CN108044123A - 一种具有定向凝固组织的Nb-Si-Ti合金制备方法 - Google Patents

一种具有定向凝固组织的Nb-Si-Ti合金制备方法 Download PDF

Info

Publication number
CN108044123A
CN108044123A CN201711127783.XA CN201711127783A CN108044123A CN 108044123 A CN108044123 A CN 108044123A CN 201711127783 A CN201711127783 A CN 201711127783A CN 108044123 A CN108044123 A CN 108044123A
Authority
CN
China
Prior art keywords
powder
pure
alloy
laser
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711127783.XA
Other languages
English (en)
Other versions
CN108044123B (zh
Inventor
刘伟
熊华平
李能
孙兵兵
梁家誉
黄帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201711127783.XA priority Critical patent/CN108044123B/zh
Publication of CN108044123A publication Critical patent/CN108044123A/zh
Application granted granted Critical
Publication of CN108044123B publication Critical patent/CN108044123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/045Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method accompanied by fusion or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明属于高温结构材料的制备技术领域,涉及一种送粉式激光快速成形技术,特别涉及一种具有定向凝固组织的Nb‑Si‑Ti合金制备方法。本发明采用送粉式激光快速成形技术制备具有细小定向凝固组织特征的Nb‑Si‑Ti三元合金,以市售纯元素粉末为原料,无需特别制备球形粉末或预合金化粉末,原材料准备过程简单。采用共晶或亚共晶成分的Nb‑Si‑Ti合金,避免了初生硅化物相对定向凝固组织连续性的影响。待沉积合金冷却至100℃以下后再进行下一沉积层的制备,并采用定向凝固合金为成形基板,能在送粉式激光快速成形过程中形成定向热流,保证Nb‑Si‑Ti合金的组织稳定性。通过粉末的逐点熔化和凝固,能消除传统熔铸Nb‑Si工艺所不可避免的成分偏析,组织不均匀,晶粒粗大等问题。

Description

一种具有定向凝固组织的Nb-Si-Ti合金制备方法
技术领域
本发明属于高温结构材料的制备技术领域,涉及一种送粉式激光快速成形技术,特别涉及一种具有定向凝固组织的Nb-Si-Ti合金制备方法。
背景技术
Nb-Si合金采用Nb基固溶体(NbSS)室温增韧,硅化物高温增强,然而其强韧性指标对组织的要求相互矛盾,使该合金的综合性能匹配与调控极具挑战性。据已有的研究表明,定向凝固能够同时提高Nb-Si基超高温合金的室温断裂韧性和高温强度,如具有定向NbSS/Nb5Si3组织的多元Nb-16Si-24Ti-8Hf-2Al-2Cr合金室温韧性最高达到23MPa·m1/2,1200℃的强度约为400MPa。适当降低Ti和Hf含量,也可使室温韧性保持在15~22MPa·m1/2,而1250℃的压缩强度可提高到450MPa以上水平。
到目前为止,用于制备Nb-Si基超高温合金的定向凝固工艺包括:Czochralski定向凝固(C-DS)、电子束定向凝固(EBDS)、光悬浮定向凝固(OFZ)和整体定向凝固(IDS)。C-DS制备材料采用提拉法,在制备合金的过程中,熔体不断减少,这使得材料的生长速率难以准确控制,故目前基本不用该方法制备Nb-Si基超高温合金。在EBDS制备材料的过程中,其熔体的稳定是靠自身的重力和表面张力维持的,因而制备的试样形状简单,尺寸较小,能耗高;电子束的产生需要高真空,则高饱和蒸气压的元素极易挥发,造成成分不精准,这些都限制了其在Nb-Si基超高温合金方面的应用。OFZ因无坩埚污染和对真空度的要求比较低,而成为制备Nb-Si基超高温合金的主要方法,然而OFZ具有高耗能,制备的试样尺寸小,形状不规则等缺点,用该法制备Nb-Si基超高温合金有逐渐被新的定向凝固工艺取代的趋势。IDS制备主要原理是把制备的合金母材一次完全熔化在特制的陶瓷坩埚内,保温一段时间使合金熔体成分均匀,然后以一定的速率抽拉坩埚,让坩埚和熔体一起进入液态金属或其他冷却介质中,从而实现材料的定向生长,然而高活性Nb-Si合金熔体由陶瓷坩埚约束,故难免会带入氧等杂质。
此外,上述几种定向凝固方法制备的Nb-Si基合金组织较粗大,力学性能难以保证,且难以直接制备具有特定尺寸和复杂形状、结构(变截面、内腔或者冷却通道)的合金件。
发明内容
本发明为克服上述问题,提供了一种利用高能激光束为熔化热源,制备具有定向凝固组织特征的Nb-Si-Ti超高温合金的方法。
本发明的技术解决方案是,
采用送粉式激光快速成形技术制备具有定向凝固组织特征的Nb-Si-Ti合金,合金由Nb固溶体相和Nb3Si相两相组成,显微组织呈现Nb固溶体相和Nb3Si相定向交替排列,制备过程包括以下步骤:
(1)分别将市售的纯Nb粉,纯Si粉和纯Ti粉通过金属筛筛分,获得粒度均匀的纯Nb粉,纯Si粉和纯Ti粉;
(2)根据Nb-Si-Ti三元相图,设计Nb-Si-Ti合金成分,Nb-Si-Ti合金的成分为近共晶或亚共晶成分,按照所需制备的Nb-Si-Ti合金成分,将步骤(1)获得的纯Nb粉,纯Si粉和纯Ti粉混合,获得混合粉末;
(3)将Nb,Si和Ti的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气;
(4)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,在激光的作用下,Nb,Si和Ti的混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到一层沉积层;
(5)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(6)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(4)获得的沉积层为基体,重复步骤(4)获得另一沉积层;
(7)重复步骤(5)和步骤(6),直到所需高度的Nb-Si-Ti合金制备完成,待合金温度降至室温后取出,得到具有定向凝固组织特征的Nb-Si-Ti合金。
步骤(1)中筛分获得的纯Nb粉,纯Si粉和纯Ti粉的平均粒径为50~100μm。
步骤(2)中所采用的混合方法是采用行星式球磨机混合2h,并且在混合过程中不添加任何磨球。
步骤(3)中载粉气流流速:5~10L/min,保护气流速:10~30L/min。
步骤(4)中成形基板为定向凝固态的DZ125合金,合金定向凝固方向平行于送粉式激光快速成形方向。
步骤(4)中送粉速率为5~15g/min。
步骤(4)中激光功率设为:800~3000W,激光处于离焦状态,离焦距离:5~20mm,激光扫描速率:400~800mm/min。
本发明具有的优点和有益效果
本发明采用送粉式激光快速成形技术制备具有细小定向凝固组织特征的Nb-Si-Ti三元合金,以市售纯元素粉末为原料,无需特别制备球形粉末或预合金化粉末,原材料准备过程简单。采用共晶或亚共晶成分的Nb-Si-Ti合金,避免了初生硅化物相对定向凝固组织连续性的影响。待沉积合金冷却至100℃以下后再进行下一沉积层的制备,并采用定向凝固合金为成形基板,能在送粉式激光快速成形过程中形成定向热流,保证Nb-Si-Ti合金的组织稳定性。通过粉末的逐点熔化和凝固,能消除传统熔铸Nb-Si工艺所不可避免的成分偏析,组织不均匀,晶粒粗大等问题。制备过程不需要坩埚约束,避免了电极、坩埚等对高活性Nb-Si-Ti合金熔体的污染。送粉式激光快速成形过程中,以激光为热源,能获得较高的温度梯度,获得的Nb-Si-Ti合金的相尺寸仅为传统定向凝固工艺制备的Nb-Si-Ti合金的1/10左右。通过适量Ti元素的添加,能提高了合金的室温断裂韧性,提高合金综合力学性能。
具体实施方式
以下结合实例对本发明做进一步阐述,但本发明并不局限于具体实施例。
采用送粉式激光快速成形技术制备具有定向凝固组织特征的Nb-Si-Ti合金,合金由Nb固溶体相和Nb3Si相两相组成,显微组织呈现Nb固溶体相和Nb3Si相定向交替排列,制备过程包括以下步骤:
(1)分别将市售的纯Nb粉,纯Si粉和纯Ti粉通过金属筛筛分,获得平均粒径为50~100μm的纯Nb粉,纯Si粉和纯Ti粉;
(2)根据Nb-Si-Ti三元相图,设计Nb-Si-Ti合金成分,Nb-Si-Ti合金的成分为近共晶或亚共晶成分,按照所需制备的Nb-Si-Ti合金成分,将步骤(1)获得的平均粒径为50~100μm的纯Nb粉,纯Si粉和纯Ti粉进行称量,再采用行星式球磨机将以上三种粉末进行混合2h,并且在混合过程中不添加任何磨球,获得混合粉末;
(3)将Nb,Si和Ti的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气,载粉气流流速:5~10L/min,保护气流速:10~30L/min;
(4)以定向凝固态的DZ125合金为成形基板,DZ125合金的定向凝固方向与送粉式激光快速成形方向平行;
(5)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,送粉速率为5~15g/min,激光功率设为:800~3000W,激光处于离焦状态,离焦距离:5~20mm,激光扫描速率:400~800mm/min,在激光的作用下,混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到一层沉积层;
(6)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(7)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(5)获得的沉积层为基体,重复步骤(5)获得另一沉积层;
(8)重复步骤(6)和步骤(7),直到所需高度的Nb-Si-Ti合金制备完成,待合金温度降至室温后取出,得到薄壁状具有定向凝固组织特征的Nb-Si-Ti合金。
实施例
一种具有定向凝固组织的Nb-18Si-23Ti合金制备方法:
(1)将市售纯Nb粉,纯Si粉和纯Ti粉通过金属筛筛分,获得平均粒度约为80μm的纯Nb粉,纯Si粉和纯Ti粉。
(2)按照以原子百分比计为Nb-18Si-23Ti合金的成分,将步骤(1)获得的80μm的纯Nb粉,纯Si粉和纯Ti粉混合。采用行星式球磨机混合2h,混合过程中不添加任何磨球。
(3)将Nb,Si和Ti混合粉末置于激光快速成形系统的送粉器中,采用与激光束同轴的送粉头。以高纯氩气为送粉气流,设置载粉气流为:8L/min,以氩气为保护气,保护气流量为:20L/min。
(4)以定向凝固态的DZ125合金为成形基板,DZ125合金的定向凝固方向与送粉式激光快速成形方向平行;
(5)采用光纤激光器,激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,送粉速率为10g/min,激光功率设为:1500W,激光处于离焦状态,离焦距离:13mm,激光扫描速率:600mm/min,在激光的作用下,混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,在基板上形成得沉积宽度约3mm,厚度约为0.8mm,长度约15mm的一层沉积层;
(6)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(7)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(5)获得的沉积层为基体,重复步骤(5)获得另一沉积层;
(8)重复步骤(6)和步骤(7),直到获得高度约为10mm的Nb-Si-Ti合金制备完成,待合金温度降至室温后取出,得到薄壁状具有定向凝固组织特征的Nb-Si-Ti合金。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所做的等效结构或等效流程变换,或直接或间接运用在其他相关技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:采用送粉式激光快速成形技术制备具有定向凝固组织特征的Nb-Si-Ti合金,合金由Nb固溶体相和Nb3Si相两相组成,显微组织呈现Nb固溶体相和Nb3Si相定向交替排列,制备过程包括以下步骤:
(1)分别将市售的纯Nb粉,纯Si粉和纯Ti粉通过金属筛筛分,获得粒度均匀的纯Nb粉,纯Si粉和纯Ti粉;
(2)根据Nb-Si-Ti三元相图,设计Nb-Si-Ti合金成分,Nb-Si-Ti合金的成分为近共晶或亚共晶成分,按照所需制备的Nb-Si-Ti合金成分,将步骤(1)获得的纯Nb粉,纯Si粉和纯Ti粉混合,获得混合粉末;
(3)将Nb,Si和Ti的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气;
(4)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,在激光的作用下,Nb,Si和Ti的混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到一层沉积层;
(5)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(6)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(4)获得的沉积层为基体,重复步骤(4)获得另一沉积层;
(7)重复步骤(5)和步骤(6),直到所需高度的Nb-Si-Ti合金制备完成,待合金温度降至室温后取出,得到具有定向凝固组织特征的Nb-Si-Ti合金。
2.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(1)中筛分获得的纯Nb粉,纯Si粉和纯Ti粉的平均粒径为50~100μm。
3.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(2)中所采用的混合方法是采用行星式球磨机混合2h,并且在混合过程中不添加任何磨球。
4.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(3)中载粉气流流速:5~10L/min,保护气流速:10~30L/min。
5.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(4)中成形基板为定向凝固态的DZ125合金,合金定向凝固方向平行于送粉式激光快速成形方向。
6.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(4)中送粉速率为5~15g/min。
7.根据权利要求1所述的一种具有定向凝固组织特征的Nb-Si-Ti合金制备方法,其特征在于:步骤(4)中激光功率设为:800~3000W,激光处于离焦状态,离焦距离:5~20mm,激光扫描速率:400~800mm/min。
CN201711127783.XA 2017-11-14 2017-11-14 一种具有定向凝固组织的Nb-Si-Ti合金制备方法 Active CN108044123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711127783.XA CN108044123B (zh) 2017-11-14 2017-11-14 一种具有定向凝固组织的Nb-Si-Ti合金制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711127783.XA CN108044123B (zh) 2017-11-14 2017-11-14 一种具有定向凝固组织的Nb-Si-Ti合金制备方法

Publications (2)

Publication Number Publication Date
CN108044123A true CN108044123A (zh) 2018-05-18
CN108044123B CN108044123B (zh) 2020-03-31

Family

ID=62119756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711127783.XA Active CN108044123B (zh) 2017-11-14 2017-11-14 一种具有定向凝固组织的Nb-Si-Ti合金制备方法

Country Status (1)

Country Link
CN (1) CN108044123B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945151A (zh) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 一种Ti-Al-N-Nb四元涂层的制备方法
CN111945152A (zh) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 一种钛合金表面的TiAlN涂层的制备方法
CN111962063A (zh) * 2020-07-24 2020-11-20 中国航发北京航空材料研究院 一种高温防护涂层的制备方法
CN116397120A (zh) * 2023-04-19 2023-07-07 昆明理工大学 一种同时制备Cu3Si合金和共晶Si-Ti合金的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268178A1 (en) * 2007-02-26 2008-10-30 E.O.Paton Electric Welding Institute Of The National Academy Of Sciences Of Ukraine Method of producing encapsulated nanopowders and installation for its realization
CN105828983A (zh) * 2013-12-23 2016-08-03 通用电器技术有限公司 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金
CN106756994A (zh) * 2016-12-02 2017-05-31 江苏科技大学 一种激光熔覆涂层的镍基复合粉末及制备涂层的方法
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268178A1 (en) * 2007-02-26 2008-10-30 E.O.Paton Electric Welding Institute Of The National Academy Of Sciences Of Ukraine Method of producing encapsulated nanopowders and installation for its realization
CN105828983A (zh) * 2013-12-23 2016-08-03 通用电器技术有限公司 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金
CN106756994A (zh) * 2016-12-02 2017-05-31 江苏科技大学 一种激光熔覆涂层的镍基复合粉末及制备涂层的方法
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘伟等: ""Si元素含量对激光快速成形制备Nb-Si二元合金显微组织演变的影响"", 《焊接学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945151A (zh) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 一种Ti-Al-N-Nb四元涂层的制备方法
CN111945152A (zh) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 一种钛合金表面的TiAlN涂层的制备方法
CN111962063A (zh) * 2020-07-24 2020-11-20 中国航发北京航空材料研究院 一种高温防护涂层的制备方法
CN111962063B (zh) * 2020-07-24 2022-05-27 中国航发北京航空材料研究院 一种高温防护涂层的制备方法
CN111945152B (zh) * 2020-07-24 2023-01-13 中国航发北京航空材料研究院 一种钛合金表面的TiAlN涂层的制备方法
CN116397120A (zh) * 2023-04-19 2023-07-07 昆明理工大学 一种同时制备Cu3Si合金和共晶Si-Ti合金的方法

Also Published As

Publication number Publication date
CN108044123B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Lan et al. Anisotropy study of the microstructure and properties of AlCoCrFeNi2. 1 eutectic high entropy alloy additively manufactured by selective laser melting
Lv et al. Mechanical properties of AlSi10Mg alloy fabricated by laser melting deposition and improvements via heat treatment
WO2022042088A1 (zh) 一种用于3d打印的镍基高温合金及其粉末制备方法
CN109022920B (zh) 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法
Zhao et al. Ultra-fine Al–Si hypereutectic alloy fabricated by direct metal deposition
CN108044123A (zh) 一种具有定向凝固组织的Nb-Si-Ti合金制备方法
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
Li et al. Densification, microstructural evolutions of 90W-7Ni-3Fe tungsten heavy alloys during laser melting deposition process
Sun et al. Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting
CN112853168A (zh) 一种AlSi10Mg粉末及激光选区熔化制造工艺
CN110385429A (zh) 一种降低选区激光熔化制备钛基复合材料残余应力的方法
Tan et al. In situ synthesis of spherical WMo Alloy powder for additive manufacturing by spray granulation combined with thermal plasma spheroidization
CN104704139B (zh) Cu‑Ga合金溅射靶及其制造方法
KR20140098819A (ko) 고순도 티탄 잉곳, 그 제조 방법 및 티탄 스퍼터링 타깃
CN104625081B (zh) 一种熔盐法制备钛铝合金粉末的方法
Fu et al. Microstructure refinement of melt-grown Al2O3/YAG/ZrO2 eutectic composite by a new method: melt superheating treatment
Liu et al. Formation mechanism and quantitative analysis of pores in Al2O3–ZrO2 ceramic different structures by laser additive manufacturing
CN102660725A (zh) 一种纳米陶瓷涂层及其制备方法
Hao et al. A comparative study on spheroidization of sodium reduced and hydrogenation-dehydrogenation tantalum powder by RF plasma
Liu et al. Effect of annealing treatment on microstructure and tensile properties of Ti-48Al-2Cr-5Nb alloy fabricated by laser additive manufacturing
CN102864343B (zh) 一种原位铝基复合材料孕育剂的制备方法
JP2012184163A (ja) 緻密なブロックの精製及び製造方法
CN107876763B (zh) 一种具有定向凝固组织特征的Nb-Si合金制备方法
Geng et al. High strength Al0. 7CoCrFeNi2. 4 hypereutectic high entropy alloy fabricated by laser powder bed fusion via triple-nanoprecipitation
Pei et al. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant