CN108051486A - 一种缺陷调控半导体的光电化学核酸分析方法 - Google Patents

一种缺陷调控半导体的光电化学核酸分析方法 Download PDF

Info

Publication number
CN108051486A
CN108051486A CN201711264608.5A CN201711264608A CN108051486A CN 108051486 A CN108051486 A CN 108051486A CN 201711264608 A CN201711264608 A CN 201711264608A CN 108051486 A CN108051486 A CN 108051486A
Authority
CN
China
Prior art keywords
nucleic acid
metal nano
nano structure
excimer
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711264608.5A
Other languages
English (en)
Other versions
CN108051486B (zh
Inventor
唐点平
舒健
邱桢丽
吕姝臻
张康耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711264608.5A priority Critical patent/CN108051486B/zh
Publication of CN108051486A publication Critical patent/CN108051486A/zh
Application granted granted Critical
Publication of CN108051486B publication Critical patent/CN108051486B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了一种缺陷调控半导体的光电化学核酸分析方法,可用于多种核酸目标物的定量分析。本发明首先依次将富含缺陷的二氧化钛和核酸捕获探针修饰到电极构成生物传感界面。利用结合有激元金属纳米结构的核酸探针与目标物杂交引起构像变化,在剪切酶的作用下,产生大量含有激元金属纳米结构的核酸残余片段,通过该片段与电极上的捕获探针杂交,将激元金属纳米结构锚定于电极界面。在一定波长光激发下,激元金属纳米结构产生局域表面等离子共振从而显著改变传感器光电流信号。该方法操作简单,灵敏度高,选择性好,同时也为光电化学生物传感信号转导提供了新模式。

Description

一种缺陷调控半导体的光电化学核酸分析方法
技术领域
本发明属于分析化学领域,具体涉及一种缺陷调控半导体的光电化学核酸分析方法。
背景技术
开发新型的,具有高灵敏和高选择性的核酸检测方法对环境监测,食品安全和疾病诊断都显得尤为重要,因此一直是定量检测分析中的热点研究之一。光电化学核酸分析是一种基于核酸分子特异性识别作用结合光电活性物质的光致电转换特性而发展起来的新兴检测技术。由于其具有不同能量形式的激发信号和检测信号,相较于传统的电化学和光谱检测手段展现出独特的优势,近年来得到广泛关注。然而作为一种新型检测方法,其信号转导模式多局限于空间位阻效应,能量转移效应和原位生成电活性物质,他们的可操作性,稳定性,成本有待进一步的提高。发展新型信号传感模式对于扩大其应用范围和高效的分析体系具有重要意义。
物理化学和材料化学领域取得的巨大进展为光电化学信号传感模式的开发提供了重要的参考。被广泛应用于光催化和太阳能电池领域,能够有效提高半导体材料对可见光活性的表面等离子体共振(SPR)效应,逐步开始应用于光电化学生物传感界面的构建即是一个典型的实例。将激元金属纳米结构固定到半导体表面影响电磁能量的分布,提高可见光激发下的光催化活性和光电流响应。然而,在当前的这类光电生物传感体系中,激元金属纳米结构作为光电复合材料的一部分事先结合到半导体表面,然后通过生物分子之间的作用引起电极材料或者电解液溶发生一定的变化,从而改变检测信号。在这种模式中,虽然这些复合材料相较于单一成分表现出许多的优点,如提高了光子吸收范围,增强光电转换效率,同时提供了具有良好的生物相容性的界面,但是激元金属纳米结构通过这一系列作用以及SPR效应在增强光电响应信号的同时也提高了背景信号。这种固有的缺陷严重阻碍了灵敏度的提高进一步。
此外,光电化学生物传感性能很大程度上取决于所用的光电活性材料的性质。氧空位作为一种广泛存在于金属氧化物中的缺陷,理论和实验的研究结果证实其可以作为一种重要手段调控金属氧化物半导体光谱吸收、电子能带结构及光催化性能。然而,基于氧空位缺陷调控来提高光电化学生物分析性能的方法还鲜有研究。
发明内容
为克服以上的不足,本发明的目的在于提供一种基于目标物引入激元金属纳米结构结合缺陷调控的二氧化钛半导体为基础的低背景信号核酸分析方法。其技术原理是在没有目标物条件下,电极界面修饰的宽带隙缺陷型二氧化钛不足以被可见光子激发产生电子空穴对,仅有非常弱的光电流背景信号。当目标物存在的时候,大量的激元金属纳米结构被引入到电极界面,在一定频率的波长光激发下发生局域表面等离子体共振效应,激发电子注入到传感器金属氧化物半导体基底,从而显著地增强传感器光电流信号,信号的变化量与目标物浓度在一定范围内成正相关关系。
为实现上述目的,本发明采用的技术方案如下:
一种缺陷调控半导体的光电化学核酸分析方法,包含以下步骤:
(1)缺陷调控二氧化钛纳米块的制备:以铁离子作为掺杂剂调控二氧化钛中缺陷浓度,将5-15 mg的六水合三氯化铁固体溶解在油酸(7-11 mL)、油胺(4-7 mL)和乙醇(5 mL)混合溶剂中,随后加入5 mmol酞酸丁酯搅拌10分钟,转移至35 mL的敞口玻璃瓶,最后将该玻璃瓶放入到100 mL的装有20 mL乙醇溶液的聚四氟乙烯反应釜,130-160℃反应14-20个小时;冷却后用乙醇离心洗涤两次,收集固体成分,制得缺陷型二氧化钛;
(2) 缺陷调控二氧化钛纳米块的表面修饰:将步骤(1)制备的缺陷型二氧化钛分散到甲苯(3-5 mL),二甘醇(20-25 mL)和1.6-2.5 g的聚丙烯酸的混合溶液中,缓慢加热至100℃,然后再加热至180℃回流8-10小时,然后用乙醇和水交替离心洗涤3-5次,收集固体成分;
(3)光电化学生物传感器的构建:将步骤(2)收集的固体分散到水中,得到浓度为2-5mg/mL的溶液,取5-10 μL所得溶液滴加到聚二烯丙基二甲基氯化铵(PDDA)修饰的电极表面,干燥后浸入到含30 mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和15 mg N-羟基琥珀酰亚胺(NHS)的水溶液中,40 分钟后,用10 mM的Tris-HCl缓冲液(pH 7.4)淋洗后,将2 - 5 μM的一端带有氨基的捕获探针(cDNA,10 μL)滴加到电极表面在4℃放置一夜;1 mM乙醇胺封闭1小时用Tris-HCl缓冲液清洗;
(4)将发夹结构的核酸与激元金属纳米结构溶胶混合振荡过夜,形成DNA-激元金属纳米结构复合物核酸探针(pDNA);
(5)将pDNA与待测目标物(tDNA)、DNA剪切酶和缓冲液混合1-2小时,期间,pDNA与tDNA特异性地杂交从而打开发夹结构,在DNA剪切酶的作用下,剪切部分DNA序列,剩下一段结合有激元金属纳米结构的单链核酸残余片段(rDNA),同时释放出tDNA继续参与下一轮循环反应,最终产生大量的结合有激元金属纳米结构的rDNA;
(6)将步骤(5)所得溶液80℃热处理10分钟使酶失活,自然冷却至室温,将所得溶液滴入到步骤(3)处理后的修饰电极上,孵育0.5-1小时后,产生大量含有激元金属纳米结构的核酸残余片段,通过该残余片段与电极界面上的捕获探针杂交,将激元金属纳米结构锚定于电极界面;用PBS缓冲液淋洗,在一定波长激发光照射下,检测光电流信号,激元金属纳米结构产生局域表面等离子激元效应从而增强传感器光电流信号,增强幅度与tDNA浓度具有确定的关系,从而实现对核酸的灵敏检测。
步骤(1)所述的缺陷型二氧化钛带隙能大于2.5 eV,发射波长大于450 nm,三维尺寸小于50 nm。
步骤(4)所述的发夹结构的核酸,茎部一末端含有巯基或氨基能以共价键方式结合激元金属纳米结构。
步骤(4)所述的核酸探针pDNA能够被特定的tDNA打开形成一端为平末端或凹陷末端的双链结构,而另一端为结合了激元金属纳米结构的凸出末端单链结构,且不受捕获探针的影响。
步骤(4)所述的激元金属纳米结构包括纳米金、纳米银和纳米铜中的任意一种,其三维尺寸均小于60 nm,在450-650 nm可见光范围内能够有效的产生局域表面等离子体共振吸收峰。
步骤(5)所述的DNA剪切酶是核酸外切酶III和λ核酸外切酶中的任意一种。
步骤(6)本发明所述的激发光是一种波长460-620 nm的单色光或复合光。
本发明的优势如下:
(1)本发明方法中,生物分子与基底通过共价键交联形成生物传感界面,固载大量的识别探针,有效的提高识别能力和灵敏度;
(2)本发明方法通过目标物间接地将激元金属纳米结构通过核酸杂交反应结合到电极表面,结合牢固,与传统的预先将激元金属纳米结构修饰到基底的方法相比,具有背景信号低,灵敏度高的优势;
(3)本发明操作简单,通用性强,具有广泛的应用前景;
(4)本发明为光电化学生物分析提供了一种新型信号传感模式。
附图说明
图1 为基于目标物引入激元金属纳米结构和缺陷调控半导体的光电化学核酸分析过程及原理示意图;
图2 为缺陷调控二氧化钛纳米块的表面羧酸修饰的反应原理示意图;
图3为 缺陷调控二氧化钛纳米块透射电镜图;
图4为缺陷调控二氧化钛纳米块X射线光电子能谱图;
图5为实施例1对标准样检测结果,A:实施例1光电流变化与检测目标物浓度对数线性图(插图为对应的光电流响应曲线),B:实施例1的选择性考察结果(a为单碱基错配序列,b为两碱基错配序列,c为目标物序列,d为非互补序列,e为空白样,所用浓度均为0.5 nM)。
具体实施方式
下面通过具体实施示例对本发明的技术方案做进一步说明,但是不能以此限制本发明的范围。
实施例1
(1)缺陷调控二氧化钛纳米块的制备
将12 mg的六水合三氯化铁固体溶解在油酸(8 mL),油胺(7 mL)和乙醇(5 mL)混合溶剂中,随后加入5 mmol酞酸丁酯搅拌十分钟,转移至35 mL的敞口玻璃瓶,最后将该玻璃瓶放入到100 mL的装有20 mL乙醇溶液的聚四氟乙烯反应釜, 160℃反应20个小时;冷却后用乙醇离心洗涤两次,收集固体成分。
(2)缺陷调控二氧化钛纳米块的表面修饰
将步骤(1)制备的疏水性二氧化钛分散到甲苯(3 mL)、二甘醇(20 mL)和聚丙烯酸(2g)混合溶液中,缓慢加热至100℃,然后再加热至180℃回流10小时,然后用乙醇和水交替离心洗涤4次,收集固体成分。
(3)核酸外切酶III协助信号放大检测锰超氧化物歧化酶基因
将步骤(2)改性的固体分散到水中,得到4 mg/mL的溶液,取5 μL所得溶液滴加到PDDA修饰的电极表面,干燥后浸入到含30 mg EDC和20 mg NHS的水溶液中(1.5 mL),40 分钟后,用10 mM的Tris-HCl缓冲液(pH 7.4)淋洗后,将5 μM的带有氨基的捕获探针(cDNA1,10μL)滴加到电极表面在4℃放置一夜;1 mM乙醇胺封闭1小时用Tris-HCl缓冲液清洗即可;
将发夹核酸与纳米金(AuNPs)溶胶混合振荡过夜,形成DNA-AuNPs核酸探针(pDNA1);
在离心管中将2 μL的pDNA1 (0.5 μM)、 1 μL的核酸外切酶III (0.5 U) 、5 μL不同浓度的tDNA1以及标准的酶缓冲液(5 μL) 混合,37℃条件下振荡反应100分钟;然后将离心管水浴加热到80℃自然冷却到室温;随后,取8 μL反应液滴加到修饰电极孵育1小时后用PBS缓冲液淋洗,在580 nm 激发光照射下,检测光电流信号。相同条件下,以单碱基错配DNA、双碱基错配DNA和非互补配对DNA分别作为目标物,考察该方法的选择性。
所用DNA序列如下:
实施例2
λ核酸外切酶协助信号放大检测慢性髓细胞性白血病基因
将实施例1中步骤(2)改性的固体分散到水中,得到4 mg/mL的溶液,取5 μL所得溶液滴加到PDDA修饰的电极表面,干燥后浸入到含30 mg EDC和15 mg NHS的水溶液中(1.5 mL),40 分钟后,用10 mM的Tris-HCl缓冲液(pH 7.4)淋洗后,将2 μM的带有氨基的捕获探针(cDNA2,10 μL)滴加到电极表面4℃放置一夜;1 mM乙醇胺封闭1小时用Tris-HCl缓冲液清洗即可。
将发夹核酸与纳米银(AgNPs)溶胶混合振荡过夜,形成DNA-AgNPs核酸探针(pDNA2);
在离心管中将2 μL 的pDNA2 (0.5 μM)、 5 μL的λ核酸外切酶 (0.5 U) 、4 μL不同浓度的tDNA2混合,37℃条件下振荡反应60分钟;然后将离心管水浴加热到80℃自然冷却到室温;随后,取8 μL反应液滴加到修饰电极孵育60分钟后用Tris-HCl缓冲液淋洗,在460 nm激发光照射下,检测光电流信号。
所用DNA序列如下:
图1为本发明所涉及的基于目标物引入激元金属纳米结构和缺陷调控半导体的光电化学核酸分析过程及原理图。图2为缺陷调控二氧化钛纳米块的表面羧酸修饰的反应原理示意图。透射电镜图显示该缺陷调控二氧化钛形貌为均一的纳米块,尺寸在10-15 nm(图3),分散性良好。X射线光电子能谱表明该材料主要由Ti、O和Fe元素组成,且铁元素以三价形式存在(图4)。
图5为实施例1对标准样检测结果(插图为对应的光电流响应曲线)。在1 pM-10 nM的目标物浓度范围内,响应值ΔIΔI = I t – I g ,其中I t I g 分别为在传感器在没有目标物和一定浓度目标物情况下的稳定电流值)与目标物浓度对数存在良好的线性关系(A)。为了证明该方法对特定目标物的选择性,我们考察了单碱基错配序列,两碱基错配序列以及非互补序列对传感器响应值的影响。实验结果证实该传感器对不同的干扰组分虽有不同的响应,但是响应均较小,说明其具有较好的选择性(B)。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
序列表
<110> 福州大学
<120> 一种缺陷调控半导体的光电化学核酸分析方法
<130> 9
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 46
<212> DNA
<213> pDNA1
<400> 1
aaaggagaat gggaaaaaaa aaaaaaaccc attctcccag ttgatt 46
<210> 2
<211> 22
<212> DNA
<213> tDNA1
<400> 2
aatcaactgg gagaatgtaa ct 22
<210> 3
<211> 18
<212> DNA
<213> cDNA1
<400> 3
cattctcctt aaaaaaaa 18
<210> 4
<211> 22
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 4
tatcaactgg gagaatgtaa ct 22
<210> 5
<211> 22
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 5
tatcaactgg aagaatgtaa ct 22
<210> 6
<211> 22
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 6
cgctagtcta tagccttgaa ac 22
<210> 7
<211> 53
<212> DNA
<213> pDNA2
<400> 7
agagttcaaa agcccttcga gggagtgaag tgtgagaagg gcttttgtta ggg 53
<210> 8
<211> 18
<212> DNA
<213> tDNA2
<400> 8
gaagggcttt tgaactct 18
<210> 9
<211> 12
<212> DNA
<213> cDNA2
<400> 9
ccctaacaaa ag 12

Claims (7)

1.一种缺陷调控半导体的光电化学核酸分析方法,其特征在于:包含以下步骤:
(1) 缺陷调控二氧化钛纳米块的制备:以铁离子作为掺杂剂调控二氧化钛中缺陷浓度,将5-15 mg的六水合三氯化铁固体溶解在7-11 mL油酸、4-7 mL油胺和5 mL乙醇的混合溶剂中,随后加入5 mmol酞酸丁酯搅拌10分钟,转移至35 mL的敞口玻璃瓶,最后将该玻璃瓶放入到100 mL的装有20 mL乙醇溶液的聚四氟乙烯反应釜,130-160℃反应14-20个小时;冷却后用乙醇离心洗涤两次,收集固体成分,制得缺陷型二氧化钛;
(2) 缺陷调控二氧化钛纳米块的表面修饰:将步骤(1)制备的缺陷型二氧化钛分散到3-5 mL甲苯、20-25 mL二甘醇和1.6-2.5 g的聚丙烯酸的混合溶液中,缓慢加热至100℃,然后再加热至180℃回流8-10小时,然后用乙醇和水交替离心洗涤3-5次,收集固体成分;
(3) 光电化学生物传感器的构建:将步骤(2)收集的固体分散到水中,得到浓度为2-5mg/mL的溶液,取5-10 μL所得溶液滴加到聚二烯丙基二甲基氯化铵修饰的电极表面,干燥后浸入到含30 mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和20 mg N-羟基琥珀酰亚胺的水溶液中,40 分钟后,用10 mM、pH 7.4的Tris-HCl缓冲液淋洗后,将10 μL 浓度为2 -5 μM的带有氨基的捕获探针cDNA滴加到电极表面在4℃放置一夜;1 mM乙醇胺封闭1小时用Tris-HCl缓冲液清洗;
(4) 将发夹结构的核酸与激元金属纳米结构溶胶混合偶联,形成DNA-激元金属纳米结构复合物核酸探针pDNA;
(5) 将pDNA与待测目标物tDNA、DNA剪切酶和缓冲液混合1-2小时,期间,pDNA与tDNA特异性地杂交从而打开发夹结构,在DNA剪切酶的作用下,剪切部分DNA序列,剩下一段结合有激元金属纳米结构的单链核酸残余片段rDNA,同时释放出tDNA继续参与下一轮循环反应,最终产生大量的结合有激元金属纳米结构的rDNA;
(6) 将步骤(5)所得溶液80℃热处理10分钟使酶失活,自然冷却至室温,将所得溶液滴入到步骤(3)处理后的修饰电极上,孵育0.5-1小时后,用PBS缓冲液淋洗,在激发光照射下,检测光电流信号,实现对核酸的灵敏检测。
2. 根据权利要求1所述的分析方法,其特征在于:步骤(1)所述的缺陷型二氧化钛,其带隙能大于2.5 eV,发射波长大于450 nm,三维尺寸小于50 nm。
3.根据权利要求1所述的分析方法,其特征在于:步骤(4)所述发夹结构的核酸,其茎部一末端含有巯基或氨基能以共价键方式结合激元金属纳米结构。
4.根据权利要求1所述的分析方法,其特征在于:步骤(4)所述的核酸探针pDNA能够被特定的tDNA打开形成一端为平末端或凹陷末端的双链结构,而另一端为结合了激元金属纳米结构的凸出末端单链结构,且不受捕获探针的影响。
5. 根据权利要求1所述的分析方法,其特征在于:步骤(4)所述的激元金属纳米结构包括纳米金、纳米银和纳米铜中的任意一种,其三维尺寸均小于60 nm,在450-650 nm可见光范围内能够有效的产生局域表面等离子体共振。
6.根据权利要求1所述的分析方法,其特征在于:步骤(5)所述的DNA剪切酶是核酸外切酶III和λ核酸外切酶中的任意一种。
7. 根据权利要求1所述的分析方法,其特征在于:步骤(6)所述的激发光是一种波长为460-620 nm的单色光或复合光。
CN201711264608.5A 2017-12-05 2017-12-05 一种缺陷调控半导体的光电化学核酸分析方法 Expired - Fee Related CN108051486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711264608.5A CN108051486B (zh) 2017-12-05 2017-12-05 一种缺陷调控半导体的光电化学核酸分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711264608.5A CN108051486B (zh) 2017-12-05 2017-12-05 一种缺陷调控半导体的光电化学核酸分析方法

Publications (2)

Publication Number Publication Date
CN108051486A true CN108051486A (zh) 2018-05-18
CN108051486B CN108051486B (zh) 2019-09-13

Family

ID=62121419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711264608.5A Expired - Fee Related CN108051486B (zh) 2017-12-05 2017-12-05 一种缺陷调控半导体的光电化学核酸分析方法

Country Status (1)

Country Link
CN (1) CN108051486B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828006A (zh) * 2019-02-27 2019-05-31 山东农业大学 一种检测甲基化rna的光电化学传感器及其检测方法
CN110320258A (zh) * 2019-07-04 2019-10-11 青岛科技大学 一种基于循环扩增和阳离子交换检测核酸分子的方法
CN112881361A (zh) * 2021-01-12 2021-06-01 辽宁大学 带有羧酸基的化合物在表面等离激元催化下的高效电离反应
CN114574554A (zh) * 2022-02-23 2022-06-03 宁德师范学院 一种TiO2缺陷调控的DNA甲基化光电检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100575954C (zh) * 2005-06-23 2009-12-30 中国科学院生态环境研究中心 一种光电化学检测核酸的方法
CN105353006A (zh) * 2015-11-11 2016-02-24 安徽理工大学 一种光电传感器及其工作电极的制备方法和应用
CN106596662A (zh) * 2016-12-08 2017-04-26 福州大学 一种温度可控的电化学dna生物传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100575954C (zh) * 2005-06-23 2009-12-30 中国科学院生态环境研究中心 一种光电化学检测核酸的方法
CN105353006A (zh) * 2015-11-11 2016-02-24 安徽理工大学 一种光电传感器及其工作电极的制备方法和应用
CN106596662A (zh) * 2016-12-08 2017-04-26 福州大学 一种温度可控的电化学dna生物传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIAN SHU,ET AL.: "Plasmonic Enhancement Coupling with Defect-Engineered TiO2-x: A Mode for Sensitive Photoelectrochemical Biosensing", 《ANAL.CHEM.》 *
JINGJIA CHEN,ET AL.: "Signal-On Photoelectrochemical Aptasensor Amplified by Exciton Energy Transfer and Exonuclease-Aided Target Recycling", 《CHEMELECTROCHEM》 *
KAN ZHANG,ET AL.: "Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity", 《J.PHYS.CHEM.LETT.》 *
WU LU,ET AL.: "Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode", 《BIOSENSORS AND BIOELECTRONICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828006A (zh) * 2019-02-27 2019-05-31 山东农业大学 一种检测甲基化rna的光电化学传感器及其检测方法
CN110320258A (zh) * 2019-07-04 2019-10-11 青岛科技大学 一种基于循环扩增和阳离子交换检测核酸分子的方法
CN112881361A (zh) * 2021-01-12 2021-06-01 辽宁大学 带有羧酸基的化合物在表面等离激元催化下的高效电离反应
CN114574554A (zh) * 2022-02-23 2022-06-03 宁德师范学院 一种TiO2缺陷调控的DNA甲基化光电检测方法
CN114574554B (zh) * 2022-02-23 2023-05-30 宁德师范学院 一种TiO2缺陷调控的DNA甲基化光电检测方法

Also Published As

Publication number Publication date
CN108051486B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
Qiu et al. Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device
CN108051486B (zh) 一种缺陷调控半导体的光电化学核酸分析方法
WO2021035653A1 (zh) 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
Kannan et al. Au nanorod decoration on NaYF4: Yb/Tm nanoparticles for enhanced emission and wavelength-dependent biomolecular sensing
Wu et al. Application of europium multiwalled carbon nanotubes as novel luminophores in an electrochemiluminescent aptasensor for thrombin using multiple amplification strategies
CN105821132B (zh) 一种基于核酸外切酶和核酸探针的电化学检测特定单链dna浓度的方法
Borghei et al. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles
Liu et al. A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing Escherichia coli detection
Li et al. Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline
CN104458704A (zh) 基于dna修饰的sers基底检测低浓度汞离子的方法
Gao et al. Triple-helix molecular switch electrochemiluminescence nanoamplifier based on a S-doped Lu2O3/Ag2S pair for sensitive microRNA detection
Liu et al. A sensitive electrochemical assay for T4 polynucleotide kinase activity based on Fe3O4@ TiO2 and gold nanoparticles hybrid probe modified magnetic electrode
Zhang et al. Lanthanum loaded graphitic carbon nitride nanosheets for highly sensitive and selective fluorescent detection of iron ions
Han et al. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of Nuclear Matrix Protein 22
Hou et al. A novel photoelectrochemical aptamer sensor based on rare-earth doped Bi2WO6 and Ag2S for the rapid detection of Vibrio parahaemolyticus
Lou et al. Highly sensitive “signal-on” electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction
Li et al. Photoelectrochemical biosensor based on BiVO4/Ag2S heterojunction coupled with Exo III-assisted silver nanoclusters amplification for tumor suppressor gene P53
Luo et al. Photoelectrochemical detection of breast cancer biomarker based on hexagonal carbon nitride tubes
Cheng et al. CeO2/MXene heterojunction-based ultrasensitive electrochemiluminescence biosensing for BCR-ABL fusion gene detection combined with dual-toehold strand displacement reaction for signal amplification
Wen et al. A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins
CN104076072A (zh) 氧化铱-铁卟啉-氧化钛的高灵敏度光电化学传感器及其制备方法
Yang et al. Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene
CN108896631B (zh) 一种以硫化铜-二氧化钛异质结结构为支架的光电化学适配体传感器的构建方法
Geng et al. A Direct‐Contact Photocurrent‐Direction‐Switching Biosensing Platform Based on In Situ Formation of CN QDs/TiO2 Nanodiscs and Double‐Supported 3D DNA Walking Amplification
Zhang et al. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190913

Termination date: 20211205