CN108007340B - 相位生成载波反正切解调中非线性误差的实时计算方法 - Google Patents

相位生成载波反正切解调中非线性误差的实时计算方法 Download PDF

Info

Publication number
CN108007340B
CN108007340B CN201711001592.9A CN201711001592A CN108007340B CN 108007340 B CN108007340 B CN 108007340B CN 201711001592 A CN201711001592 A CN 201711001592A CN 108007340 B CN108007340 B CN 108007340B
Authority
CN
China
Prior art keywords
phase
demodulation
nonlinear
real
photoelectric detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711001592.9A
Other languages
English (en)
Other versions
CN108007340A (zh
Inventor
陈本永
张世华
严利平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201711001592.9A priority Critical patent/CN108007340B/zh
Publication of CN108007340A publication Critical patent/CN108007340A/zh
Application granted granted Critical
Publication of CN108007340B publication Critical patent/CN108007340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开了一种相位生成载波(PGC)反正切解调中非线性误差的实时计算方法。激光干涉仪产生的干涉条纹同时被两个光电探测器探测,且两个光电探测器的探测中心相距四分之一个周期的干涉条纹,移动干涉仪中的测量镜,干涉仪的待测相位连续变化,分别对两个光电探测器探测到的干涉信号进行PGC解调获得解调相位值,作差获得相位差,实时检测获得相位差的非线性项的峰峰值,并根据该峰峰值计算解调相位对应的非线性误差的大小。本发明对PGC反正切解调引起的非线性误差进行实时评估,与传统的总谐波失真方法相比,具有实现简单、评估结果直观、实时性好等优点,可广泛应用于干涉型光纤传感器、自混合干涉仪等相位解调非线性误差的评估。

