CN108038318A - 一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法 - Google Patents

一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法 Download PDF

Info

Publication number
CN108038318A
CN108038318A CN201711374124.6A CN201711374124A CN108038318A CN 108038318 A CN108038318 A CN 108038318A CN 201711374124 A CN201711374124 A CN 201711374124A CN 108038318 A CN108038318 A CN 108038318A
Authority
CN
China
Prior art keywords
unit cell
moment
tangential force
metal lattice
variable cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711374124.6A
Other languages
English (en)
Other versions
CN108038318B (zh
Inventor
柏龙
易长炎
陈晓红
张俊芳
陈锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201711374124.6A priority Critical patent/CN108038318B/zh
Publication of CN108038318A publication Critical patent/CN108038318A/zh
Application granted granted Critical
Publication of CN108038318B publication Critical patent/CN108038318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法,包括以下步骤:s1:通过建立平面坐标系,并结合BCC变截面金属点阵单胞杆的剖面尺寸得到BCC变截面金属点阵单胞杆截面的半径表达式;s2:通过建立空间坐标系并结合胡克定律及弯压组合变形公式得到所述单胞杆的结点所受的空间切向力、弯矩与空间位移的关系式;s3:通过能量守恒定律,结合所述空间切向力、弯矩与空间位移的关系式,得到一个关于所述单胞杆的结点处的切向力的一元二次方程,解该方程得到不含所述结点的空间位移的切向力表达式,并结合所述结点处的切向力与轴向力、弯矩的关系得到所述轴向力和弯矩的表达式;s4:依据胡克定律,结合步骤s3得出的所述切向力、弯矩、轴向力的表达式,得到BCC变截面金属点阵结构的初始刚度及塑性破坏强度。

Description

一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法
技术领域
本发明涉及新型变截面金属点阵结构初始刚度及塑性破坏强度计算算法,具体地,涉及一种通过变截面金属点阵结构的剖面尺寸、结点空间位移及受力,结合材料力学胡克定律、功能原理、平面几何等最终计算出变截面金属点阵结构的初始刚度及塑性破坏强度。
背景技术
目前,金属点阵结构的研究对象以体心立方(Body-centered Cubic;BCC)点阵结构为主,因为这类结构是由结点和结点间连接杆件单元组成的按一定规则重复排列构成的空间桁架结构,所以其构型简单且具有各向同性的特点,能较好地适应SLM成型工艺,制备方便可靠、破坏形式单一方便观察与分析。
但是BCC点阵结构的力学性能远远差于其他具有基础拓扑结构的点阵结构诸如BCCZ、FCCZ等,因此探讨从根本上解决BCC点阵现存的轻质化与承载能力间此消彼长的矛盾具有重要的意义。
申请号为CN201510229244.1的专利所公开的一种BCC变截面金属点阵结构,其截面直径是由变截面杆件在载荷作用下需满足的内力条件来精确确定的,实现了构成变截面杆件的材料根据变截面杆件内的应力的梯度增减,提高了材料的利用率,减少了应力集中,在保持BCC金属点阵结构现存优势的情况下同时提高了结构的比强度和比刚度。但是,这种新型的BCC变截面金属点阵结构的相关数学模型并未建立,不能预测其初始刚度及塑性破坏强度,阻碍了对该结构力学性能进一步的优化。而现存的BCC点阵结构的初始刚度及塑性破坏强度的数学模型主要针对的是具有匀质杆的BCC点阵结构,不适用于具有变截面杆的BCC金属点阵结构。
因此,本发明针对BCC变截面金属点阵结构初始刚度及塑性破坏强度所建立的数学模型能填补目前缺乏BCC变截面金属点阵结构理论预测模型的空白,能为该结构力学性能的进一步优化提供理论支持。
发明内容
有鉴于此,本发明提供一种通过变截面金属点阵结构的剖面尺寸、结点空间位移及受力,结合材料力学胡克定律、功能原理、平面几何等最终计算出变截面金属点阵结构的初始刚度及塑性破坏强度。
本发明的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,包括以下步骤:s1:通过建立平面坐标系,并结合BCC变截面金属点阵单胞杆的剖面尺寸得到BCC变截面金属点阵单胞杆截面的半径表达式;s2:通过建立空间坐标系并结合胡克定律及弯压组合变形公式得到所述单胞杆的结点所受的空间切向力、弯矩与空间位移的关系式;s3:通过能量守恒定律,结合所述空间切向力、弯矩与空间位移的关系式,得到一个关于所述单胞杆的结点处的切向力的一元二次方程,解该方程得到不含所述结点的空间位移的切向力表达式,并结合所述结点处的切向力与轴向力、弯矩的关系得到所述轴向力和弯矩的表达式;s4:依据胡克定律,结合步骤s3得出的所述切向力、弯矩、轴向力的表达式,得到BCC变截面金属点阵结构的初始刚度及塑性破坏强度;
进一步的,在步骤s1中,所述半径表达式为:
式中,l为单胞杆的长度;R为单胞杆的纵截面两侧圆弧边的半径、R1为单胞杆最小横截面的半径;
进一步的,在步骤s2中,所述空间切向力、弯矩与空间位移的关系式为:
式中,γ为单胞杆在切向力及弯矩的作用下切向位移;F1为空间切向力,M1为弯矩,B2(α)=sinα/[Rsinα-(R+R1)]4
L为点阵立方体单胞的边长(该符号有没有合适的物理意义)且满足
进一步的,在步骤s3中,所述切向力的一元二次方程为:
其中,
C9=-2R(2R2C8+C1);
且所述切向力F1的表达式为:
其中,
C12=2R2C8+C1
所述轴向力N1及弯矩M1的表达式分别为:
σz为点阵单胞结构受到的压应力。
进一步的,在所述步骤s4中,所述初始刚度EplBCC为:
进一步的,所述塑性破坏强度σplBCC为:
本发明的有益效果:
1、本发明建立了BCC变截面金属点阵单胞的杆半径表达式,可通过控制表达式中的参数准确的控制杆的截面变化。
2.本发明结合功能原理及胡克定律等方法能准确的理论计算出BCC变截面金属点阵结构的初始刚度及塑性破坏强度。
附图说明
下面结合附图和实施例对本发明作进一步描述。
图1为BCC变截面金属点阵单胞及截面示意图;
图2为BCC变截面金属点阵单胞杆的示意图;
图3为BCC变截面金属点阵单胞的受力示意图;
图4为BCC变截面金属点阵单胞杆的空间受力及变形示意图;
图5为S7点在平面o'x'y'内的位移示意图;
图6为BCC变截面金属点阵单胞杆在平面o”x”y”内的受力及变形示意图;
图7为变密度与定密度样件理论计算及实验的应力应变对比图。
具体实施方式
1.变截面杆结构设计
选取单胞为边长是L的立方体进行BCC变截面点阵结构的初始刚度及塑性破坏强度的计算,如图1所示。取单胞中所有杆的尺寸是一样的,本文取杆lS7S9来分析。图2为变密度杆截面尺寸示意图,变密度杆通过半径为R、跨度为杆长l的圆弧线来控制半径均匀变化,通过几何关系可以得到圆弧半径R的表达式为:
其中,
以变密度杆其中一端面中点为原点,轴向及横向分别为x、y轴建立图4所示平面坐标系oxy,则圆弧圆心M点的坐标值为(l/2,-R-R1),并且圆弧上任意一点的坐标值符合下面关系:
则变密度杆在平面坐标系oxy下任意横截面的半径r(x)为:
圆心M到圆弧上任意一点的矢量与x轴的夹角α取值范围为α0~α1,且α1=π-α0。根据直角三角形的定理与几何关系可求得:
2变密度点阵结构力学性能分析
2.1初始刚度EplBCC
如图3所示,当BCC单胞受到压应力σz作用时,结点可以在空间中任意移动。由于整个单胞关于S9点中心对称,各杆力在S9点相互抵消,故S9点的节点位移为零。以S7S9杆为例,设S7S9杆与平面S5S6S7S8的夹角为θ,单胞底面对角线S5S7与边线S7S8的夹角为θ′,S7点受到轴向力N1、切向力F1及弯矩M1的作用后在空间坐标系o'x'y'z'中三个方向的位移分别为(u,ν,w),如图4、5所示。
变形示意图见图6,以等效悬臂梁的固定点S9点为原点,杆的轴向及横向分别为x轴、y轴建立平面坐标系o”x”y”,杆受到轴向力N1、切向力F1及弯矩M1的作用后产生的平面轴向位移为λ1、挠度为ω1、截面转角为β1,图中实线部分为杆的初始状态,虚线部分为杆变形以后的状态。
基于以上的分析,通过S7点在空间坐标系o'x'y'z'中三个方向的位移(u,ν,w)可得杆的轴向位移为:
根据材料力学中的胡克定律可知在轴向力N1的作用下,变截面杆的轴向位移为:
本文中设Bi=Bi(α)为关于α的函数,Ci为常量;式(11)中E为母体材料的弹性模量;B1(α)=sinα/[Rsinα-(R+R1)]2
结合式(5)和式(6)可得杆的轴向力N1为:
通过S7点在空间坐标系o'x'y'z'中三个方向的位移(u,ν,w)可得杆切向位移为:
在平面坐标系o”x”y”下,由于杆不仅受到切向力F1的作用,还受到弯矩M1的作用,因此根据结构弯压组合变形的方程可得杆在切向力及弯矩的作用下切向位移为:
式中:B2(α)=sinα/[Rsinα-(R+R1)]4
另外,因为对称的关系,各结点处的弯曲力矩相同,所以结点S7、S9处的弯矩MS7、MS9相等且为M1,且
结合式(8)、(9)、(10)可得杆件所受的切向力F1及弯矩M1分别为:
其中,
通过S7点在空间坐标系o'x'y'z'中所受的切向力F1及弯矩M1可得S7在z'向所受的力Fz'为:
Fz'=F1cosθ-N1sinθ(12)
式中:
另外,由于单胞底面四个杆件的端点S5、S6、S7、S8同等的受到压应力σz的作用,因此各端点z'向受力Fz'均为σzL2/4。
由前述分析可知,杆的变形主要为轴向变形与横向弯曲变形,其弹性应变能包括轴向伸缩能与弯曲应变能,由功能原理与胡克定律可知,S7S9杆受到轴向力N1、切向力F1及弯矩M1作用时的应变能U为:
式中:B4(α)=2Rcosα+l;B5(α)=B4 2(α)+l2
一个单胞里面有八根杆件,所以单胞的总应变能UBCT为单杆应变能的8倍既是UBCT=8U。另,BCC单胞z'方向上的压应力σz对单胞做的功Uw为:
Uw=2σzL2w(14)
根据能量守恒,单胞的应变能与外力给单胞做的功相等,即UBCT=Uw,结合式(13)、(14)得:
结合式(7)、式(11)可将F1的表达式可变为:
由式(12)及Fz'=σzL2/4得N1的表达式为:
结合式(10)、(15)、(16)及(17)可消掉u、ω得到关于F1的一元二次方程为:
C9F1 2+C10F1+C11=0 (18)
其中,
C9=-2R(2R2C8+C1);
通过式(18)求得切向力F1得:
其中,
C12=2R2C8+C1
所以结合式(10)、(17)、(19)可得杆件所受的轴向力N1及弯矩M1分别为:
由于单胞具有对称性,因此单胞在z'方向上的总位移为杆端点S7在z'方向上的位移w的两倍,结合式(16)、(27)、(19)以及(20)可得BCC单胞在z'方向上的应变为:
本文着眼于分析受到z'向加载的BCC点阵单胞塑性破坏前的力学性能,即其弹性阶段内的力学性能,故其应力应变满足胡克定律。结合式(21),可得BCC单胞在受z'方向上应变时,单胞的初始刚度EplBCC为:
2.2塑性破坏强度σplBCC
BCC变密度单胞杆的塑形破坏主要考虑弯矩的作用,忽略轴向力及屈服面剪切的影响,当变密度杆的弯矩M1为杆的极限弯矩Mu时,此时点阵块所受到的压应力σz为结构的塑性破坏强度σplBCC。在求杆的极限弯矩Mu时,近似的认为变密度杆的弯矩M1的作用点在结点处,极限弯矩Mu的表达式中的半径取为R2。则杆的极限弯矩Mu为:
式中,σs为母体材料的屈服极限,为944MPa;
当M1=Mu时,σz为结构的塑性破坏强度σplBCC,即结构的塑性破坏强度σplBCC为:
3实验验证
图中σGBCC、σ*GBCC和EGBCC分别为BCC变密度结构通过实验求出的屈服强度、抗压强度以及初始刚度。σpIGBCC及EpIGBCC为BCC变密度结构理论计算的塑形破坏强度和初始刚度,BCC变密度结构通过实验得出的初始刚度为406.2±0.5Mpa,比理论计算出的数值468.47Mpa要低13.3±0.1%;通过实验得出的塑形破坏强度为16.6±0.3Mpa,比理论计算出的数值19.14Mpa低13.3±0.6%,体现了本计算算法的可行性。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于,包括以下步骤:
s1:通过建立平面坐标系,并结合BCC变截面金属点阵单胞杆的剖面尺寸得到BCC变截面金属点阵单胞杆截面的半径表达式;
s2:通过建立空间坐标系并结合胡克定律及弯压组合变形公式得到所述单胞杆的结点所受的空间切向力、弯矩与空间位移的关系式;
s3:通过能量守恒定律,结合所述空间切向力、弯矩与空间位移的关系式,得到一个关于所述单胞杆的结点处的切向力的一元二次方程,解该方程得到不含所述结点的空间位移的切向力表达式,并结合所述结点处的切向力与轴向力、弯矩的关系得到所述轴向力和弯矩的表达式;
s4:依据胡克定律,结合步骤s3得出的所述切向力、弯矩、轴向力的表达式,得到BCC变截面金属点阵结构的初始刚度及塑性破坏强度。
2.根据权利要求1所述的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于:步骤s1中,所述半径表达式为:
式中,l为单胞杆的长度;L为点阵立方体单胞的边长;R为单胞杆的纵截面两侧圆弧边的半径、R1为单胞杆最小横截面的半径。
3.根据权利要求2所述的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于:步骤s2中,所述空间切向力、弯矩与空间位移的关系式为:
式中,γ为单胞杆在切向力及弯矩的作用下切向位移;F1为空间切向力,M1为弯矩,B2(α)=sinα/[Rsinα-(R+R1)]4; L为点阵立方体单胞的边长且满足
4.根据权利要求3所述的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于:步骤s3中,所述切向力的一元二次方程为:
C9F1 2+C10F1+C11=0;
其中,
C9=-2R(2R2C8+C1);
且所述切向力F1的表达式为:
其中,
C12=2R2C8+C1
所述轴向力N1及弯矩M1的表达式分别为:
其中σz为点阵单胞结构受到的压应力。
5.根据权利要求4所述的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于:所述步骤s4中,所述初始刚度EplBCC为:
6.根据权利要求5所述的变截面金属点阵结构初始刚度及塑性破坏强度计算算法,其特征在于:所述塑性破坏强度σplBCC为:
CN201711374124.6A 2017-12-19 2017-12-19 变截面金属点阵结构初始刚度及塑性破坏强度计算算法 Active CN108038318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711374124.6A CN108038318B (zh) 2017-12-19 2017-12-19 变截面金属点阵结构初始刚度及塑性破坏强度计算算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711374124.6A CN108038318B (zh) 2017-12-19 2017-12-19 变截面金属点阵结构初始刚度及塑性破坏强度计算算法

Publications (2)

Publication Number Publication Date
CN108038318A true CN108038318A (zh) 2018-05-15
CN108038318B CN108038318B (zh) 2020-10-30

Family

ID=62099894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711374124.6A Active CN108038318B (zh) 2017-12-19 2017-12-19 变截面金属点阵结构初始刚度及塑性破坏强度计算算法

Country Status (1)

Country Link
CN (1) CN108038318B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108824634A (zh) * 2018-06-14 2018-11-16 西北工业大学 一种轻质空间点阵结构
CN109084169A (zh) * 2018-09-17 2018-12-25 中南大学 一种点阵结构及点阵零件
CN109829261A (zh) * 2019-04-03 2019-05-31 大连理工大学 一种由变截面圆管组成的轻质点阵结构及其优化设计方法
CN110064755A (zh) * 2019-04-22 2019-07-30 北京空间飞行器总体设计部 3d打印轻量化后埋件以及后埋方法
CN111310296A (zh) * 2019-10-12 2020-06-19 南京航空航天大学 一种应用于复杂曲面的变密度金属板材点阵芯体设计方法
CN111895015A (zh) * 2020-07-03 2020-11-06 重庆大学 基于增材制造的变体梯度点阵结构
CN112268092A (zh) * 2020-09-30 2021-01-26 重庆大学 一种点阵流变智能结构及其制作方法
CN112800553A (zh) * 2021-01-04 2021-05-14 中国科学院力学研究所 多级可控渐进吸能点阵结构
CN115249862A (zh) * 2021-04-26 2022-10-28 北京航空航天大学 用于车辆的动力电池防护系统、动力电池总成和车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715091A (zh) * 2013-12-16 2015-06-17 华中科技大学 一种铝合金周期性点阵多孔结构的快速成形制造方法
CN105020566A (zh) * 2015-05-07 2015-11-04 重庆大学 变截面金属点阵结构及其加工方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715091A (zh) * 2013-12-16 2015-06-17 华中科技大学 一种铝合金周期性点阵多孔结构的快速成形制造方法
CN105020566A (zh) * 2015-05-07 2015-11-04 重庆大学 变截面金属点阵结构及其加工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I. MASKERY等: "Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size", 《EXPERIMENTAL MECHANICS》 *
易长炎: "金属三维点阵结构拓扑构型研究及应用现状综述", 《功能材料》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108824634A (zh) * 2018-06-14 2018-11-16 西北工业大学 一种轻质空间点阵结构
CN109084169A (zh) * 2018-09-17 2018-12-25 中南大学 一种点阵结构及点阵零件
CN109829261A (zh) * 2019-04-03 2019-05-31 大连理工大学 一种由变截面圆管组成的轻质点阵结构及其优化设计方法
CN110064755B (zh) * 2019-04-22 2021-07-20 北京空间飞行器总体设计部 3d打印轻量化后埋件以及后埋方法
CN110064755A (zh) * 2019-04-22 2019-07-30 北京空间飞行器总体设计部 3d打印轻量化后埋件以及后埋方法
CN111310296A (zh) * 2019-10-12 2020-06-19 南京航空航天大学 一种应用于复杂曲面的变密度金属板材点阵芯体设计方法
CN111310296B (zh) * 2019-10-12 2024-03-29 南京航空航天大学 一种应用于复杂曲面的变密度金属板材点阵芯体设计方法
CN111895015B (zh) * 2020-07-03 2022-07-08 重庆大学 基于增材制造的变体梯度点阵结构
CN111895015A (zh) * 2020-07-03 2020-11-06 重庆大学 基于增材制造的变体梯度点阵结构
CN112268092A (zh) * 2020-09-30 2021-01-26 重庆大学 一种点阵流变智能结构及其制作方法
CN112800553A (zh) * 2021-01-04 2021-05-14 中国科学院力学研究所 多级可控渐进吸能点阵结构
CN112800553B (zh) * 2021-01-04 2024-01-30 中国科学院力学研究所 多级可控渐进吸能点阵结构
CN115249862A (zh) * 2021-04-26 2022-10-28 北京航空航天大学 用于车辆的动力电池防护系统、动力电池总成和车辆

Also Published As

Publication number Publication date
CN108038318B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN108038318A (zh) 一种变截面金属点阵结构初始刚度及塑性破坏强度计算算法
CN107341285B (zh) 一种地震力作用下节理岩质边坡倾倒破坏极限承载力分析下限法
CN107103138B (zh) 一种激光喷丸变刚度轻量化方法
CN105020566B (zh) 变截面金属点阵结构及其加工方法
CN107992707A (zh) 一种张拉索杆结构初始预应力分布确定的预载回弹法
Feng et al. Topology optimization method of lattice structures based on a genetic algorithm
CN103397694B (zh) 一种张拉结构三维受压构件
CN110043594A (zh) 一种节点增强型点阵结构
CN110516317B (zh) 一种嵌套式类蜂窝夹层结构
CN105243460A (zh) 一种基于改进人工鱼群算法的输电塔塔腿辅材拓扑结构优化方法
CN110837690A (zh) 蜂窝结构非线性本构关系的建立方法、介质和设备
CN105740630B (zh) 一种轴压筒壳结构承载力折减系数及其确定方法
CN107201778B (zh) 一种斜交拉杆式单层球面温室网壳结构体系及其设计方法
CN108170947A (zh) 一种基于萤火虫算法获取新型点阵结构的方法
CN114636360A (zh) 五模冲击隐身复合点阵环状结构及其参数优化方法
CN108677682A (zh) 新型上承式拱桥
CN111666626B (zh) 索结构形态分析中的预应力水平调节方法
CN105631169B (zh) 一种索杆结构初始应变确定方法
CN105544725B (zh) 一种新型拉杆式单层柱面温室网壳结构体系及其应用
CN106021930A (zh) 扭转力矩作用下的最小质量张拉整体结构设计方法
Douthe et al. Morphological and mechanical investigation of double layer reciprocal structures
CN116118196A (zh) 一种基于力流管载荷路径的连续纤维3d打印路径设计方法
CN111456311B (zh) 一种索撑双向网格型单层柱面网壳及其施工方法
Kaveh et al. Optimal design of double layer barrel vaults using an improved hybrid big bang-big crunch method
Wirowski Optimization of fundamental natural frequency of structures using VPL on the example of truss towers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant