CN108059194A - 球状CoWO4纳米材料的制备方法及其在电催化中的应用 - Google Patents

球状CoWO4纳米材料的制备方法及其在电催化中的应用 Download PDF

Info

Publication number
CN108059194A
CN108059194A CN201711371064.2A CN201711371064A CN108059194A CN 108059194 A CN108059194 A CN 108059194A CN 201711371064 A CN201711371064 A CN 201711371064A CN 108059194 A CN108059194 A CN 108059194A
Authority
CN
China
Prior art keywords
nano material
spherical
cowo
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711371064.2A
Other languages
English (en)
Other versions
CN108059194B (zh
Inventor
庞欢
张丽
耿朋彪
沈万鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201711371064.2A priority Critical patent/CN108059194B/zh
Publication of CN108059194A publication Critical patent/CN108059194A/zh
Application granted granted Critical
Publication of CN108059194B publication Critical patent/CN108059194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

球状CoWO4纳米材料的制备方法及其在电催化中的应用,涉及电解水、燃料电池和金属‑空气电池等技术领域,将氯化钾水溶液与磷钨酸水溶液混合后常温下搅拌反应,取得K3PW12O40纳米材料后,再将K3PW12O40纳米材料溶于去离子水中,制得钨酸盐溶液,然后再将钨酸盐水溶液与乙酸钴水溶液混合进行水热反应,取得球状CoWO4纳米材料。把该纳米材料溶解在Nafion水溶液中,经修饰玻碳电极,得修饰样品的玻碳电极。可以大大提高在氧析出反应等方面的电催化性能。

Description

球状CoWO4纳米材料的制备方法及其在电催化中的应用
技术领域
本发明涉及电解水、燃料电池和金属-空气电池等技术领域,特别是其电极材料的制备技术。
背景技术
近十年来,在全球环境恶化和能源需求日益严重的情况下,能源转换和储存方面的研究逐渐激增。从这个意义上讲,环境友好的水分解制氢取得了巨大的关注。然而,分解水的电化学或光化学的析氧反应的过电位高的(OER)限制。虽然贵金属氧化物(例如RuO2和IrO2)和贵金属(例如Pt)–OER催化剂具有较高的催化活性和稳定性,其实际应用是经济上并不可行,因为他们的高价格和稀缺性。因此,努力研究高性能的替代品,如合金,金属氧化物和金属配合物。钴(Co)已经成为设计和制造坚固的最常见的非贵重元素之一和高效的OER催化剂。
钨酸钴(CoWO4)是一种重要的p型半导体在催化、磁性、传感器和光电领域电化学电池这方面得到了相当大的关注。更重要的是,CoWO4与Co3O4相比,具有优越的电化学活性和更高的电子多价态导电性。因此,预测CoWO4具有增强的电化学性能能源存储设备。
发明内容
针对以上现有技术和缺陷,本发明首先提出一种球状CoWO4纳米材料的制备方法。
本发明包括以下步骤:
1)将氯化钾水溶液与磷钨酸水溶液混合后常温下搅拌反应,取得沉淀物以水和乙醇洗涤后干燥,即得K3PW12O40纳米材料;
KCL+H3PWO40 = K3PW12O40+HCL
2)将K3PW12O40纳米材料溶于去离子水中,制得钨酸盐溶液;
3)将钨酸盐水溶液与乙酸钴水溶液混合进行水热反应,取得沉淀物用水和乙醇洗涤后干燥,即得球状CoWO4纳米材料。
本发明的球状CoWO4电极材料是由简单水热法制备而成,采用的原材料环保、成本低,工艺简单,易于操作控制,适于连续化大规模生产,制备过程绿色环保。
经实验证实,这种CoWO4纳米材料具有球状结构,由于其高的比表面积、优良的电导率等优异性能,可用于电催化。
进一步地,为了取得产物形貌最佳且性能最优,所述步骤1)中氯化钾和磷钨酸的混合体积比为1∶2。
所述步骤3)中乙酸钴为四水乙酸钴(Co(CH3COO)2•4H2O)。经实验证明,由于这几种金属二价盐所带的酸根易脱去,更易得到所需的产物,因此优先采用这种金属盐。
所述钨酸盐和四水乙酸钴的投料摩尔比为1∶10。此比例下CoWO4的形貌和性能较好。
所述水热反应的温度条件为120℃。经反复实验证明,在此水热温度下,能够合成生长良好、纯度较高的球状CoWO4,是最佳的工艺条件。
本发明另一目的还提出采用以上方法制成的球状CoWO4纳米材料在电催化中的应用。
超声条件下,把所述球状CoWO4纳米材料溶解在Nafion水溶液中,然后修饰在玻碳电极上,得到修饰样品的玻碳电极。
该应用的特点及优点:
(1)CoWO4纳米材料虽然其导电性较差,但其特殊的球状的纳米结构,大大提高了在氧析出反应(OER)等方面的电催化性能。
(2)利用电子传递,只需要通过很薄的膜层,电子就可以到达载体电极上。
(3)氧析出反应(OER)被认为是对环境友好和可再生的能源系统。
附图说明
图1为本发明制备的球状K3PW12O40电极材料的扫描电镜图(SEM)。
图2为本发明制备的片球状CoWO4电极材料的扫描电镜图(SEM)。
图3为本发明制备的片球状CoWO4电极材料的透射电镜图(TEM)。
图4为本发明制备的球状CoWO4电极材料的X射线衍射图(XRD)。
图5为本发明制备的球状CoWO4电极材料的OER的循环伏安曲线图。
图6为本发明制备的球状CoWO4电极材料的OER的线性扫描曲线图。
具体实施方式
下面结合附图和具体实施方式用实例对本发明作进一步说明,但不限于此。
一、制备球状CoWO4纳米材料:
1、将氯化钾溶于去离子水中,制得0.20 moL /L氯化钾水溶液。
将磷钨酸溶于去离子水中,制得0.0030 moL/ L磷钨酸水溶液。
再取5 mL氯化钾水溶液逐滴加入10 mL磷钨酸水溶液中,经反应得到沉淀物,将沉淀物以水和乙醇洗涤后干燥,即得粉末状K3PW12O40纳米材料。
对粉末状K3PW12O40纳米材料进行SEM测试:图1为放大10000倍下的扫描电子显微镜照片,其显示典型的球状结晶结构,可以为扩散和储存电解质离子提供大的比表面积。
2、取0.4 g 粉末状K3PW12O40纳米材料溶解在20 mL 去离子水中,得到钨酸盐水溶液。
将0.0249 g Co(CH3COO)2•4H2O溶于20 mL去离子水中,得钴盐水溶液。
将钨酸盐水溶液和钴盐水溶液混合,在120℃条件下水热反应8小时,得到的灰色沉淀物,用去离子水和乙醇分别洗涤3次后干燥,即得到球状CoWO4纳米材料。
二、球状CoWO4纳米材料的特征:
对球状CoWO4纳米材料进行SEM测试:图2为球状CoWO4纳米材料的扫描电镜图,其样品表面为针形的球状结构。
对球状CoWO4纳米材料进行TEM测试:图3为球状CoWO4纳米材料的透射电镜图,样品为实心球并且其表面为针形结构。
对球状CoWO4纳米材料进行XRD测试:图4为球状CoWO4纳米材料的X射线衍射图,其峰可以和标准峰对上,从而表明所合成的样品为所需要的样品。
三、电催化电极的制备:
1、将直径为3 mm的玻碳电极分别用吸附了1 μm氧化铝悬浮液的砂纸和吸附了0.3 μm氧化铝悬浮液的砂纸打磨抛光。
2、将打磨抛光好的玻碳电极依次放在去离子水中超声清洗1分钟后,在0.5M KCl+K3[Fe(CN)6]溶液中扫描循环伏安曲线,以测试电极是否磨好,最后取得洁净的玻碳电极,晾干以待用。
3、取6 mg制备取得的球状CoWO4纳米材料加入由800 mL H2O和200 mL Nafion混合组成的Nafion水溶液中,超声混合,制成混合溶液,随后将5 μL混合溶液采用涂覆的方法修饰在直径为3 mm的洁净的玻碳电极表面,自然晾干后即得球状CoWO4电催化电极。
四、电极的电催化性能试验:
以氢氧化钾作为电解液,其中,氢氧化钾浓度为1 mol/L。
将球状CoWO4电催化电极放置在1 mol/L的KOH溶液中进行测定。
利用电化学工作站,将制备的待测电极在事先通入大约半小时氮气的电解质溶液中,在0.0~0.5 V之间的电位下,扫描速率控制为0.05 V/s,先进行循环伏安扫描,然后在0.0~1.90 V之间的电位下,扫描速率控制为100 mV/s,进行线性伏安扫描,测试样品的电化学性能。
图5显示了样品CoWO4修饰的电极在电位(相对于标准氢电极)为0.90 -1.45 V范围内显示无明显的氧化还原峰。
图6显示了样品CoWO4修饰的电极在电位(相对于标准氢电极)为0.0-1.90 V在1mol/L氢氧化钾电解质溶液中显示出良好的OER电催化性能,在电流密度为10 mA cm-2时对应的电压为1.83 V。

Claims (6)

1.球状CoWO4纳米材料的制备方法,其特征在于包括以下步骤:
1)将氯化钾水溶液与磷钨酸水溶液混合后常温下搅拌反应,取得沉淀物以水和乙醇洗涤后干燥,即得K3PW12O40纳米材料;
2)将K3PW12O40纳米材料溶于去离子水中,制得钨酸盐溶液;
3)将钨酸盐水溶液与乙酸钴水溶液混合进行水热反应,取得沉淀物用水和乙醇洗涤后干燥,即得球状CoWO4纳米材料。
2.根据权利要求1所述的制备方法,其特征在于所述步骤1)中氯化钾和磷钨酸的混合体积比为1∶2。
3.根据权利要求1所述的制备方法,其特征在于所述步骤3)中乙酸钴为四水乙酸钴。
4.根据权利要求3所述的制备方法,其特征在于所述钨酸盐和四水乙酸钴的投料摩尔比为1∶10。
5.根据权利要求1或4所述的制备方法,其特征在于所述水热反应的温度条件为120℃。
6.如权利要求1所述制备方法制得的球状CoWO4纳米材料在电催化中的应用,其特征在于:超声条件下,把所述球状CoWO4纳米材料溶解在Nafion水溶液中,然后修饰在玻碳电极之上,得到修饰样品的玻碳电极。
CN201711371064.2A 2017-12-19 2017-12-19 球状CoWO4纳米材料的制备方法及其在电催化中的应用 Active CN108059194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711371064.2A CN108059194B (zh) 2017-12-19 2017-12-19 球状CoWO4纳米材料的制备方法及其在电催化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711371064.2A CN108059194B (zh) 2017-12-19 2017-12-19 球状CoWO4纳米材料的制备方法及其在电催化中的应用

Publications (2)

Publication Number Publication Date
CN108059194A true CN108059194A (zh) 2018-05-22
CN108059194B CN108059194B (zh) 2019-11-01

Family

ID=62139171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711371064.2A Active CN108059194B (zh) 2017-12-19 2017-12-19 球状CoWO4纳米材料的制备方法及其在电催化中的应用

Country Status (1)

