨。体外KGN缓释行为研究示,KGN能稳定持续释放2月。体外细胞实验结果显示该支架能显著促进软骨细胞合成更多COLⅡ和GAG;与BMSCs共培养后能显著提高该细胞COLⅡ和SOX9基因的表达水平。另外,Shi等采用一步技术将负载KGN的PLGA纳米粒子与光交联透明质酸凝胶支架整合注入动物软骨缺损部位,促进正常透明软骨生成,成功地修复了软骨缺损;并证明该支架能持续缓慢释放KGN,同时能促使内源性干细胞归巢而无需植入外源性干细胞。
KGN难溶于水,三维打印支架制备过程中,难以与其他材料一起混;KGN 可促进软骨细胞细胞外基质分泌和维持干细胞分化,但其长期稳定缓释是一个难点。因此,现有技术有待改进。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种缓释KGN的三维支架及其制备方法,旨在解决现有KGN难以长期稳定缓释的技术问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种三维支架,所述三维支架包括合成生物材料和分散在所述合成生物材料中的介孔氧化硅纳米微球,且所述介孔氧化硅纳米微球的孔道内负载有Kartogenin。
本发明另一方面提供一种三维支架的制备方法,包括如下步骤:
提供介孔氧化硅纳米微球和Kartogenin;
将所述Kartogenin负载至所述介孔氧化硅纳米微球的孔道中,形成 MSN-KGN颗粒;
提供合成生物材料溶液,将所述MSN-KGN颗粒分散在所述合成生物材料溶液中,得到打印墨水;
将所述打印墨水打印成型,得到三维支架材料。
本发明提供的三维支架,采用介孔氧化硅纳米微球(Mesoporous SilicaNanoparticles,简称MSN)包裹Kartogenin(简称KGN),再分散在合成生物材料中得到三维支架,这样可使KGN稳定长期缓释,而且该三维支架具有多孔结构及较好的力学性能,可广泛应用于组织工程领域。
本发明提供的三维支架的制备方法,将Kartogenin包裹在介孔氧化硅纳米微球中形成MSN-KGN颗粒,然后与合成生物材料溶液混溶后,利用三维打印技术制备三维支架使MSN-KGN颗粒包裹在三维支架内,以实现KGN缓慢释放。该制备方法中得到的三维支架,可使KGN稳定长期缓释,而且该三维支架具有多孔结构及较好的力学性能,可广泛应用于组织工程领域。
附图说明
图1为本发明实施例1中制备MSN-KGN颗粒的结果图;其中,A为MSN 透射电镜图;B为MSN-KGN颗粒透射电镜图;
图2为本发明实施例2中制备的含MSN-KGN颗粒的三维支架即PLGA支架结果图;其中,A为三维支架光镜图;B为三维支架扫描电镜图;C为B的高倍扫描电镜图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一方面,本发明实施例提供一种三维支架,所述三维支架包括合成生物材料和分散在所述合成生物材料中的介孔氧化硅纳米微球,且所述介孔氧化硅纳米微球的孔道内负载有Kartogenin。
本发明实施例提供的三维支架,采用介孔氧化硅纳米微球包裹Kartogenin,再分散在合成生物材料中得到三维支架,这样可使KGN稳定长期缓释,而且该三维支架具有多孔结构及较好的力学性能,可广泛应用于组织工程领域。
具体地,介孔氧化硅纳米微球具有高的比表面积和孔容、表面易修饰、生物相容性良好等特点,因此,本发明实施例中,首次将Kartogenin包裹在介孔氧化硅纳米微球中,具有很好的缓释作用。进一步地,所述介孔氧化硅纳米微球的粒径为50nm-300nm,更进一步地,所述介孔氧化硅纳米微球的孔道直径为3-4nm,该孔径范围内的介孔氧化硅纳米微球可更好地释放Kartogenin。
进一步地,所述介孔氧化硅纳米微球与所述Kartogenin的质量比为1000: (1-125)。更进一步优选地,MSN和KGN的优选质量比为1000:125,1000:125 为最大的质量比,MSN中所含KGN的量最大,缓释后利于KGN发挥药效作用。
更进一步地,所述合成生物材料选自P(LLA-CL)(即聚乳酸-己内酯共聚物)、 PLGA(即聚乳酸-羟基乙酸共聚物)和PLLA(即聚左旋乳酸)中的任意一种。
另一方面,本发明实施例提供了一种三维支架的制备方法,包括如下步骤:
S01;提供介孔氧化硅纳米微球和Kartogenin;
S02:将所述Kartogenin负载至所述介孔氧化硅纳米微球的孔道中,形成 MSN-KGN颗粒;
S03:提供合成生物材料溶液,将所述MSN-KGN颗粒分散在所述合成生物材料溶液中,得到打印墨水;
S04:将所述打印墨水打印成型,得到三维支架材料。
本发明实施例提供的三维支架的制备方法,将Kartogenin包裹在介孔氧化硅纳米微球中形成MSN-KGN颗粒,然后与合成生物材料溶液混溶后,利用三维打印技术制备三维支架使MSN-KGN颗粒包裹在三维支架内,以实现KGN 缓慢释放。该制备方法中得到的三维支架,可使KGN稳定长期缓释,而且该三维支架具有多孔结构及较好的力学性能,可广泛应用于组织工程领域。
进一步地,所述介孔氧化硅纳米微球的粒径为50nm-300nm,更进一步地,所述介孔氧化硅纳米微球的孔道直径为3-4nm,该孔径范围内的介孔氧化硅纳米微球可更好地释放Kartogenin。更进一步地,所述介孔氧化硅纳米微球与所述Kartogenin的质量比为1000:(1-125)。更优选地,MSN和KGN的优选质量比为1000:125,1000:125为最大的质量比,MSN中所含KGN的量最大,缓释后利于KGN发挥药效作用。更进一步地,合成生物材料溶液中的合成生物材料选自选自P(LLA-CL)、PLGA和PLLA中的任意一种。
以PLGA为例,详细介绍该制备方法:
该制备方法中,所述MSN-KGN颗粒与所述PLGA溶液中的PLGA的质量比为1:(1-100)。更优选地,MSN-KGN颗粒与PLGA优选的质量比为5:5。将MSN-KGN颗粒分散在PLGA中,可进一步缓释Kartogenin。更优选地,所述PLGA溶液的浓度为1.5g/mL-1g/mL。该浓度范围内的PLGA溶液,可更好地分散MSN-KGN颗粒。
进一步地,在将所述MSN-KGN颗粒分散在所述PLGA溶液中之前,还包括将所述MSN-KGN颗粒溶于溶剂中得到MSN-KGN溶液的步骤。更进一步地, MSN-KGN溶液的浓度范围可在3mg/mL-0.01mg/mL之间,所述溶剂为1,4二氧六环,即将MSN-KGN颗粒溶于1,4二氧六环得到MSN-KGN溶液,这样可使MSN-KGN颗粒更好地分散在PLGA溶液中。
进一步地,将所述打印墨水打印成型后还包括冷冻干燥的步骤。更进一步地,所述冷冻干燥的时间为48h-72h。该条件下进行冷冻干燥,可以进一步除去三维支架材料中的水分和溶剂,得到纯净的三维支架,更有利于Kartogenin 缓释。冷冻干燥在冷冻干燥机中进行,所述冷冻干燥机陷阱温度为零下52℃。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
MSN-KGN颗粒的制备:
(1)称取1-125mg Kartogenin溶于乙醇中,超声振动直至分散均匀,得分散液;
(2)称取1000mg MSN(介孔氧化硅纳米颗粒,如图1A所示)加入到步骤(1)所得分散液中,超声振动后,将所得溶液放置于3~5℃的冰箱中4~6天。
(3)将步骤(2)冰箱中的溶液取出,放置于真空干燥箱内进行抽真空,直至使乙醇全挥发,得到MSN-KGN颗粒(如图1B所示)。
实施例2
缓释Kartogenin的三维支架的制备:
(1)称量1mg含0.125mg KGN的MSN(即1.125mg MSN-KGN颗粒) 溶于1mL 1,4二氧六环(DIO)中。
(2)称量1g PLGA在转速为600RPM的磁力搅拌下溶于9mL的1,4二氧六环中。
(3)把1mL MSN-KGN DIO溶液加入到配制好的PLGA溶液中,在600RPM 转速下,磁力搅拌24小时混匀配制得到打印墨水。
(4)把100mL打印墨水加入到低温快速成型三维打印仪的加料罐中,在设定的参数下进行打印,成型后放入冷冻干燥机中在冷冻陷阱温度为零下52℃下冷冻干燥48h-72h,制备得到含可缓释KGN的三维打印支架,即含MSN-KGN 颗粒的三维PLGA支架(如图2所示)。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种三维支架,其特征在于,所述三维支架包括合成生物材料和分散在所述合成生物材料中的介孔氧化硅纳米微球,且所述介孔氧化硅纳米微球的孔道内负载有Kartogenin。
2.如权利1所述的三维支架,其特征在于,所述介孔氧化硅纳米微球的粒径为50nm-300nm;和/或
所述介孔氧化硅纳米微球的孔道直径为3-4nm;和/或
所述介孔氧化硅纳米微球与所述Kartogenin的质量比为1000:(1-125);和/或
所述合成生物材料选自P(LLA-CL)、PLGA和PLLA中的任意一种。
3.一种三维支架的制备方法,其特征在于,包括如下步骤:
提供介孔氧化硅纳米微球和Kartogenin;
将所述Kartogenin负载至所述介孔氧化硅纳米微球的孔道中,形成MSN-KGN颗粒;
提供合成生物材料溶液,将所述MSN-KGN颗粒分散在所述生物材料溶液中,得到打印墨水;
将所述打印墨水打印成型,得到三维支架材料。
4.如权利3所述的制备方法,其特征在于,所述介孔氧化硅纳米微球的粒径为50nm-300nm;和/或
所述介孔氧化硅纳米微球的孔道直径为3-4nm;和/或
所述介孔氧化硅纳米微球与所述Kartogenin的质量比为1000:(1-125);和/或
所述合成生物材料溶液中的合成生物材料选自P(LLA-CL)、PLGA和PLLA中的任意一种。
5.如权利要求3所述的制备方法,其特征在于,所述MSN-KGN颗粒与所述合成生物材料溶液中的合成生物材料的质量比为1:(1-100)。
6.如权利要求3所述的制备方法,其特征在于,所述合成生物材料溶液的浓度为1.5g/mL-1g/mL。
7.如权利要求3所述的制备方法,其特征在于,在将所述MSN-KGN颗粒分散在所述合成生物材料溶液中之前,还包括将所述MSN-KGN颗粒溶于溶剂中得到MSN-KGN溶液的步骤。
8.如权利要求7所述的制备方法,其特征在于,所述MSN-KGN溶液的浓度为3mg/mL-0.01mg/mL;和/或
所述溶剂为1,4二氧六环。
9.如权利要求3所述的制备方法,其特征在于,将所述打印墨水打印成型后,还包括冷冻干燥的步骤。
10.如权利要求9所述的制备方法,其特征在于,所述冷冻干燥的时间为48h-72h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810021729.5A CN108079371A (zh) | 2018-01-10 | 2018-01-10 | 缓释Kartogenin的三维支架及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810021729.5A CN108079371A (zh) | 2018-01-10 | 2018-01-10 | 缓释Kartogenin的三维支架及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108079371A true CN108079371A (zh) | 2018-05-29 |
Family
ID=62181913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810021729.5A Pending CN108079371A (zh) | 2018-01-10 | 2018-01-10 | 缓释Kartogenin的三维支架及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108079371A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111821513A (zh) * | 2020-08-14 | 2020-10-27 | 南方科技大学 | 一种促进软骨形成的复合水凝胶及其制备方法和应用 |
CN112807489A (zh) * | 2021-01-20 | 2021-05-18 | 广东省人民医院 | 一种用于软骨修复的可注射脱细胞支架及其制备方法与应用 |
CN109621002B (zh) * | 2018-12-04 | 2021-08-31 | 东华大学 | 一种具有生物活性的自愈合形状记忆多孔支架及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160036737A (ko) * | 2014-09-25 | 2016-04-05 | 단국대학교 천안캠퍼스 산학협력단 | 성장인자를 함유한 생분해용 폴리머-쉘화된 메소포러스 나노구가 삽입된 치료용 폼 스캐폴드 |
CN107308502A (zh) * | 2016-10-28 | 2017-11-03 | 深圳市第二人民医院 | 复合负载生长因子微球的3d打印支架及其制备方法 |
-
2018
- 2018-01-10 CN CN201810021729.5A patent/CN108079371A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160036737A (ko) * | 2014-09-25 | 2016-04-05 | 단국대학교 천안캠퍼스 산학협력단 | 성장인자를 함유한 생분해용 폴리머-쉘화된 메소포러스 나노구가 삽입된 치료용 폼 스캐폴드 |
CN107308502A (zh) * | 2016-10-28 | 2017-11-03 | 深圳市第二人民医院 | 复合负载生长因子微球的3d打印支架及其制备方法 |
Non-Patent Citations (3)
Title |
---|
ZHOU X, WENG W, CHEN B, ET AL.: "Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects", 《JOURNAL OF MATERIALS CHEMISTRY B》 * |
中国科学技术协会主编: "《免疫学学科发展报告2014-2015》", 30 April 2016 * |
余家会,任红轩,黄进主编: "《纳米生物医药》", 31 December 2011 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109621002B (zh) * | 2018-12-04 | 2021-08-31 | 东华大学 | 一种具有生物活性的自愈合形状记忆多孔支架及其制备方法和应用 |
CN111821513A (zh) * | 2020-08-14 | 2020-10-27 | 南方科技大学 | 一种促进软骨形成的复合水凝胶及其制备方法和应用 |
CN112807489A (zh) * | 2021-01-20 | 2021-05-18 | 广东省人民医院 | 一种用于软骨修复的可注射脱细胞支架及其制备方法与应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Purohit et al. | Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration | |
Huang et al. | 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair | |
US10406261B2 (en) | Biomimetic biphasic 3D nanocomposite scaffold for osteochondral regeneration | |
Castro et al. | Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds | |
Saber-Samandari et al. | A novel magnetic bifunctional nanocomposite scaffold for photothermal therapy and tissue engineering | |
US9138483B2 (en) | Collagen/hydroxyapatite composite scaffold, and process for the production thereof | |
Peng et al. | Emerging nanostructured materials for musculoskeletal tissue engineering | |
Erol‐Taygun et al. | Bioactıve glass‐polymer nanocomposites for bone tıssue regeneration applicatıons: a revıew | |
EP3231846A1 (en) | Concentrated aqueous silk fibroin solution and use thereof | |
EP2793962B1 (en) | Process for modifying the surface morphology of a medical device | |
CN108079371A (zh) | 缓释Kartogenin的三维支架及其制备方法 | |
Heo et al. | In vitro and animal study of novel nano-hydroxyapatite/poly (ɛ-caprolactone) composite scaffolds fabricated by layer manufacturing process | |
US20240100226A1 (en) | Water-soluble salt particle containing compositions and porous materials made therefrom | |
Lemos et al. | Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering | |
George et al. | Biopolymer-based scaffolds: Development and biomedical applications | |
Deepika et al. | Applications of nanoscaffolds in tissue engineering | |
Abar et al. | A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering | |
Prakasam et al. | Chapter Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications | |
Efimov et al. | Cryo scanning probe nanotomography study of the structure of alginate microcarriers | |
Tzvetkov et al. | Water-dispersible PVA-based dry microballoons with potential for biomedical applications | |
Antonov et al. | Selective laser sintering of bioactive composite matrices for bone tissue engineering | |
Liu et al. | Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement | |
CN114080244A (zh) | 利用基于软骨成分的生物墨水的治疗小耳症目的结构体制造用组合物及其制造方法 | |
Nadernezhad et al. | Poly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: Structural and in vitro characterization | |
Tettey | Preparation and Characterization of Hydrogel Microcapsules Using Hybrid Nanofibers of Polycaprolactone (PCL) and Gelatin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180529 |
|
RJ01 | Rejection of invention patent application after publication |