Description

相位生成载波反正切解调中非线性误差的实时计算方法
技术领域
本发明涉及激光干涉仪中相位解调非线性误差的评估方法,具体涉及到一种相位生成载波(PGC)反正切解调中非线性误差的实时计算方法。
背景技术
相位生成载波(PGC)调制解调技术具有高灵敏度、大动态范围和良好的线性度等优点,被广泛应用于干涉型光纤传感器、光学反馈干涉仪和自混合干涉仪的相位解调。PGC调制解调中,高频相位载波将激光干涉仪的待测相位调制为高频载波及其各阶谐频信号的边带,调制后的干涉信号为:其中S0和S1分别为直流分量和交流分量的幅值,z为相位调制深度,θ为载波相位延迟。将S(t)分别与载波信号的基频和二倍频相乘并低通滤波,可得到一对含有待测相位信息的正交信号:其中J1(z)和J2(z)分别为一阶贝塞尔函数和二阶贝塞尔函数,K1和K2为乘法器和滤波器的总增益。正交信号P1(t)与P2(t)相除再做反正切运算得解调相位为:其中ν=[J1(z)K1cosθ]/[J2(z)K2cos2θ]为正交信号幅值的比例系数。显然,载波相位延迟θ≠kπ(k=0,1,2,…)、相位调制深度偏离2.63引起J1(z)≠J2(z)、或乘法器或滤波器性能不理想(K1≠K2)都会导致正交信号的幅值不相等(ν≠1),从而使得PGC反正切解调得到的相位Ф(t)与实际待测相位不相等,该误差即为PGC解调的非线性误差。为了检验相位解调方法的线性度,非线性误差的评估至关重要。
一般情况下,可通过总谐波失真(THD)来评估PGC反正切解调的线性度:将待测相位设置为一单频正弦信号,若存在非线性误差,解调相位中除了相位信号的基频外,还包含高阶谐频信号,THD为各阶谐频信号幅值的均方根与基频信号幅值的比值。虽然THD为相位解调线性度的有效评估方法,但此方法要求待解调相位必须为单频正弦信号,一般只能做离线模拟评估,对于待测相位任意变化的实际干涉系统,THD无法实现实时评估。THD只是一个比例系数,不能直接计算相位解调引起的非线性误差大小。
发明内容
针对现有方法中的不足,本发明的目的在于提供一种PGC反正切解调中非线性误差的实时计算方法。采用固定相位差方式评估PGC反正切解调的非线性引起的相位误差,为PGC反正切解调的非线性提供一种实时、简单、直观的评估方法。
本发明采用的技术方案的步骤如下:
(1)激光干涉仪产生的干涉条纹同时被两个光电探测器探测,且两个光电探测器的探测中心对应于干涉条纹中的位置相距四分之一个周期的干涉条纹,使得两探测器对应的解调相位差为90°;
(2)分别对两个光电探测器探测到的干涉信号进行PGC解调获得各自的解调相位值,再对解调相位值作差获得相位差,相位差为一个固定相位(90°)和一个相位周期为π的非线性项的叠加;
(3)通过移动激光干涉仪中的测量镜,使激光干涉仪的待测相位连续变化,在测量镜移动过程中进行步骤2)实时检测获得相位差的非线性项的峰峰值,根据该峰峰值计算解调相位对应的非线性误差的大小。
所述的激光干涉仪中测量镜的移动引起的激光干涉仪的待测相位改变大于π。
具体实施中,可以将两个光电探测器相紧挨平行布置,用同一束光打到两个光电探测器上;也可以将两个光电探测器分开布置,并且在光路中设置分光镜进行分光处理后再分别打到两个光电探测器上。
本发明具有的有益效果是:
(1)本发明采用固定相位差方式,实现了PGC反正切解调非线性误差的实时评估,可在实验过程中直接计算由于非线性解调引起的相位误差。
(2)与常用的THD方法相比,固定相位差方式对实际干涉系统中任意变化的待测相位都可以进行非线性解调误差评估,具有实现简单、评估结果直观、实时性好等优点,可广泛应用于干涉型光纤传感器、自混合干涉仪等相位解调非线性误差的评估。
附图说明
图1是两个探测器在相对于激光干涉条纹的放置位置,d是干涉条纹的周期。
图2是实施例v=1.05时待测相位与解调相位Φ(t)和Φ′(t)及解调相位差ΔΦ(t)的关系图。
具体实施方式
下面结合附图和实施例对本发明加以详细说明。
本发明实施过程如下:
(1)激光干涉仪产生的干涉条纹被光电探测器探测,对光电探测器探测到的干涉信号进行PGC反正切解调,解调相位为将其进行傅里叶展开并化简得:
其中,ν为正交信号幅值的比例系数,t表示时间;
可见,ν≠1时,干涉仪的实际待测相位上会叠加一个相位周期为π的非线性误差且实际待测相位对应的非线性误差的大小只和ν值与1的偏离程度有关。
(2)用另一个光电探测器探测激光干涉仪产生的同一个干涉条纹,设两探测中心点的位置间隔引起的相位差为δ,则另一个探测器对应的解调相位傅里叶展开并化简为:
(3)将两个探测器对应的解调相位作差得:
相位差ΔΦ(t)包含一个固定相位δ和一个由ν≠1引起的非线性项
|sinδ|=1(δ=90°或270°)时,非线性项的振幅(ν-1)sinδ达到最大,最大值为(v-1)rad。具体实施中,两个光电探测器的探测中心对应于干涉条纹中的位置相距四分之一个周期的干涉条纹,即使得两探测器对应的解调相位差为90°。
(4)调整干涉仪中的测量镜,使待测相位连续变化,相位差ΔΦ(t)的值随相位的变化而变化,当的变化大于π时,测量得到ΔΦ(t)中非线性项的峰峰值为α,且有α=2(v-1)rad。
(5)根据测得的非线性项的峰峰值α,计算得PGC反正切相位解调非线性误差对应的非线性误差为且当时非线性误差在达到最大,最大值为±α/4rad。
实施例具体实施为:如附图1所述,激光干涉仪的干涉条纹周期为d,两个光电探测器的探测中心距离为d/4,即两探测器对应的解调相位差为90°。测量镜线性运动,使待测相位从0连续变化至4π。在v=1.05时,经相位扩展和解包裹后的解调相位Φ(t)和Φ′(t)以及相位差ΔΦ(t)如附图2所示:ΔΦ(t)为一个固定相位90°与一个周期为π的非线性项的叠加,经软件测量得非线性项的峰峰值为α=5.6°,由此得待测相位对应的PGC反正切相位解调非线性误差的值为非线性误差最大值为±1.4°。
由实施例可见,本发明利用固定相位差方式实现了PGC反正切解调非线性误差的实时评估,克服了传统的THD方法只能做离线模拟评估,且待测相位仅限于正弦变化和不能直接计算相位解调引起的非线性误差大小等缺点,固定相位差方式实现简单、评估结果直观、实时性好,可广泛应用于干涉型光纤传感器、自混合干涉仪等相位解调非线性误差的评估,具有其突出显著的技术效果。