Country Link
CN (1) CN108059194B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264004A (zh) * 2020-11-25 2021-01-26 安徽大学 基于钨酸盐的催化材料及其在水氧化产过氧化氢中的应用
CN114394628A (zh) * 2022-01-07 2022-04-26 大连海事大学 一种具有择优取向及容量逆增长的类杨桃状CoWO4微球及其应用
CN114713242A (zh) * 2022-05-11 2022-07-08 榆林学院 一种用于长链α烯烃环氧化反应金属氧化物催化剂制备方法
CN115932013A (zh) * 2023-03-10 2023-04-07 华北理工大学 以熔盐法制备的钨酸钴为敏感电极的传感器及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880086A (zh) * 2014-03-10 2014-06-25 江苏大学 一种基于氧化钨为前驱体的钨酸盐的合成方法
CN103991913A (zh) * 2014-05-29 2014-08-20 陕西科技大学 一种采用微波水热法制备CoWO4 纳米粉体材料的方法
CN106892459A (zh) * 2017-03-24 2017-06-27 扬州大学 一种钾磷钨酸盐微立方的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880086A (zh) * 2014-03-10 2014-06-25 江苏大学 一种基于氧化钨为前驱体的钨酸盐的合成方法
CN103991913A (zh) * 2014-05-29 2014-08-20 陕西科技大学 一种采用微波水热法制备CoWO4 纳米粉体材料的方法
CN106892459A (zh) * 2017-03-24 2017-06-27 扬州大学 一种钾磷钨酸盐微立方的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNCHENG CHEN等: "Photodegradation of Dye Pollutants Catalyzed by Porous K3PW12O40 under Visible Irradiation", 《ENVIRON. SCI. TECHNOL.》 *
M.I. AHMED等: "Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4", 《MATERIALS LETTERS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264004A (zh) * 2020-11-25 2021-01-26 安徽大学 基于钨酸盐的催化材料及其在水氧化产过氧化氢中的应用
CN114394628A (zh) * 2022-01-07 2022-04-26 大连海事大学 一种具有择优取向及容量逆增长的类杨桃状CoWO4微球及其应用
CN114394628B (zh) * 2022-01-07 2024-05-17 大连海事大学 一种具有择优取向及容量逆增长的类杨桃状CoWO4微球及其应用
CN114713242A (zh) * 2022-05-11 2022-07-08 榆林学院 一种用于长链α烯烃环氧化反应金属氧化物催化剂制备方法
CN115932013A (zh) * 2023-03-10 2023-04-07 华北理工大学 以熔盐法制备的钨酸钴为敏感电极的传感器及其制作方法

Also Published As

Publication number Publication date
CN108059194B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
Li et al. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection
Kim et al. FeCo alloy nanoparticles embedded in N-doped carbon supported on highly defective ketjenblack as effective bifunctional electrocatalysts for rechargeable Zn–air batteries
Xie et al. Ni3N@ Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH
Chen et al. Tuning octahedron sites in MnFe2O4 spinel by boron doping for highly efficient seawater splitting
Du et al. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene
Yang et al. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation
CN111229232A (zh) 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
Sun et al. α-and γ-Fe 2 O 3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction
Qin et al. Coupling bimetallic oxides/alloys and N-doped carbon nanotubes as tri-functional catalysts for overall water splitting and zinc–air batteries
CN108059194B (zh) 球状CoWO4纳米材料的制备方法及其在电催化中的应用
Zheng et al. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction
Du et al. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H 2 O 2 detection
Ding et al. Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor
Wan et al. Activating hematite nanoplates via partial reduction for electrocatalytic oxygen reduction reaction
Xin et al. Visualization of the electrocatalytic activity of three-dimensional MoSe 2@ reduced graphene oxide hybrid nanostructures for oxygen reduction reaction
Inohara et al. Cobalt-doped goethite-type iron oxyhydroxide (α-FeOOH) for highly efficient oxygen evolution catalysis
CN109999822A (zh) 一种碳纳米管负载钼掺杂的四氧化三钴催化剂的制备
Pan et al. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process
CN112007670A (zh) 一种非晶纳米颗粒析氧催化剂
Li et al. CoP-anchored high N-doped carbon@ graphene sheet as bifunctional electrocatalyst for efficient overall water splitting
Yin et al. Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction
CN108033492B (zh) 非晶的CoWO4笼状纳米材料的制备方法及其在电催化中的应用
Li et al. Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting
Meng et al. A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction
John et al. Anchoring SnS nanoflakes on CuCo2O4 acicular sprouts for overall water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant