CN108048809A - 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法 - Google Patents

耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法 Download PDF

Info

Publication number
CN108048809A
CN108048809A CN201710864171.2A CN201710864171A CN108048809A CN 108048809 A CN108048809 A CN 108048809A CN 201710864171 A CN201710864171 A CN 201710864171A CN 108048809 A CN108048809 A CN 108048809A
Authority
CN
China
Prior art keywords
moo
argentiferous
target
workpiece
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710864171.2A
Other languages
English (en)
Other versions
CN108048809B (zh
Inventor
徐江
孙腾腾
姚凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Yihe Biological Co ltd
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710864171.2A priority Critical patent/CN108048809B/zh
Publication of CN108048809A publication Critical patent/CN108048809A/zh
Application granted granted Critical
Publication of CN108048809B publication Critical patent/CN108048809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明采用双阴极等离子溅射沉积及离子氧化方法制备耐蚀抗菌的含银MoO3‑SiO2纳米晶复合涂层,具体工艺参数如下:靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm,Ar气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h;离子氧化工艺参数:靶材电压650V~750V,工件电压250V~350V,靶材与工件间距10mm~15mm,Ar气压25Pa~40Pa,O2分压0.1Pa~1.0Pa,氧化时间1.5h~2.0h;本发明方法获得的含银MoO3‑SiO2纳米晶复合涂层具有高硬度、高韧性以及优异的耐海洋腐蚀和抗微生物腐蚀能力,能明显提高海洋材料的316L不锈钢的耐磨性、抗腐蚀性能和抗菌性能。

Description

耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法
技术领域
本发明涉及双阴极等离子溅射沉积和离子氧化复合工艺以及涂层材料的结构设计与选材的领域,具体涉及一种制备含银MoO3-SiO2纳米晶复合涂层的新方法,适用于在金属材料表面制备高耐蚀、良好的抗菌性能、高的结合力与强韧性涂层。
背景技术
在人类生产生活中,腐蚀给人类带来了巨大的损失,其中由于微生物引起的腐蚀占到很大的比重。微生物在海洋环境中种类繁多,种群数目数以万计,他们能够在海洋恶劣环境中生存,面对不同的生存环境,微生物在种群上展现出多样性,因此对金属进行腐蚀的情况也是多样的。由于微生物腐蚀具有学科交叉性,涉及到物理,化学,生物和材料等各学科研究周期长,硬性因素复杂,实验条件苛刻等,给科学工作者的研究带来了巨大的困难。随着生物学技术及表面分析和电化学技术的发展,人们对微生物腐蚀的认识成为可能,对各类细菌的腐蚀机理也进行了研究。作为一个拥有1.8万km海岸线的世界海洋大国之一,研究海洋结构材料在海水中的微生物腐蚀性能具有十分重要的理论和现实意义。海洋腐蚀环境苛刻,海水中的盐浓度高(一般在3.5%左右),富氧,并存在大量海洋微生物,加之海浪冲击和阳光照射,海洋腐蚀环境较为严酷。在海洋环境中服役的基础设施和重工业设施的腐蚀问题严重,特别是船舶与海洋平台的腐蚀问题更加突出,腐蚀已经成为影响船舶、近海工程、远洋设施服役安全、寿命、可靠性的重要因素。而海洋微生物的存在,会附着在船底中生长和繁殖,从而使船体污损和发生腐蚀,造成船体粗糙,摩擦力增大,进而降低船舶航行的速度,增加燃耗。虽然对于大面积的海上构筑物可以采用重防腐涂料等防护技术,但对于许多形状复杂的关键部分,如管件,阀门,带腔体,钢结构螺栓,接头等复杂结构的零部件,在其内部刷涂层比较困难,传统的防腐涂料无法进行有效的保护并很难达到使用要求。因此一方面通过提高材料等级来防腐,例如:使用黄铜,哈氏合金,蒙乃尔合金,钛等金属材料来制作复杂的零部件。另一方面,亟需发展先进的低成本表面处理等防腐技术。以先进热喷涂技术,先进薄膜技术,先进激光表面处理技术,冷喷涂为代表的现代表面处理技术,是提高海洋工程装备关键部件性能的重要技术手段。
现有研究表明银离子可以提高材料的抗菌性能,现有方法通常将银离子加入材料内部进行合金化,整体改变材料性能,或者是将其直接制备为纳米银涂层,银离子消耗高,而含有银离子的纳米晶复合涂层目前研究较少,技术尚不成熟。
发明内容
针对上述问题,本发明利用纳米晶MoO3及银离子Ag+的抗菌特性,采用双阴极等离子溅射沉积和离子氧化的复合工艺,在不锈钢表面制备具有抗菌特性含银MoO3-SiO2纳米晶复合涂层。该涂层具有特殊的表面纳米形貌,并且能明显提高不锈钢的腐蚀抗力和抗菌生物活性。
本发明是这样实现的:
一种耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,利用双阴极等离子溅射装置,通过调节靶材和工件电压以及通入真空室中的Ar气压,达到控制靶材(提供欲沉积的金属)溅射沉积量与工件表面的温度;对于离子氧化,优化相应工艺参数(温度、时间、氧分压),以得到综合性能优异的MoO3-SiO2/Ag纳米晶复合涂层。
本发明具体步骤及工艺参数如下:
a.首先利用双阴极等离子溅射Mo-Si-Ag层,工艺参数:靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm,Ar气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h;
b.其次进行等离子氧化,工艺参数:靶材电压650V~750V,工件电压250V~350V,靶材与工件间距10mm~15mm,Ar气压25Pa~40Pa,氧分压0.1Pa~1.0Pa,氧化时间1.5h~2.0h。
本发明中,所使用的工件材料为海洋船体材料,优选316L不锈钢或钛合金。所使用的靶材为混合Mo-Si-Ag靶,其中Mo、Si和Ag的摩尔质量比依次为47:47:6,该靶材制备方法如下:将Mo、Si和Ag依次按照摩尔质量比47:47:6混合,然后将混合后的粉末放入球磨罐内,加入工业乙醇作为过程控制剂;球磨设定时间为10小时,球磨转速为300r/min,球磨完成后,取出,放入烘箱内烘制(80℃),烘干乙醇得到混合均匀的粉末;利用酒精灯及坩埚使用聚乙烯醇制取成型剂,压靶,采用粉末压力机,设定压力为40帕,稳定时间为20-25分钟,取出后放入烘箱内(80℃),干燥处理,即获得混合Mo-Si-Ag靶。
进一步,本发明所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法的双阴极等离子溅射沉积工艺优选参数为:靶材电压900V,工件电压350V,靶材与工件间距15mm,Ar气压35Pa,沉积时间3.5h;等离子氧化工艺参数:靶材电压750V,工件电压300V,靶材与工件间距10mm,O2分压1.0Pa,氧化时间1.5h。
本发明将银离子的杀菌性能和MoO3的光催化抗菌性能相结合,采用双阴极等离子溅射沉积技术及离子氧化在材料表面制备涂层,在不锈钢表面制备具有特殊纳米表面形貌的MoO3-SiO2/Ag纳米晶复合涂层,该涂层完全由10-20nm的纳米晶粒组成,组织致密均匀无缺陷,与基体结合良好,提高基体不锈钢材料的力学性能,同时电化学测试和抗菌生物实验表明该涂层明显提高了不锈钢基体的腐蚀抗力和抗菌性能,显示出巨大的耐海洋微生物腐蚀应用潜力,从而提高不锈钢在海洋环境的服役寿命。
本发明的技术效果主要体现在:
1.纳米化提高了复合涂层的韧性和硬度。本专利采用双阴极等离子溅射沉积和离子氧化技术制备的含银MoO3-SiO2纳米晶复合涂层由纳米晶粒组成,其TEM图如图1所示。该涂层不仅具有高的显微硬度(~22.1 GPa)。利用压痕法评价涂层的韧性表明:在压入载荷为9.8N时显微硬度压痕周围没有观察到裂纹的萌生和发展,表明涂层抵抗外加载荷的能力要优于316L不锈钢基体,材料呈现高的韧性。而在纳米尺度范围内材料由以位错为主导的变形机制转变为由晶界滑移和扩散蠕变为主导。晶界滑移能够有效释放裂纹尖端的应力集中,钝化裂纹,使裂纹扩展困难,从而增加纳米晶涂层的韧性。
2.含银MoO3-SiO2复合纳米晶涂层在含有硫酸盐还原菌(硫酸盐还原菌为典型的腐蚀不锈钢微生物,是海洋环境中造成不锈钢微生物腐蚀失效破坏的最主要因素)的混合海水溶液中浸泡7天后具有高的电化学腐蚀抗力和微生物腐蚀抗力,其抗菌检测结果如图2所示,混合海水溶液中的动电位极化测试表明,在所测试温度范围内,该涂层较316L不锈钢基体,具有低的自腐蚀电流密度,高的极化阻抗,表现出优异的电化学腐蚀抗力和耐微生物腐蚀性能,涂层在海水中浸泡性能稳定性远远优于316L不锈钢。这是由于本发明的含银复合纳米晶涂层中MoO3为纳米晶结构,而SiO2以非晶形式存在,形成良好的内部组织结构,且本发明将沉积过程与氧化过程分开,所制得涂层具有良好的疏水特性,有效的降低了海水中污染物在其表面的附着而产生的腐蚀失效,这是目前其他方法无法实现的。
3.含银MoO3-SiO2复合纳米晶涂层在含菌培养基中的抗菌活性测试结果如图3所示,在含大肠杆菌的固体LB培养基中37℃恒温培养24小时后,纳米晶复合涂层表面细菌数目少于不锈钢基体且微生物腐蚀形貌优于不锈钢基体。
附图说明
图1为含银MoO3-SiO2复合纳米晶涂层的明场TEM照片。
图2为含银MoO3-SiO2复合纳米晶涂层和316L不锈钢基体在模拟海水溶液中(含硫酸盐还原菌的混合海水溶液)在30℃环境中浸泡7天后的动电位极化曲线比较结果示意图。
图3为含银MoO3-SiO2复合纳米晶涂层和316L不锈钢基体在混合海水溶液中(不含硫酸盐还原菌的混合海水溶液)浸泡一个月之后的腐蚀形貌图。
图4为含银MoO3-SiO2复合纳米晶涂层和316L不锈钢基体在含有大肠杆菌的固体LB培养基中于37℃恒温培养24小时后的照片。
图5为实施例2获得的含银MoO3-SiO2复合纳米晶涂层的明场TEM照片。
图6为实施例3获得的含银MoO3-SiO2复合纳米晶涂层的明场TEM照片。
具体实施方案
下面结合附图对本发明作进一步详细说明。
本实施例中使用的等离子设备参见文献“L. Liu, J. Xu, P. Munroe, J. Xu,Z.H. Xie, Electrochemical behavior of (Ti1− xNbx)5Si3 nanocrystalline films insimulated physiological media, Acta Biomater. 10 (2014) 1005-1013)”中公开的等离子设备;
实施例中混合Mo-Si-Ag靶制备方法:将Mo、Si和Ag依次按照摩尔质量比47:47:6混合,然后将混合后的粉末放入球磨罐内,加入工业乙醇作为过程控制剂;球磨设定时间为10小时,球磨转速为300r/min,球磨完成后,取出,放入烘箱内烘制(80℃),烘干乙醇得到混合均匀的粉末;利用酒精灯及坩埚使用聚乙烯醇制取成型剂,压靶,采用粉末压力机,设定压力为40帕,稳定时间为20分钟-25分钟,取出后放入烘箱内(80℃),干燥处理,即获得混合Mo-Si-Ag靶;实施例中使用的靶材为厚度为2mm,直径为60mm圆盘形靶材。
实施例中使用的工件为直径30mm,厚度2mm的圆形316L不锈钢材料,实验前用砂纸对基体进行打磨,抛光至镜面,并用超声波酒精清洗。
以下实施例涉及的海水采自我国青岛海域,为121℃高压灭菌锅灭菌20分钟,备用。
以下实施例涉及硫酸盐还原菌采集自青岛海域,由本实验室富集培养获得,具体可参加文献:Xu C, Zhang Y, Cheng G, et al. Pitting corrosion behavior of 316Lstainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J]. Materials Characterization, 2008, 59(3):245-255。
实施例1
一种含银MoO3-SiO2复合纳米晶涂层制备工艺,利用双阴极等离子溅射沉积法及离子氧化工艺,在316L不锈钢工件表面原位制备致密均匀无缺陷的含银离子MoO3-SiO2复合纳米晶涂层,其工艺参数如下:
双阴极等离子溅射工艺及离子氧化参数:
a.a.双阴极等离子溅射工艺参数:靶材电压900V,工件电压350V,靶材与工件间距15mm,Ar气压35Pa,沉积温度850℃,沉积时间3.5h;
b.离子氧化工艺参数:氧化电压:750V,工件电压:300V;Ar气压35Pa,氧分压1.0Pa,氧化温度600℃,氧化时间1.5h。
图1为本实施例获得的含银MoO3-SiO2复合纳米晶涂层的明场TEM照片。从中可以看出,该涂层由大小8-20nm的纳米晶粒组成,平均晶粒尺寸约为12.5nm。
采用纳米压入方法,最大压力为40mN,检测本实施例获得的含银MoO3-SiO2复合纳米晶涂层的硬度为32.1GPa,弹性模量为294.8GPa,与基体的结合强度达到56N。在整个压入过程中涂层显微硬度压痕周围没有观察到裂纹的萌生和发展,证明复合纳米晶涂层具有高的韧性。纳米压入法参照:Zhao Xiaoli, Xie Zonghan, Paul Munroe. Nanoindentationof hard multilayer coatings: Finite element modelling. Materials acience andengineering A, 528 (2011) 1111-1116。
将本实施例制备的含银MoO3-SiO2复合纳米晶涂层的316L不锈钢工件分别浸没于含有硫酸盐还原菌的海水(含菌量约108cfu/mL)和海水(未加入硫酸盐还原菌)中浸泡(30℃)7天,然后分别检测动电位极化,所得曲线如图2所示,其中图2(a)为316L不锈钢基体,图2(b)为含银MoO3-SiO2复合纳米晶涂层;由图2可见,316L不锈钢基体在0.8V(相对于饱和甘汞电极,无菌海水中)发生点腐蚀破坏,含菌海水中在0.55V发生破坏;而含银MoO3-SiO2复合纳米晶涂层材料不发生明显的变化,可以看出,含银MoO3-SiO2复合纳米晶涂层较之316L不锈钢基体,具有更低的自腐蚀电流密度和钝化电流密度,表现出优异的电化学腐蚀抗力。
将本实施例制备的含银MoO3-SiO2复合纳米晶涂层的316L不锈钢工件浸没于海水中,30℃浸泡一个月之后,其腐蚀形貌图如图3所示,其中,图3(a)为316L不锈钢工件,图3(b)为本实施例制备的含银MoO3-SiO2涂层的316L不锈钢工件,由图3中可以看出,不锈钢材料在海水溶液中出现大量的点腐蚀坑,而涂层材料表面完好,未出现明显腐蚀,由此可以看出涂层材料具有优异的耐腐蚀性能。
将316L不锈钢基体及本实施例制备的含银MoO3-SiO2复合纳米晶涂层试样分别切割成10mm×10mm×2mm的薄片,然后将不锈钢和涂层表面进行抛光,丙酮去油,乙醇超声清洗,吹干后备用;采用标准比浊法将活化好的大肠杆菌无菌生理盐水稀释成103cfu/mL的菌液后,分别吸取0.2mL菌液均匀滴加到样品表面。在37℃,湿度为90%恒温培养箱中培养24小时所得结果如图4所示。图4中,试样1和3为本实施例制备的含银MoO3-SiO2复合纳米晶涂层,试样2和4为316L不锈钢基体。从图4可以看出,316L不锈钢基体表面有大量细菌生长,而对于含银MoO3-SiO2复合纳米晶涂层表面细菌数目很少,其杀菌率高达90%,并且培养结束后涂层表面完好,显示出良好的抗菌生物活性。
杀菌率Ra=(A-B)/B*100%,其中A为不锈钢基体生长细菌数目,B为MoO3-SiO2纳米晶复合涂层材料表面生长细菌数目。
平板法参照:Qin Hui, Cao Huiliang, Zhao Yaochao, et al.. In vitro andin vivo anti-biofilm effects of silver nanoparticles immobilized on titanium.Biomaterials. 35 (2014) 9114-9125)。
本发明以双阴极等离子溅射沉积技术为手段,利用Mo,Si元素的易化合特性,在316L不锈钢表面制备抗磨损、耐腐蚀且具备抗菌生物活性的含银MoO3-SiO2纳米晶涂层。该涂层能有效提高不锈钢在模拟海水溶液3.5%NaCl中的腐蚀抗力和抗菌性能,提升316L不锈钢在海水中的耐微生物腐蚀的应用潜力。
实施例2
一种含银MoO3-SiO2纳米晶涂层制备工艺,利用双阴极等离子溅射沉积及离子氧化工艺,在316L不锈钢工件表面原位制备致密均匀无缺陷的含银MoO3-SiO2纳米晶涂层,本实施例使用的靶材和工件与实施例1相同,本实验具体参数如下:
b.双阴极等离子溅射工艺参数:靶材电压900V,工件电压250V,靶材与工件间距10mm,Ar气压35Pa,沉积温度800℃,沉积时间3.5h;
b.离子氧化工艺参数:氧化电压:750V,工件电压:300V;Ar气压35Pa,氧分压1.0Pa,氧化温度600℃,氧化时间1.5h。
图5为本实施例获得的含银MoO3-SiO2复合纳米晶涂层的明场TEM照片,可见其晶粒尺寸较大,且晶粒大小不均匀,较大的晶粒严重影响材料的力学性能。
实施例3
一种含银MoO3-SiO2纳米晶涂层制备工艺,利用双阴极等离子溅射沉积及离子氧化工艺,在316L不锈钢工件表面制备致密均匀无缺陷的含银MoO3-SiO2纳米晶涂层,本实施例使用的靶材和工件同实施例1,试验具体参数如下:
a.双阴极等离子溅射工艺参数:靶材电压950V,工件电压350V,靶材与工件间距10mm,Ar气压30Pa,沉积温度900℃,沉积时间3.5h;
b.离子氧化工艺参数:氧化电压:750V,工件电压:300V;Ar气压35Pa,氧分压1.0Pa,氧化温度600℃,氧化时间1.5h;
图6为本实施例获得的含银MoO3-SiO2复合纳米晶涂层的明场TEM照片,可见其晶粒尺寸较大,且晶粒大小不均匀,较大的晶粒严重影响材料的力学性能。
在具体实施过程中,上述双阴极等离子溅射Mo-Si-Ag层的工艺参数,靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm,Ar气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h范围内,等离子氧化工艺参数:靶材电压650V~750V,工件电压250V~350V,靶材与工件间距10mm~15mm,Ar气压25Pa~40Pa,氧分压0.1Pa~1.0Pa,氧化时间1.5h~2.0h的范围内,均可实现在工件表面制备耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的目的。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,具体步骤如下:
首先利用双阴极等离子溅射Mo-Si-Ag层,工艺参数:靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm,Ar气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h;
b.其次进行等离子氧化,工艺参数:靶材电压650V~750V,工件电压250V~350V,靶材与工件间距10mm~15mm,Ar气压25Pa~40Pa,氧分压0.1Pa~1.0Pa,氧化时间1.5h~2.0h。
2.根据权利要求1所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,所述靶材为混合Mo-Si-Ag靶。
3.根据权利要求2所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,所述混合Mo-Si-Ag靶中,Mo、Si和Ag的摩尔质量比为47:47:6。
4.根据权利要求2所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,所述工件为316L不锈钢。
5.根据权利要求1-4之一所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,步骤a双阴极等离子溅射工艺参数:靶材电压900V,工件电压350V,靶材与工件间距15mm,Ar气压35Pa,沉积温度850℃,沉积时间3.5h。
6.根据权利要求5所述耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,步骤b等离子氧化工艺参数:靶材电压750V,工件电压300V,靶材与工件间距10mm,氧分压1.0Pa,氧化时间1.5h。
CN201710864171.2A 2017-09-22 2017-09-22 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法 Active CN108048809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710864171.2A CN108048809B (zh) 2017-09-22 2017-09-22 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710864171.2A CN108048809B (zh) 2017-09-22 2017-09-22 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108048809A true CN108048809A (zh) 2018-05-18
CN108048809B CN108048809B (zh) 2019-07-30

Family

ID=62119549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710864171.2A Active CN108048809B (zh) 2017-09-22 2017-09-22 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108048809B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287611A (zh) * 2022-07-07 2022-11-04 新疆一和生物有限责任公司 一种具有耐微生物腐蚀、耐磨损的纳米复合涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481791A (zh) * 2009-01-07 2009-07-15 江苏华阳金属管件有限公司 高韧性纳米晶硅化物涂层的制备方法
JP2011227209A (ja) * 2010-04-16 2011-11-10 Cowin Dst Co Ltd ハーフトーンマスクのリペア方法及びリペアシステム
CN102985587A (zh) * 2010-04-30 2013-03-20 康宁股份有限公司 Mo/Si多层的等离子体辅助沉积
CN103270188A (zh) * 2010-10-28 2013-08-28 欧瑞康贸易股份公司(特吕巴赫) 一氧化钼层及其借助pvd的制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481791A (zh) * 2009-01-07 2009-07-15 江苏华阳金属管件有限公司 高韧性纳米晶硅化物涂层的制备方法
JP2011227209A (ja) * 2010-04-16 2011-11-10 Cowin Dst Co Ltd ハーフトーンマスクのリペア方法及びリペアシステム
CN102985587A (zh) * 2010-04-30 2013-03-20 康宁股份有限公司 Mo/Si多层的等离子体辅助沉积
CN103270188A (zh) * 2010-10-28 2013-08-28 欧瑞康贸易股份公司(特吕巴赫) 一氧化钼层及其借助pvd的制备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287611A (zh) * 2022-07-07 2022-11-04 新疆一和生物有限责任公司 一种具有耐微生物腐蚀、耐磨损的纳米复合涂层及其制备方法
CN115287611B (zh) * 2022-07-07 2024-01-23 新疆一和生物有限责任公司 一种具有耐微生物腐蚀、耐磨损的纳米复合涂层及其制备方法

Also Published As

Publication number Publication date
CN108048809B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
Yan et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments
Zhang et al. Tantalum nitride-decorated titanium with enhanced resistance to microbiologically induced corrosion and mechanical property for dental application
CN104674321B (zh) 一种钛或钛合金表面含铜抗菌生物陶瓷膜的制备方法和应用
Zhang et al. Significantly enhanced resistance to SRB corrosion via Fe-based amorphous coating designed with high dose corrosion-resistant and antibacterial elements
CN104674320B (zh) 一种钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法和应用
CN113458418B (zh) 抗菌抗病毒CoCrCuFeNi高熵合金及其激光选区熔化原位合金化方法和应用
Ma et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel
Gaylarde et al. Localised corrosion induced by a marine vibrio
Liu et al. Developing transparent copper-doped diamond-like carbon films for marine antifouling applications
Ionita et al. Antimicrobial activity of the surface coatings on TiAlZr implant biomaterial
Hong et al. The optimization of microbial influenced corrosion resistance of HVOF sprayed nanostructured WC-10Co-4Cr coatings by ultrasound-assisted sealing
Xu et al. Antimicrobial and biocorrosion-resistant MoO3-SiO2 nanocomposite coating prepared by double cathode glow discharge technique
Rahimi et al. Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods
Kannan et al. Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: biocompatibility and in vitro degradation studies
Zhou et al. Controlling cell viability and bacterial attachment through fabricating extracellular matrix-like micro/nanostructured surface on titanium implant
CN108048809B (zh) 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法
CN108048807B (zh) 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法
CN101988182A (zh) 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝
Wu et al. Catalyst-enhanced micro-galvanic effect of Cu3N/Cu-bearing NiTi alloy surface for selective bacteria killing
KR100750973B1 (ko) 임플란트의 표면처리방법, 그 표면처리방법에 의해생성되는 막, 그리고 그 막을 가진 임플란트
Fu et al. Sol–gel derived antibacterial Ag-containing ZnO films on biomedical titanium
KR101275305B1 (ko) 콜로이달 나노 입자를 이용한 바이오 필름 형성 방지용 기판의 제조방법, 이로부터 제조된 기판 및 상기 기판을 포함하는 수질 검사 센서
Chung et al. Photocatalytic TiO2 on copper alloy for antimicrobial purposes
CN1834283A (zh) 在医用不锈钢上制备钛陶瓷纳米膜的方法
Hao et al. Dissecting anticorrosion and antimicrobial potency of an Ag nanoparticle/NbC nanocomposite coating in a marine environment containing sulfate-reducing bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210908

Address after: 835219 headquarters of the 66th regiment of kekedala City, Xinjiang Uygur Autonomous Region

Patentee after: XINJIANG YIHE BIOLOGICAL Co.,Ltd.

Address before: No. 29, Qinhuai District, Qinhuai District, Nanjing, Jiangsu

Patentee before: Nanjing University of Aeronautics and Astronautics

TR01 Transfer of patent right