Claims (3)

1.一种相位生成载波反正切解调中非线性误差的实时计算方法,其特征在于:
(1)激光干涉仪产生的干涉条纹同时被两个光电探测器探测,且两个光电探测器的探测中心对应于干涉条纹中的位置相距四分之一个周期的干涉条纹,使得两光电探测器对应的解调相位差为90°;
(2)分别对两个光电探测器探测到的干涉信号进行PGC解调获得各自的解调相位值,再对解调相位值作差获得相位差,相位差为一个固定相位和一个相位周期为π的非线性项的叠加;非线性项具体是一个由ν≠1引起的非线性项其中:ν为正交信号幅值的比例系数,t表示时间,δ为两探测中心点的位置间隔引起的相位差;表示待测相位;
(3)通过移动激光干涉仪中的测量镜,使激光干涉仪的待测相位连续变化,在测量镜移动过程中进行步骤2)实时检测获得相位差的非线性项的峰峰值,根据峰峰值计算解调相位对应的非线性误差的大小。
2.根据权利要求1所述的一种相位生成载波反正切解调中非线性误差的实时计算方法,其特征在于:所述的激光干涉仪中测量镜的移动引起的激光干涉仪的待测相位改变大于π。
3.根据权利要求1所述的一种相位生成载波反正切解调中非线性误差的实时计算方法,其特征在于:所述根据峰峰值计算解调相位对应的非线性误差的大小,具体采用以下公式:
非线性误差为且当时非线性误差在达到最大,k=0,1,2…,最大值为±α/4rad;
其中,α表示峰峰值。
CN201711001592.9A 2017-10-24 2017-10-24 相位生成载波反正切解调中非线性误差的实时计算方法 Active CN108007340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711001592.9A CN108007340B (zh) 2017-10-24 2017-10-24 相位生成载波反正切解调中非线性误差的实时计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711001592.9A CN108007340B (zh) 2017-10-24 2017-10-24 相位生成载波反正切解调中非线性误差的实时计算方法

Publications (2)

Publication Number Publication Date
CN108007340A CN108007340A (zh) 2018-05-08
CN108007340B true CN108007340B (zh) 2019-12-06

Family

ID=62051898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711001592.9A Active CN108007340B (zh) 2017-10-24 2017-10-24 相位生成载波反正切解调中非线性误差的实时计算方法

Country Status (1)

Country Link
CN (1) CN108007340B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307780B (zh) * 2019-06-25 2021-01-26 浙江理工大学 基于迭代计算的pgc相位解调误差实时补偿方法
CN110836638A (zh) * 2019-10-28 2020-02-25 哈尔滨工业大学 相位生成载波反正切中载波相位延迟和伴生调幅消除方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081307A (ja) * 1998-09-07 2000-03-21 Shiyuuko Yokoyama 高速、高分解のダブルヘテロダイン干渉計
JP2008052066A (ja) * 2006-08-25 2008-03-06 National Institute Of Advanced Industrial & Technology 光信号処理回路
CN101839686A (zh) * 2010-03-26 2010-09-22 中国计量科学研究院 激光干涉仪非线性误差修正方法、装置及应用其的干涉仪
JP4930068B2 (ja) * 2007-01-19 2012-05-09 沖電気工業株式会社 干渉型光ファイバセンサシステムおよびセンシング方法
CN103163513A (zh) * 2013-03-13 2013-06-19 哈尔滨工业大学 基于相位解调方法的fmcw激光雷达高精度信号测量方法
CN104677295A (zh) * 2015-02-06 2015-06-03 中国航空工业集团公司北京长城计量测试技术研究所 激光干涉非线性误差自补偿方法及装置
CN105157733A (zh) * 2015-06-02 2015-12-16 哈尔滨工程大学 一种改进的生成载波相位pgc解调方法
CN105486331A (zh) * 2015-12-01 2016-04-13 哈尔滨工程大学 一种具有高精度的光学信号相位解调系统及解调方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081307A (ja) * 1998-09-07 2000-03-21 Shiyuuko Yokoyama 高速、高分解のダブルヘテロダイン干渉計
JP2008052066A (ja) * 2006-08-25 2008-03-06 National Institute Of Advanced Industrial & Technology 光信号処理回路
JP4930068B2 (ja) * 2007-01-19 2012-05-09 沖電気工業株式会社 干渉型光ファイバセンサシステムおよびセンシング方法
CN101839686A (zh) * 2010-03-26 2010-09-22 中国计量科学研究院 激光干涉仪非线性误差修正方法、装置及应用其的干涉仪
CN103163513A (zh) * 2013-03-13 2013-06-19 哈尔滨工业大学 基于相位解调方法的fmcw激光雷达高精度信号测量方法
CN104677295A (zh) * 2015-02-06 2015-06-03 中国航空工业集团公司北京长城计量测试技术研究所 激光干涉非线性误差自补偿方法及装置
CN105157733A (zh) * 2015-06-02 2015-12-16 哈尔滨工程大学 一种改进的生成载波相位pgc解调方法
CN105486331A (zh) * 2015-12-01 2016-04-13 哈尔滨工程大学 一种具有高精度的光学信号相位解调系统及解调方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
•纳米精度外差式激光干涉仪非线性误差修正方法研究;黎永前 等;《仪器仪表学报》;20050608;第26卷(第5期);第542-546页 *

Also Published As

Publication number Publication date
CN108007340A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN107843189B (zh) 正弦相位调制干涉仪pgc解调实时归一化修正装置及方法
CN109459070B (zh) 一种pgc相位解调法中相位延迟提取与补偿方法
Xie et al. Extraction of carrier phase delay for nonlinear errors compensation of PGC demodulation in an SPM interferometer
CN110411335B (zh) 差动式正弦相位调制激光干涉纳米位移测量装置及方法
CN110411486B (zh) 对相位延迟和调制深度不敏感的pgc-dcdm解调方法
Yan et al. Nonlinear error compensation of PGC demodulation with the calculation of carrier phase delay and phase modulation depth
Požar et al. Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer
JP6252089B2 (ja) 2波長正弦波位相変調干渉計
CN111595468B (zh) 一种补偿载波相位延迟非线性误差的pgc相位解调方法
CN108007340B (zh) 相位生成载波反正切解调中非线性误差的实时计算方法
CN108458654B (zh) 基于双通道正交锁相解调的光学非线性误差测量方法及装置
CN110836638A (zh) 相位生成载波反正切中载波相位延迟和伴生调幅消除方法
Yan et al. Phase-modulated dual-homodyne interferometer without periodic nonlinearity
US7006562B2 (en) Phase demodulator, phase difference detector, and interferometric system using the phase difference detector
Eom et al. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer
CN115561504A (zh) 反射式全光纤电流传感器最优调制深度的调制信号确定方法
US20120320381A1 (en) Measurement apparatus and measurement method
CN111609791B (zh) 一种pgc相位解调法中调制深度的提取与补偿方法
Ye et al. Optimizing design of an optical encoder based on generalized grating imaging
Hou et al. A simple technique for eliminating the nonlinearity of a heterodyne interferometer
Chen et al. Simultaneous measurement of the straightness error and its position using a modified Wollaston-prism-sensing homodyne interferometer
US20120239329A1 (en) Sagnac phase shift tracking method for fiber-optic gyroscopes
CN116683997A (zh) 一种改进相位生成载波算法解调低频信号的方法
Chen et al. Precision measurement of the refractive index of air using a phase modulated homodyne interferometer with a variable length vacuum cavity
En et al. Sinusoidal phase modulating interferometry system for 3D profile measurement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant