CN108046665A - 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法 - Google Patents

一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法 Download PDF

Info

Publication number
CN108046665A
CN108046665A CN201711096949.6A CN201711096949A CN108046665A CN 108046665 A CN108046665 A CN 108046665A CN 201711096949 A CN201711096949 A CN 201711096949A CN 108046665 A CN108046665 A CN 108046665A
Authority
CN
China
Prior art keywords
parts
nano
micro
high durability
composite hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711096949.6A
Other languages
English (en)
Inventor
谢宁
程新
冯立超
侯鹏坤
周宗辉
李琴飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201711096949.6A priority Critical patent/CN108046665A/zh
Priority to US15/965,835 priority patent/US10457604B2/en
Publication of CN108046665A publication Critical patent/CN108046665A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/28Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing organic polyacids, e.g. polycarboxylate cements, i.e. ionomeric systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/184Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type based on an oxide other than lime
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00008Obtaining or using nanotechnology related materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,按质量份数计,其原料配方如下:四氧化三钴1000~1500份、水泥1000~1300份、癸二酸二辛酯1000~1500份、水800~1200份、纳米碳1200~1800份、纳米碳酸钙35~50份,硅酸钠10~20份,微纳结构钼酸钙50~80份、双季戊四醇60~90份,二辛脂30~60份。本发明使现有混凝土在减缩、抗裂、早强性方面得到有效稳定地提升;合成化学功能材料能使得混凝土氯离子扩散系数降低50%以上,减少收缩>30%,混凝土制品开裂风险降低50%。

Description

一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及 其制备方法
技术领域
本发明涉及一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法。
背景技术
随着我国社会经济水平的快速发展,城市化进程逐年加快,基础设施建设量达到了空前的规模。混凝土制品以其良好的整体性能以及相对低廉的成本一直广泛地应用于土木、水利、港口、桥梁、道路等领域。然而,尽管混凝土技术目前得到了广泛的应用,混凝土的强度也有所提高,但是混凝土行业高能耗、高碳排放、以及在苛刻环境下耐久性不足的问题依然是目前全球面临的重大的问题之一。因此,如何有效降低混凝土制品的能耗、提升其早强、抗收缩、抗裂、以及在严酷环境下的耐久性是当前研究的重点。
近些年,随着纳米技术的发展,很多自组装微纳复合超结构功能材料的研究得到了迅速地发展,其应用能使很多传统材料产生更优异的整体协同性能。通过对其尺度和几何外观的简单操纵,将纳米颗粒自组装为一维、二维或三维有序结构后可以获得新颖的整体协同特性,并且可以通过控制纳米颗粒之间的相互作用来调节它们的性质。因此,这些新涌现出的新型微纳复合超结构功能材料将对混凝土的性能优化起到积极地促进作用。
由于具有低密度、高比表面积和良好的单分散性、以及空心部分能容纳其它材料等优点,目前微纳复合空心微球超结构已成为纳米材料科学、化学、物理学及生物科学的前沿和研究热点。在空心微球超结构中,空心微球的球壳是由沿径向排列的纳米棒/片组成,纳米棒/片间存在纳米尺寸的“通道”,而这些通道为空心部分与外界物质交换提供了有效的传输途径。如果将微纳复合空心超结构材料与混凝土相结合,由于空心结构能够储存混凝土水化需要的部分水分,这部分水将沿着空心球球壳上的纳米尺寸“通道”缓慢地从内部释放到混凝土中,从而改变水泥混凝土构件的水化过程,这样就能为水泥混凝土的内养护(Internal curing)提供条件。在内养护条件下,水泥混凝土的水化程度将得到提升,早期开裂问题能得到有效缓解,并能提升混凝土的强度与韧性。
发明内容
本发明要解决的技术问题是克服现有的缺陷,提供一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,按质量份数计,其原料配方如下:
四氧化三钴1000~1500份、水泥1000~1300份、癸二酸二辛酯1000~1500份、水800~1200份、纳米碳1200~1800份、纳米碳酸钙35~50份,硅酸钠10~20份,微纳结构钼酸钙50~80份、双季戊四醇60~90份,二辛脂30~60份。
进一步地,该微纳复合空心结构纳米材料改性高耐久性混凝土材料按质量份数计,其原料配方如下:
四氧化三钴1200份、水泥1000份、癸二酸二辛酯1200、水1000、纳米碳1500份、纳米碳酸钙40~45份,硅酸钠15份,微纳结构钼酸钙60~70份、双季戊四醇70~85份,二辛脂40~50份。
优选的,该微纳复合空心结构纳米材料改性高耐久性混凝土材料按质量份数计,其原料配方如下:
四氧化三钴1000份、水泥1000份、癸二酸二辛酯1000份、水800份、纳米碳1200份、纳米碳酸钙35份,硅酸钠10份,微纳结构钼酸钙50份、双季戊四醇60份,二辛脂30份。
优选的,该微纳复合空心结构纳米材料改性高耐久性混凝土材料按质量份数计,其原料配方如下:
四氧化三钴1500份、水泥1300份、癸二酸二辛酯1500份、水1200份、纳米碳1800份、纳米碳酸钙50份,硅酸钠20份,微纳结构钼酸钙80份、双季戊四醇90份,二辛脂60份。
本发明的另一个方面公开了一种微纳复合空心结构纳米材料改性高耐久性混凝土材料的制备方法,其包括以下步骤:
1)、按比例加入四氧化三钴、纳米碳、水泥、癸二酸二辛酯、纳米碳酸钙、水、硅酸钠、双季戊四醇,得到混合体;
2)加入其他剩余成分,送入高速捏合机中,在110-150℃下捏合6-15min,待捏合料冷却后,送入双螺杆挤出机造粒,即得微纳复合空心结构纳米材料改性高耐久性混凝土材料。
本发明所达到的有益效果是:
癸二酸二辛酯多用于聚氯乙烯耐寒薄膜、人造革等制品。还可用作多种橡胶、硝基纤维素、乙基纤维素、聚甲基丙烯酸甲酯、聚苯乙烯、氯乙烯.醋酸乙烯共聚物等的增塑剂。具有增塑效率高、挥发性低、既有优良的耐寒性,又有较好的耐热性、耐光性和电绝缘性。将其用于混凝土尚属首次。双季戊四醇可用作不锈钢彩板,高级花岗岩喷涂面膜,具有粘附力强,耐摩擦,耐老化优异性能。本发明通过优化两者的掺加比例,癸二酸二辛酯和双季戊四醇在超高强混凝土中起到更好的协同作用,膨胀性能稳定,膨胀与混凝土的收缩及强度协同发展。
本发明使用四氧化三钴、硅酸钠、纳米碳酸钙和微纳结构钼酸钙制备微纳复合空心结构纳米材料改性高耐久性混凝土材料,使现有混凝土在减缩、抗裂、早强性方面得到有效稳定地提升。合成化学功能材料能使得混凝土氯离子扩散系数降低50%以上,减少收缩>30%,混凝土制品开裂风险降低50%。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1给出了微纳复合空心超结构化学功能材料的扫描电子显微形貌与透射电子显微形貌;其中,图1a是透射电子显微形貌,图1b是扫描电子显微形貌。
图2a给出了添加纳米颗粒和纳米空心球颗粒后水泥净浆抗压强度的对比图;
图2b给出了添加纳米颗粒和纳米空心球颗粒后水泥净浆抗折强度的对比图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,按质量份数计,其原料配方如下:
四氧化三钴1000份、水泥1000份、癸二酸二辛酯1000份、水800份、纳米碳1200份、纳米碳酸钙35份,硅酸钠10份,微纳结构钼酸钙50份、双季戊四醇60份,二辛脂30份。
上述的微纳复合空心结构纳米材料改性高耐久性混凝土材料,采用以下方法制备:
1)、按比例加入四氧化三钴、纳米碳、水泥、癸二酸二辛酯、纳米碳酸钙、水、硅酸钠、双季戊四醇,得到混合体;
2)加入其他剩余成分,送入高速捏合机中,在110-150℃下捏合6-15min,待捏合料冷却后,送入搅拌机搅拌,边搅拌边将水缓慢加入到混合料中,搅拌180~240秒,即可得到超微纳复合空心结构纳米材料改性高耐久性混凝土材料。
实施例2
一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,按质量份数计,其原料配方如下:
四氧化三钴1500份、水泥1300份、癸二酸二辛酯1500份、水1200份、纳米碳1800份、纳米碳酸钙50份,硅酸钠20份,微纳结构钼酸钙80份、双季戊四醇90份,二辛脂60份。
上述的微纳复合空心结构纳米材料改性高耐久性混凝土材料,采用以下方法制备:
1)、按比例加入四氧化三钴、纳米碳、水泥、癸二酸二辛酯、纳米碳酸钙、水、硅酸钠、双季戊四醇,得到混合体;
2)加入其他剩余成分,送入高速捏合机中,在110-150℃下捏合6-15min,待捏合料冷却后,送入搅拌机搅拌,边搅拌边将水缓慢加入到混合料中,搅拌180~240秒,即可得到超微纳复合空心结构纳米材料改性高耐久性混凝土材料。
测试方法:
添加微纳复合超结构化学功能材料的混凝土微观结构分析:
采用原子力显微镜(AFM)观察混凝土的表面粗糙度,从而表征其微观组织的均匀性;运用扫描电子显微镜(SEM/EDX/EBSD)观察混凝土断口形貌,观察孔隙结构、孔隙分布以及水化产物的化学成分、形貌特征与结构成分分布特性;使用纳米硬度仪计算混凝土中各个组分的微观弹性模量与微观韧性。
运用透射电子显微镜(TEM/EDX)、高分辨电子显微镜(HREM)、X射线衍射(XRD)、以及X-射线光电子能谱仪(XPS)等分析手段表征混凝土水化后的微观结构、物相组成、元素分布等。
图1给出了本方法合成的微纳复合空心超结构化学功能材料的扫描电子显微形貌与透射电子显微形貌。图1a是透射电子显微形貌,图1b是扫描电子显微形貌。从图1中可以看出,合成的材料为由直径约为50nm,长度100nm的纳米棒自组装形成的微纳复合超结构化学功能材料。
微纳复合空心超结构化学功能材料增强水泥净浆力学性能:
图2给出了添加纳米颗粒和纳米空心球颗粒后水泥净浆抗压强度与抗折强度的对比。由图2a中可以看出,水泥净浆的抗压强度平均值为57.4MPa,添加纳米材料后水泥净浆的抗压强度都有所提高,提高幅度基本在20%左右。添加纳米空心球颗粒的抗压强度为67.0MPa。由图2b可以看出,水泥净浆抗折强度平均值为12.3MPa,少纳米材料添加能有效提升水泥净浆的抗折强度。其中,纳米空心球颗粒的添加能将水泥抗折强度提升将近40%。图2中,纳米颗粒A为纳米碳;纳米颗粒B为纳米碳酸钙;纳米空心球颗粒C为微纳结构钼酸钙。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,其特征在于,按质量份数计,其原料配方如下:
四氧化三钴1000~1500份、水泥1000~1300份、癸二酸二辛酯1000~1500份、水800~1200份、纳米碳1200~1800份、纳米碳酸钙35~50份,硅酸钠10~20份,微纳结构钼酸钙50~80份、双季戊四醇60~90份,二辛脂30~60份。
2.如权利要求1所述的一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,其特征在于,按质量份数计,其原料配方如下:
四氧化三钴1200份、水泥1000份、癸二酸二辛酯1200份、水1000份、纳米碳1500份、纳米碳酸钙40~45份,硅酸钠15份,微纳结构钼酸钙60~70份、双季戊四醇70~85份,二辛脂40~50份。
3.如权利要求1所述的一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,其特征在于,按质量份数计,其原料配方如下:
四氧化三钴1000份、水泥1000份、癸二酸二辛酯1000份、水800份、纳米碳1200份、纳米碳酸钙35份,硅酸钠10份,微纳结构钼酸钙50份、双季戊四醇60份,二辛脂30份。
4.如权利要求1所述的一种微纳复合空心结构纳米材料改性高耐久性混凝土材料,其特征在于,按质量份数计,其原料配方如下:
四氧化三钴1500份、水泥1300份、癸二酸二辛酯1500份、水1200份、纳米碳1800份、纳米碳酸钙50份,硅酸钠20份,微纳结构钼酸钙80份、双季戊四醇90份,二辛脂60份。
5.一种权利要求1所述微纳复合空心结构纳米材料改性高耐久性混凝土材料的制备方法,其特征在于,包括以下步骤:
1)、按比例加入四氧化三钴、纳米碳、水泥、癸二酸二辛酯、纳米碳酸钙、水、硅酸钠、双季戊四醇,得到混合体;
2)加入其他剩余成分,送入高速捏合机中,在110-150℃下捏合6-15min,待捏合料冷却后,送入搅拌机搅拌,边搅拌边将水缓慢加入到混合料中,搅拌180~240秒,即可得到超微纳复合空心结构纳米材料改性高耐久性混凝土材料。
CN201711096949.6A 2017-11-09 2017-11-09 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法 Pending CN108046665A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711096949.6A CN108046665A (zh) 2017-11-09 2017-11-09 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法
US15/965,835 US10457604B2 (en) 2017-11-09 2018-04-27 Micro-nano composite hollow structured nanometer material-modified high-durability concrete material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711096949.6A CN108046665A (zh) 2017-11-09 2017-11-09 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108046665A true CN108046665A (zh) 2018-05-18

Family

ID=62119708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711096949.6A Pending CN108046665A (zh) 2017-11-09 2017-11-09 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法

Country Status (2)

Country Link
US (1) US10457604B2 (zh)
CN (1) CN108046665A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455965A (zh) * 2018-12-20 2019-03-12 淮海工学院 一种微纳米复合空心球改性的高强度混凝土
CN114105585A (zh) * 2021-11-15 2022-03-01 江苏海洋大学 一种高性能混凝土材料及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362637B (zh) * 2020-03-15 2022-02-15 重庆金石源电力线路器材有限公司 水泥基电线杆
CN111943553A (zh) * 2020-08-25 2020-11-17 中建西部建设贵州有限公司 一种机制砂混凝土增效剂及其制备方法
CN112299466B (zh) * 2020-12-07 2022-10-11 江西华明纳米碳酸钙有限公司 一种水泥沙浆用纳米碳酸钙的制备方法
CN113480260B (zh) * 2021-07-21 2022-09-16 鞍钢股份有限公司 利用氧化铁空心球制备高强度纳米固废混凝土及其方法
CN114426420B (zh) * 2022-01-05 2022-12-20 广东工业大学 一种金属空心球水泥基复合材料的制备方法
CN115141024B (zh) * 2022-05-06 2023-05-23 大连海恒纳米科技有限公司 用于预防耐火混凝土开裂的材料制备方法及材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053699A1 (en) * 2012-10-02 2014-04-10 Teknologian Tutkimuskeskus Vtt Method for producing calcium silicate hydrate coated particles and use thereof
CN103936385A (zh) * 2013-12-19 2014-07-23 柳州正菱集团有限公司 一种具有屏蔽功能的高强度硅酸盐类混凝土
CN105693167A (zh) * 2016-03-11 2016-06-22 中国建筑材料科学研究总院 一种基于微纳米粉的混凝土及其制备方法
CN107043480A (zh) * 2016-11-18 2017-08-15 安徽伊法拉电气有限公司 电容器绝缘护罩料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128110B1 (de) * 2008-05-29 2016-08-17 Sika Technology AG Zusatzmittel für hydraulische Bindemittel mit langer Verarbeitungszeit und hoher Frühfestigkeit
CN107686291A (zh) * 2017-09-20 2018-02-13 河南省三门峡黄河大桥高速公路建设有限公司 一种高强度混凝土及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053699A1 (en) * 2012-10-02 2014-04-10 Teknologian Tutkimuskeskus Vtt Method for producing calcium silicate hydrate coated particles and use thereof
CN103936385A (zh) * 2013-12-19 2014-07-23 柳州正菱集团有限公司 一种具有屏蔽功能的高强度硅酸盐类混凝土
CN105693167A (zh) * 2016-03-11 2016-06-22 中国建筑材料科学研究总院 一种基于微纳米粉的混凝土及其制备方法
CN107043480A (zh) * 2016-11-18 2017-08-15 安徽伊法拉电气有限公司 电容器绝缘护罩料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455965A (zh) * 2018-12-20 2019-03-12 淮海工学院 一种微纳米复合空心球改性的高强度混凝土
CN114105585A (zh) * 2021-11-15 2022-03-01 江苏海洋大学 一种高性能混凝土材料及其制备方法

Also Published As

Publication number Publication date
US10457604B2 (en) 2019-10-29
US20190135700A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
CN108046665A (zh) 一种微纳复合空心结构纳米材料改性高耐久性混凝土材料及其制备方法
CN104744000B (zh) 一种3d打印用石膏材料及其制备方法
Khushnood et al. Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials
Bharj et al. Experimental study on compressive strength of cement-CNT composite paste
CN108529984A (zh) 一种表面改性碳纤维增强高阻抗高抗拉强度水泥基3d打印基材及其制备方法
CN107936547A (zh) 尼龙/石墨烯/碳纤维复合粉末及其制备方法和在选择性激光烧结技术中的应用
Zheng et al. Biomimetic swallow nest structure: a lightweight and high-strength thermal insulation material
CN107473675A (zh) Go及纳米矿粉协同分散cnt改性纳米建筑材料及其制备方法与应用
CN104529382A (zh) 一种利用氧化石墨烯原位还原制备的石墨烯/铝硅酸盐聚合物复合材料及其制备方法
CN103130509A (zh) 一种制备陶瓷坯体的方法
Wang et al. Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials
CN107353004A (zh) 一种直接挤出型3d打印制备三维石墨烯的方法
Liu et al. Highly porous ZrO2 cellular ceramics with 3D network architecture
CN109133765A (zh) 一种用热还原石墨烯-碳纳米管改性增强水泥基复合材料的方法
CN104387005A (zh) 一种碳纳米管水泥复合材料及其制备方法
Jing et al. The non-uniform spatial dispersion of graphene oxide: A step forward to understand the inconsistent properties of cement composites
CN108746590A (zh) 高能束表面涂层技术专用碳材料的分散方法
Behnia et al. High-performance cement mortars-based composites with colloidal nano-silica: Synthesis, characterization and mechanical properties
CN109384437A (zh) 可供3d打印的混杂纤维水泥基复合材料及其制备方法
CN102502838A (zh) 一种由纳米片组装成钼酸铜微米球超级结构的制备方法
CN106518028B (zh) 一种制备微纳米氧化锆/氧化铝复合材料的方法
Chen et al. Improving relative density and mechanical strength of lunar regolith structures via DLP-stereolithography integrated with powder surface modification process
Song et al. Preparation of biomass carbon dots for foam stabilizer of foamed concrete
CN105860514A (zh) 一种用于sls的增韧材料及其制备方法
CN110437586A (zh) 一种高分散石墨烯增强环氧树脂基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180518