CN108048789A - 双相不锈钢等离子体阳极氮化表面强化工艺 - Google Patents

双相不锈钢等离子体阳极氮化表面强化工艺 Download PDF

Info

Publication number
CN108048789A
CN108048789A CN201711069019.1A CN201711069019A CN108048789A CN 108048789 A CN108048789 A CN 108048789A CN 201711069019 A CN201711069019 A CN 201711069019A CN 108048789 A CN108048789 A CN 108048789A
Authority
CN
China
Prior art keywords
stainless steel
phase stainless
nitridation
anodic nitridation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711069019.1A
Other languages
English (en)
Other versions
CN108048789B (zh
Inventor
王章忠
牟富君
张保森
王斌
张端涛
李力成
张震卫
杭志锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201711069019.1A priority Critical patent/CN108048789B/zh
Publication of CN108048789A publication Critical patent/CN108048789A/zh
Application granted granted Critical
Publication of CN108048789B publication Critical patent/CN108048789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25

Abstract

本发明公开了一种双相不锈钢等离子体阳极氮化表面强化技工艺,包括以下步骤:(1)双相不锈钢表面预处理;(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将表面预处理后的双相不锈钢放入阳极氮化装置中氮化处理;(3)退火。本发明可以有效抑制脆性相的形成,使碟片表层至心部具有优异的强韧配合,在保证组织均匀、力学性能优异的基础上,尽量减少工件因温度梯度导致的二次变形,同时可以避免“打弧”和“边缘效应”等对处理表面造成的粗化损伤,同时还有利于白亮亚稳态化合物S相的形成,抑制ε‑Fe2‑3N和γ’‑Fe4N等脆性相的析出,使碟片具有较高的硬度、耐磨和耐蚀性能。

Description

双相不锈钢等离子体阳极氮化表面强化工艺
技术领域
本发明涉及一种金属表面强化技术,特别涉及一种双相不锈钢等离子体阳极氮化表面强化工艺技术,采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理。
背景技术
目前国内淀粉分离机为喷嘴连续出料型碟式分离机,主要用于淀粉工业中的淀粉精制,预浓缩,蛋白分离及淀粉回收等,也可以用于食品,医药,染化,环保等部门的液固两相分离,浓缩回收和澄清等工艺过程,如高龄土,纸浆的回收,废水处理等。我国制造碟式淀粉分离机的时间较短,其主要技术有从国外同类产品消化吸收而来。目前我国制造的碟式淀粉分离机的转鼓组件由多个零件组成,内部结构复杂,不仅装配繁琐,而且进料系统容易堵塞,设备运行十天就必须停车清洗转鼓,无法实现三相分离,大大降低了设备工作效率。西方发达国家在固液分离领域研究较早,目前的技术也较为全面、完整,已有大量的商业应用的实例,但是这些公司的产品价格极为昂贵,设备维修又麻烦,费用也相对高昂。
碟式淀粉分离机的大型化、智能化、多功能化、高速率高精度及性材料的应用是未来的发展趋势,而国内淀粉分离机的最新发展方向,必然是碟式淀粉分离机产品的更新换代。材料作为研究碟式淀粉分离机更新换代新产品的一个重要方面,受到许多研究者的关注,其中,研究双相不锈钢的表面改性与强化工艺,提高双相不锈钢在大型碟式分离机中的应用能力,是未来碟式淀粉分离机产品更新换代的基础之一,也是未来碟式分离机部件用双相不锈钢的发展方向之一。
发明内容
本发明的目的是为了提供一种双相不锈钢等离子体阳极氮化表面强化工艺,采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理。
本发明一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:脱脂、工业清洁剂清洗、水洗、干燥;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.05-0.75Pa,氮气分压0.5-750Pa,偏压35-2000V,氮化温度200-350℃,氮化时间1-3.5小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在气体氛围或真空环境中退火,退火温度控制在500-1100℃范围内,退火速率控制在5-100℃/s。
优选的,步骤(2)所述的等离子体辅助技术是基于氩气在低压装置中产生的,其中电离电压控制在20-40V之间,电离电流控制在10-180A之间。
优选的,步骤(2)所述的阳极氮化装置中的氮源可以是氮气,也可以是氨气,或二者的混合气体。
优选的,步骤(3)所述的气体氛围可以是氮气、氩气中的一种或几种,也可以是其与氢气、氨气中的一种或几种的混合气体氛围。
优选的,本发明所述的渗氮处理方法渗氮温度较低、温度梯度较小,能够有效降低氮化处理导致碟片和转鼓产生的附加变形,表面强化后的双相不锈钢特别适用于一种玉米油、水、沉渣等介质的双相不锈钢大型分离机碟片。
与传统的渗氮技术相比,本发明的优点为:
(1)本发明的渗氮工艺参量匹配,可以有效得抑制脆性相的形成,使碟片表层至心部具有优异的强韧配合。同时,在保证组织均匀、力学性能优异的基础上,尽量减少工件因温度梯度导致的二次变形。
(2)本发明的渗氮处理方法温度低、周期短、渗层较厚且均匀,一方面可以避免“打弧”和“边缘效应”等对处理表面造成的粗化损伤,加剧摩擦磨损,另一方面能够有利于白亮亚稳态化合物S相的形成,抑制ε-Fe2-3N和γ’-Fe4N等脆性相的析出,使碟片具有较高的硬度、耐磨和耐蚀性能;
(3)本发明的渗氮处理方法的渗氮温度较低、温度梯度较小,还能够有效降低氮化处理导致碟片和转鼓产生的附加变形,表面强化后的双相不锈钢特别适用于一种玉米油、水、沉渣等介质的双相不锈钢大型分离机碟片。
具体实施方式
为了更好地说明本发明,附实施例如下。需要强调的是,实施例并不意味着本发明的范围限制在实施例叙述的条件内,实施例的目的是进一步阐述本发明的内容及其可行性。
实施例1:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用三氯乙烯溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在90℃下浸渍清洗10分钟,再经水洗后,在93℃下干燥,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.5Pa,氮气分压500Pa,偏压800V,氮化温度250℃,氮化时间1.5小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氮气氛围中进行退火处理,退火温度控制在800℃,退火速率控制在45℃/s。
实施例2:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用己酸乙酯溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在83℃下浸渍清洗15分钟,再经水洗后,在70℃下干燥,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.05Pa,氨气分压150Pa,偏压200V,氮化温度200℃,氮化时间1小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氮气和氩气(体积比1∶1)氛围进行退火处理,退火温度控制在1100℃,退火速率控制在80℃/s。
实施例3:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用丙酮溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在70℃下浸渍清洗15分钟,再经水洗后,在93℃下干燥,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.3Pa,氮气和氨气(体积比为2∶1)分压0.5Pa,偏压35V,氮化温度300℃,氮化时间1.5小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氩气氛围中进行退火处理,退火温度控制在780℃,退火速率控制在40℃/s。
实施例4:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用乙酸乙酯溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在85℃下浸渍清洗12分钟,再经水洗后,在85℃下干燥,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.4Pa,氮气和氨气(体积比为1∶1)分压750Pa,偏压1900V,氮化温度280℃,氮化时间2小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氮气、氩气和氢气(体积比为2∶1∶1)氛围中进行退火处理,退火温度控制在500℃,退火速率控制在10℃/s。
实施例5:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用丙酮溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在90℃下浸渍清洗5分钟,再经水洗后,在70℃下干燥,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.75Pa,氮气分压300Pa,偏压650V,氮化温度350℃,氮化时间1.2小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氮气和氩气(体积比3∶1)氛围进行退火处理,退火温度控制在1000℃,退火速率控制在100℃/s。
实施例6:
一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:先用三氯乙烯溶剂对双相不锈钢进行脱脂处理、然后用工业清洁剂在80℃下浸渍清洗10分钟,再经水洗后,在40℃暖空气下干燥30min,既得表面预处理后的双相不锈钢;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.2Pa,氨气分压100Pa,偏压300V,氮化温度300℃,氮化时间3小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在氮气、氩气和氨气(体积比为1∶2∶2)氛围中进行退火处理,退火温度控制在650℃,退火速率控制在5℃/s。

Claims (5)

1.一种双相不锈钢等离子体阳极氮化表面强化工艺,其技术方案包括以下步骤:
(1)双相不锈钢表面预处理:主要过程包括:脱脂、工业清洁剂清洗、水洗、干燥;
(2)等离子体辅助阳极氮化:采用等离子辅助阳极氮化技术对超低碳双相不锈钢碟片进行表面改性与强化处理,将步骤(1)所述的表面预处理后的双相不锈钢放入阳极氮化装置中,控制渗氮工艺参量,氩气分压0.05-0.75Pa,氮气分压0.5-750Pa,偏压35-2000V,氮化温度200-350℃,氮化时间1-3.5小时;
(3)退火:将步骤(2)所述的等离子体辅助阳极氮化表面强化后的双相不锈钢在气体氛围或真空环境中退火,退火温度控制在500-1100℃范围内,退火速率控制在5-100℃/s。
2.根据权利要求1所述的一种双相不锈钢等离子体阳极氮化表面强化工艺,其特征在于,步骤(2)所述的等离子体辅助技术是基于氩气在低压装置中产生的,其中电离电压控制在20-40V之间,电离电流控制在10-180A之间。
3.根据权利要求1所述的一种双相不锈钢等离子体阳极氮化表面强化工艺,其特征在于,步骤(2)所述的阳极氮化装置中的氮源可以是氮气,也可以是氨气,或二者的混合气体。
4.根据权利要求1所述的一种双相不锈钢等离子体阳极氮化表面强化工艺,其特征在于,步骤(3)所述的气体氛围可以是氮气、氩气中的一种或几种,也可以是其与氢气、氨气中的一种或几种的混合气体氛围。
5.根据权利要求1所述的一种双相不锈钢等离子体阳极氮化表面强化工艺,其特征在于,所述渗氮处理方法降低氮化处理导致碟片和转鼓产生的附加变形,表面强化后的双相不锈钢适用于一种玉米油、水、沉渣等介质的双相不锈钢大型分离机碟片。
CN201711069019.1A 2017-11-02 2017-11-02 双相不锈钢等离子体阳极氮化表面强化工艺 Active CN108048789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711069019.1A CN108048789B (zh) 2017-11-02 2017-11-02 双相不锈钢等离子体阳极氮化表面强化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711069019.1A CN108048789B (zh) 2017-11-02 2017-11-02 双相不锈钢等离子体阳极氮化表面强化工艺

Publications (2)

Publication Number Publication Date
CN108048789A true CN108048789A (zh) 2018-05-18
CN108048789B CN108048789B (zh) 2020-02-18

Family

ID=62118580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711069019.1A Active CN108048789B (zh) 2017-11-02 2017-11-02 双相不锈钢等离子体阳极氮化表面强化工艺

Country Status (1)

Country Link
CN (1) CN108048789B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717507A (zh) * 2022-05-20 2022-07-08 西安理工大学 同步提高钛合金耐磨及抗疲劳性能的低温离子氮化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158022A (zh) * 2007-10-31 2008-04-09 大连海事大学 奥氏体不锈钢电子束辅助等离子体表面改性方法及设备
CN201106063Y (zh) * 2007-10-31 2008-08-27 大连海事大学 一种奥氏体不锈钢电子束辅助等离子体表面改性设备
CN103305786A (zh) * 2013-06-13 2013-09-18 西北工业大学 一种不锈钢工件低温低压离子渗氮方法及其装置
CN105695924A (zh) * 2016-03-18 2016-06-22 常州大学 一种含氮奥氏体不锈钢的制备方法
CN106884136A (zh) * 2017-01-17 2017-06-23 清华大学 一种金属材料表面渗氮沉积复合减摩耐磨改性层制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158022A (zh) * 2007-10-31 2008-04-09 大连海事大学 奥氏体不锈钢电子束辅助等离子体表面改性方法及设备
CN201106063Y (zh) * 2007-10-31 2008-08-27 大连海事大学 一种奥氏体不锈钢电子束辅助等离子体表面改性设备
CN103305786A (zh) * 2013-06-13 2013-09-18 西北工业大学 一种不锈钢工件低温低压离子渗氮方法及其装置
CN105695924A (zh) * 2016-03-18 2016-06-22 常州大学 一种含氮奥氏体不锈钢的制备方法
CN106884136A (zh) * 2017-01-17 2017-06-23 清华大学 一种金属材料表面渗氮沉积复合减摩耐磨改性层制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIMIAKI NAGATSUKA ET AL: "Surface hardening of duplex stainless steel by low temperature active screen plasma nitriding", 《SURFACE&COATINGS TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717507A (zh) * 2022-05-20 2022-07-08 西安理工大学 同步提高钛合金耐磨及抗疲劳性能的低温离子氮化方法
CN114717507B (zh) * 2022-05-20 2024-01-19 西安理工大学 同步提高钛合金耐磨及抗疲劳性能的低温离子氮化方法

Also Published As

Publication number Publication date
CN108048789B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN109797363B (zh) 一种弧光电子源辅助离子氮化工艺
EP2159821A3 (de) Beschichtungsvorrichtung zum Beschichten eines Substrats, sowie ein Verfahren zum Beschichten eines Substrats
CN102230204A (zh) 一种超声波和微弧氧化组合制备铝氧化膜的方法
CN105603358A (zh) 一种钛合金超声刀表面强化方法
Tavakoli et al. Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing
CN103233197A (zh) 一种奥氏体不锈钢低温快速离子渗氮的方法
CN108048789A (zh) 双相不锈钢等离子体阳极氮化表面强化工艺
CN105039982B (zh) 一种钛镍合金表面制备碳纳米管增强复合陶瓷层的方法
CN105755427B (zh) 一种奥氏体不锈钢及其复合等离子体强化方法
CN102936716A (zh) 一种在tc4钛合金表面制备钴基合金层的方法
CN103647053B (zh) 一种镍电极表面制备三氧化铝涂层的方法
CN101845653A (zh) 一种磁场作用下微弧氧化膜层的制备方法
Tian et al. Hybrid processes based on plasma immersion ion implantation: a brief review
CN103603026B (zh) 一种完全褪除工件表面类金刚石碳膜的方法
CN104404601B (zh) Mg‑Gd‑Y‑Zr铸造镁合金的一种微弧氧化处理工艺
CN106757274B (zh) 一步法制备黑色氧化钛/氧化铝复合陶瓷涂层的方法
CN105112981A (zh) 阶段升压制备镁合金微弧氧化陶瓷层的方法
CN106544625B (zh) 工件碳氮共渗工艺
CN1216179C (zh) 低温真空等离子体渗硫工艺方法
CN107068806A (zh) 消除多晶硅电池片内部金属复合体的方法
CN205710983U (zh) 一种夹具工装
CN109576753A (zh) 一种电极间相对运动的等离子电解氧化方法
Hua et al. Microstructure and corrosion performance of carbonitriding layers on cast iron by plasma electrolytic carbonitriding
CN220079166U (zh) 一种低频斩波脉冲电源式等离子渗氮炉
CN106350764B (zh) 可控气氛薄层渗碳工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant