CN108048082A - 一种靶向肿瘤的石墨烯量子点的制备方法 - Google Patents
一种靶向肿瘤的石墨烯量子点的制备方法 Download PDFInfo
- Publication number
- CN108048082A CN108048082A CN201711294069.XA CN201711294069A CN108048082A CN 108048082 A CN108048082 A CN 108048082A CN 201711294069 A CN201711294069 A CN 201711294069A CN 108048082 A CN108048082 A CN 108048082A
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- graphene quantum
- preparation
- rgds
- target tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了靶向肿瘤的石墨烯量子点的制备方法,其技术方案(1)以芘为原料,制备三硝基嵌二萘,并将其冷冻干燥;利用氨水将三硝基嵌二萘水热反应制备氨基化石墨烯量子点;(2)利用碳化二亚胺/N‑羟基琥珀酰亚胺在常温条件下活化FITC‑RGDS多肽的羧基端,通过酰胺反应将FITC‑RGDS多肽与氨基化石墨烯量子点共价连接获得靶向肿瘤的石墨烯量子点。本发明的优点是:通过本发明工艺合成的靶向肿瘤的石墨烯量子点具有特异的靶向肿瘤的功能,因此可应用于抗肿瘤药物的制备。
Description
技术领域
本发明涉及一种石墨烯量子点,具体是指一种靶向肿瘤的石墨烯量子点的制备方法。
背景技术
石墨烯量子点(Graphene quantum dots,简称GQDs),具有独特的量子效应、拥有丰富的边界缺陷,在各种溶剂中呈现出优异的分散性能。表面经过有机物钝化处理的石墨烯纳米颗粒,是一种有机无机杂化纳米材料,具有与传统量子点(QDs)媲美的荧光性能,同时因其本身不含任何有毒重金属元素,具备优异的环境友好性和生物相容性,且易于表面功能化修饰,一经发现便引起了人们广泛的研究兴趣。氨基化石墨烯量子点具有一种新型的氨基终止的石墨烯结构。
目前,国内外有关石墨烯量子点应用的研究报道,主要集中在细胞成像、靶向示踪、光电器件、多价金属离子及蛋白质检测。但是,关于在靶向肿瘤的上的应用目前尚未见报道。
发明内容
本发明第一个目的是提供一种靶向肿瘤的石墨烯量子点的制备方法。
本发明的第二个目的是提供一种靶向肿瘤的石墨烯量子点。
为实现本发明的第一个目的,其技术方案是包括以下步骤:
(1)以芘为原料,在高温条件下将芘与硝酸反应制备三硝基嵌二萘,并将其冷冻干燥;利用氨水将三硝基嵌二萘重悬,超声反应后,将反应后的混合物加入反应釜中,通过水热反应制备氨基化石墨烯量子点,将氨基化石墨烯量子点在透析袋中通过去离子水中透析并冷冻干燥,透析袋的截留分子量为≤3500;
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺在常温条件下活化FITC-RGDS多肽的羧基端,通过酰胺反应将FITC-RGDS多肽与步骤(1)制备的氨基化石墨烯量子点共价连接制备获得靶向肿瘤的石墨烯量子点,该步骤(2)制备的靶向肿瘤的石墨烯量子点为RGDS多肽共价连接的石墨烯量子点。
进一步设置是步骤(1)高温条件为80-100℃。
进一步设置是步骤(1)的水热反应的条件为180-200℃,10-12小时。
进一步设置是所述的步骤(2)中FITC-RGDS多肽和氨基化石墨烯量子点的质量比为1:2-1:10,优选最佳质量比为1:5。
本发明的第二个目的是提供一种靶向肿瘤的石墨烯量子点。
本发明的优点是:通过本发明工艺合成的靶向肿瘤的石墨烯量子点具有靶向肿瘤的特异功能,因此可应用于抗肿瘤的靶向药物应用的制备。具体数据见实施例。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1 表征NH-GQDs和RGDS-NHGQDs的图(图1a.HRTEM观察NH-GQDs;图1b.NH-GQDs的XPS光谱图;图1c.UV-Vis光谱表征NH-GQDs以及RGDS-NHGQDs;图1d.FTIR光谱表征NH-GQDs以及RGDS-NHGQDs);
图2 激光共聚焦显微镜观察RGDS-NHGQDs刺激下OCM-1和ARPE-19细胞共培养体系(红色荧光为细胞骨架;蓝色荧光为RGDS-NHGQDs自发荧光;叠加图片为叠加了红色和蓝色荧光图片;标尺为20μm)。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本实施例中,采用NH-GQDs表示氨基化石墨烯量子点,采用RGDS-NHGQDs表示RGDS多肽共价连接的石墨烯量子点,EDCI/NHS表示碳化二亚胺/N-羟基琥珀酰亚胺。
实施例
(1)以芘为原料,在高温条件下 (80-100℃)将芘与硝酸反应制备三硝基嵌二萘,并将其冷冻干燥;利用氨水将三硝基嵌二萘重悬,超声反应2小时后,将混合物加入反应釜中,通过水热反应(180-200℃,10-12小时)制备氨基化石墨烯量子点(NH-GQDs)。将NH-GQDs在去离子水中透析3天(3500 Da)并冷冻干燥。
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺(EDCI/NHS)在常温条件下活化FITC-RGDS多肽的羧基端,通过酰胺反应将FITC-RGDS多肽与NH-GQDs共价连接制备肿瘤靶向石墨烯量子点RGDS-NHGQDs,发明中分别设定了不同的FITC-RGDS和NH-GQDs的质量比:1:2,1:5;1:10,其中靶向效果最佳质量比为1:5;
试验例
将RGDS-NHGQDs加入肿瘤细胞与正常组织细胞共培养的环境中,利用激光共聚焦显微镜观察RGDS-NHGQDs能够靶向侵染肿瘤细胞。
利用高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)表征NH-GQDs(图1a, b)。如图1a所示,本方法制备的NH-GQDs大小均一,直径在3-5 nm;高分辨XPS光谱的C1峰显示NH-GQDs具有C-N (285.0 eV), sp2C (284.5 eV), sp3C (285.5 eV), O-C=O (289.O eV) 和π-π*(290.0 eV)等官能团(图1b);
利用紫外可见分光光谱(UV-Vis)和傅里叶红外光谱(FTIR)表征RGDS-NHGQDs(图1c,d)。如图1c,RGDS-NHGQDs的UV-Vis光谱中在460-490nm区间具有明显的FITC紫外吸收峰,说明FITC-RGDS连接在NH-GQDs表面;RGDS-NHGQDs的FTIR光谱中,在1642cm-1处出现了新的酰胺键吸收峰,此外产物在3158cm-1处的吸收峰明显下降,由此说明多肽是通过酰胺键共价连接在NH-GQDs多肽表面。
检测RGDS-NHGQDs的肿瘤细胞靶向功能:首先利用6孔Transwells细胞培养板构建肿瘤细胞与正常细胞的共培养体系,其中肿瘤细胞为:人脉络膜黑色素瘤细胞(OCM-1),正常组织细胞为:人视网膜色素上皮细胞(ARPE-19)。体系1:OCM-1细胞种在Transwells培养板的上层,ARPE-19细胞种植在Transwells培养板的下层;体系2. ARPE-19细胞种在Transwells培养板的上层,OCM-1细胞种在Transwells培养板的下层。细胞贴壁后,在上层培养液中加入一定浓度的RGDS-NHGQDs,细胞继续培养6h。利用激光共聚焦显微镜观察发现,在体系1(图2a)和体系2(图2b)中,均只能在OCM-1细胞中发现RGDS-NHGQDs的自发蓝色荧光,而ARPE-19细胞没有吞噬RGDS-NHGQDs。由此说明RGDS-NHGQDs对肿瘤细胞具有特异的靶向性。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (6)
1.一种靶向肿瘤的石墨烯量子点的制备方法,其特征在于包括以下步骤:
(1)以芘为原料,在高温条件下将芘与硝酸反应制备三硝基嵌二萘,并将其冷冻干燥;利用氨水将三硝基嵌二萘重悬,超声反应后,将反应后的混合物加入反应釜中,通过水热反应制备氨基化石墨烯量子点,将氨基化石墨烯量子点在透析袋中通过去离子水中透析并冷冻干燥,透析袋的截留分子量为≤3500;
(2)利用碳化二亚胺/N-羟基琥珀酰亚胺在常温条件下活化FITC-RGDS多肽的羧基端,通过酰胺反应将FITC-RGDS多肽与步骤(1)制备的氨基化石墨烯量子点共价连接制备获得靶向肿瘤的石墨烯量子点,该步骤(2)制备的靶向肿瘤的石墨烯量子点为RGDS多肽共价连接的石墨烯量子点。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)高温条件为80-100℃。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)的水热反应的条件为180-200℃,10-12小时。
4.根据权利要求1所述的制备方法,其特征在于:所述的步骤(2)中FITC-RGDS多肽和氨基化石墨烯量子点的质量比为1:2-1:10。
5.根据权利要求4所述的制备方法,其特征在于:所述的步骤(2)中FITC-RGDS多肽和氨基化石墨烯量子点的最佳质量比为1:5。
6.一种如权利要求1-5之一所述的制备方法所制备的靶向肿瘤的石墨烯量子点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711294069.XA CN108048082A (zh) | 2017-12-08 | 2017-12-08 | 一种靶向肿瘤的石墨烯量子点的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711294069.XA CN108048082A (zh) | 2017-12-08 | 2017-12-08 | 一种靶向肿瘤的石墨烯量子点的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108048082A true CN108048082A (zh) | 2018-05-18 |
Family
ID=62123000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711294069.XA Pending CN108048082A (zh) | 2017-12-08 | 2017-12-08 | 一种靶向肿瘤的石墨烯量子点的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108048082A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109091666A (zh) * | 2018-08-21 | 2018-12-28 | 温州医科大学 | 一种具有靶向肿瘤功能的肿瘤催化纳米反应体系的制备方法和应用 |
CN113651318A (zh) * | 2021-08-11 | 2021-11-16 | 温州医科大学 | 一种具有抑制细菌生长功能的石墨烯量子点及其应用 |
CN114887067A (zh) * | 2022-04-27 | 2022-08-12 | 广州贝奥吉因生物科技股份有限公司 | 脑靶向石墨烯量子点及其基因复合物、制备方法和应用 |
CN115948163A (zh) * | 2023-01-03 | 2023-04-11 | 扬州工业职业技术学院 | 一种选择性识别谷胱甘肽的近红外荧光探针 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160200582A1 (en) * | 2015-01-08 | 2016-07-14 | Chung Yuan Christian University | Graphene quantum dots synthesis method |
-
2017
- 2017-12-08 CN CN201711294069.XA patent/CN108048082A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160200582A1 (en) * | 2015-01-08 | 2016-07-14 | Chung Yuan Christian University | Graphene quantum dots synthesis method |
Non-Patent Citations (3)
Title |
---|
LI WANG ET AL.: "Designed graphene-peptide nanocomposites for biosensor applications: A review", 《ANALYTICA CHIMICA ACTA》 * |
LIANG WANG ET AL.: "Gram-scale synthesis of single-crystalline grapheme quantum dots with superior optical properties", 《NATURE COMMUNICATIONS》 * |
YUMIN ZHENG ET AL.: "FITC-Conjugated Cyclic RGD Peptides as Fluorescent Probes for Staining Integrin αvβ3/αvβ5 in Tumor Tissues", 《BIOCONJUGATE CHEM.》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109091666A (zh) * | 2018-08-21 | 2018-12-28 | 温州医科大学 | 一种具有靶向肿瘤功能的肿瘤催化纳米反应体系的制备方法和应用 |
CN109091666B (zh) * | 2018-08-21 | 2022-08-05 | 温州医科大学 | 一种具有靶向肿瘤功能的肿瘤催化纳米反应体系的制备方法和应用 |
CN113651318A (zh) * | 2021-08-11 | 2021-11-16 | 温州医科大学 | 一种具有抑制细菌生长功能的石墨烯量子点及其应用 |
CN114887067A (zh) * | 2022-04-27 | 2022-08-12 | 广州贝奥吉因生物科技股份有限公司 | 脑靶向石墨烯量子点及其基因复合物、制备方法和应用 |
CN114887067B (zh) * | 2022-04-27 | 2024-03-15 | 广州贝奥吉因生物科技股份有限公司 | 脑靶向石墨烯量子点及其基因复合物、制备方法和应用 |
CN115948163A (zh) * | 2023-01-03 | 2023-04-11 | 扬州工业职业技术学院 | 一种选择性识别谷胱甘肽的近红外荧光探针 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108048082A (zh) | 一种靶向肿瘤的石墨烯量子点的制备方法 | |
CN108125982A (zh) | 一种靶向肿瘤细胞核的石墨烯量子点的制备方法及其应用 | |
Sahu et al. | pH responsive biodegradable nanogels for sustained release of bleomycin | |
Gao et al. | Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery | |
Sharker et al. | In situ synthesis of luminescent carbon nanoparticles toward target bioimaging | |
Lin et al. | Integrative self‐assembly of graphene quantum dots and biopolymers into a versatile biosensing toolkit | |
Horo et al. | Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil | |
Sviridov et al. | Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications | |
DE60302784T2 (de) | Kontrolliertes abbaubares polymer-biomolekül oder wirkstoffträger und verfahren zur synthese dieses trägers | |
Yan et al. | Synthesis of Tat tagged and folate modified N-succinyl-chitosan self-assembly nanoparticles as a novel gene vector | |
Kang et al. | pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide | |
Horo et al. | Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents | |
Geisberger et al. | Trimethyl and carboxymethyl chitosan carriers for bio-active polymer–inorganic nanocomposites | |
Tong et al. | Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@ mSiO2/TiO2-TC nanocomposite | |
You et al. | A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery | |
CN101608020A (zh) | 用水热法制备得到的磁性Fe3O4聚合物亚微米球及用途 | |
Dong et al. | A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles | |
Vahedi et al. | Hyaluronic acid–graphene quantum dot nanocomposite: Potential target drug delivery and cancer cell imaging | |
He et al. | Magnetic self-healing hydrogel from difunctional polymers prepared via the Kabachnik–Fields reaction | |
El-Ghaffar et al. | Amino acid combined chitosan nanoparticles for controlled release of doxorubicin hydrochloride | |
Jang et al. | Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery | |
Sharker et al. | Near‐infrared‐active and pH‐responsive fluorescent polymer‐integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer | |
Park et al. | Folic acid-polyethyleneimine functionalized mesoporous silica nanoparticles as a controlled release nanocarrier | |
Nigam et al. | Aptamer functionalized multifunctional fluorescent nanotheranostic platform for pancreatic cancer | |
Guo et al. | Facilely synthesized pH-responsive fluorescent polymer dots entrapping doped and coupled doxorubicin for nucleus-targeted chemotherapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180518 |