CN107986386A - 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法 - Google Patents

一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法 Download PDF

Info

Publication number
CN107986386A
CN107986386A CN201711311841.4A CN201711311841A CN107986386A CN 107986386 A CN107986386 A CN 107986386A CN 201711311841 A CN201711311841 A CN 201711311841A CN 107986386 A CN107986386 A CN 107986386A
Authority
CN
China
Prior art keywords
tribromophenols
degraded
photo
reduction
tribromphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711311841.4A
Other languages
English (en)
Inventor
程婷
张晓�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Open University
Original Assignee
Jiangsu Open University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Open University filed Critical Jiangsu Open University
Priority to CN201711311841.4A priority Critical patent/CN107986386A/zh
Publication of CN107986386A publication Critical patent/CN107986386A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Abstract

本发明公开了一种采用UV/Na2SO3光还原降解2,4,6‑三溴酚的方法,在含有2,4,6‑三溴酚的水中,加入亚硫酸钠,曝气除去溶解氧,控制溶液pH,进行紫外光照反应,实现降解2,4,6‑三溴酚。本发明采用UV/Na2SO3光还原降解2,4,6‑三溴酚,在三溴苯酚初始质量浓度100mg·L‑1,三溴酚的降解率随紫外光解时间的增加而增加,2min~10min降解速率明显增加,至20min几乎完全降解。当SO3 2‑浓度为10mmol·L‑1时,三溴苯酚的降解率明显提高,三溴酚在SO3 2‑浓度为10mmol/L的UV/Na2SO3体系中,每个时间梯度pH=6时降解率呈稳定上升状态,在pH=6的条件下降解效果最佳。

Description

一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法
技术领域
本发明属于有机污染物处理技术领域,具体涉及一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法。
背景技术
卤代酚类有机污染物是一类在地表水、土壤等自然环境中普遍存在的有毒有机污染物,来源主要包括农药、防腐剂、工业溶剂和助燃剂等。而溴代酚类物质中,三溴苯酚作为一种重要的阻燃剂中间体而被广泛应用。2,4,6-三溴酚是一种非常好的助燃剂,可用于塑料工艺的改性。因此,2,4,6-三溴酚在世界内大量生产,2001年年产量达到9500t。研究发现在江河湖泊的水体和底泥、空气和土壤、生物体内甚至人乳中都有发现,对人类健康和环境造成持久性危害。
溴代酚类有机废水成分复杂,有机物含量高,处理难度极大。首先,溴代酚类有机污染物在水中的含量一般比较低,以至于一般的常规的水处理工艺无法有效的除去,需要一些更加高效的水处理工艺来降解这些有污染物。其次,溴代酚类有机物由于自身结构的原因使其在水中的溶解度很低,容易通过食物链富集,而且难以通过微生物降解方法把它从环境中去除出来。
卤代有机物的特点就是大部分都有 C-X 键,而卤素原子较大的电负性和较强的诱导效应使得在处理这类有机物的过程中还原性的方法反而会起到意想不到的效果。紫外强化还原技术就是指利用紫外活化还原剂产生还原性的活性物种(主要要为水合电子以及氢原子),来还原水中有机物的方法,目前常用的还原剂有铁氰酸盐,碘化钾,亚硫酸盐等。针对卤代有机物而言,水合电子(eaq -)是一种最有效的选择性活性物种,所谓选择性活性物种,其特点就是可以有针对性的和目标污染物迅速的进行反应,从而使得其对污染物的降解可以持续的保持在一个很高的效率上,这样相比于羟基自由基的体系,其能耗以及成本都会大大的降低。在针对微污染物去除的情况下,选择性自由基的效率优势会更加明显。水合电子的氧化还原电位是-2.9V,在所有已知的还原剂中,是活性最高的一种。由于其较强的还原性,它可以和很多卤代有机物以扩散控制的速率反应。同时随着 C-X 的断裂而脱卤释放出卤素离子。但是目前针对还原性脱卤的研究还十分少。ellanki 和 Bachelor 教授在文献中对目前的几种紫外强化还原技术做了系统的比较,实验表明紫外-亚硫酸盐体系的还原效果最好。同时李旭春在文献中阐述了 MCAA 在紫外-亚硫酸盐体系下出色的降解效果。实验表明,在紫-亚硫酸盐体系下,一氯乙酸的降解效率随着初始浓度的增加而降低,亚硫酸盐是通过光照产生的水合电子从而更有效的将一氯乙酸降解。研究表明除了紫外亚硫酸盐体系可以产生水合电子外,有些有机物自身也能产生水合电(如吲哚,苯酚等),而目前关于这些的研究还极少。
发明内容
发明目的:针对现有技术中存在的不足,本发明的目的是提供一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,具有反应简单,降解效果好等优点。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,在含有2,4,6-三溴酚的水中,加入亚硫酸钠,曝气除去溶解氧,控制溶液pH,进行紫外光照反应,实现降解2,4,6-三溴酚。
所述的亚硫酸钠的浓度为5~10mmol/L。
所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,用高纯氮气曝气,除去溶解氧。
所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,pH值为6~12,优选为6。
所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,光照2~20min,优选光照10min。
有益效果:与现有技术相比,本发明采用UV/Na2SO3光还原降解2,4,6-三溴酚,在三溴苯酚初始质量浓度100mg·L-1,三溴酚的降解率随紫外光解时间的增加而增加,2min~10min降解速率明显增加,至20min几乎完全降解。当SO3 2- 浓度为10mmol·L-1时,三溴苯酚的降解率明显提高,三溴酚在SO3 2-浓度为10mmol/L的UV/Na2SO3体系中,每个时间梯度pH=6时降解率呈稳定上升状态,在pH=6的条件下降解效果最佳。
附图说明
图1是不同光照时间紫外体系下对三溴苯酚的降解效果图;
图2是不同SO3 2-浓度对三溴酚降解效果的影响结果图;
图3是光照2min不同pH对降解率的影响结果图;
图4是光照3.5min pH对降解率的影响图;
图5是光照5min pH对降解率的影响结果图;
图6是光照7.5min pH对降解率的影响结果图;
图7是光照10min pH对降解率的影响图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
以下实施例中,三溴苯酚测定采用高效液相色谱法,选取甲醇和蒸馏水作为流动相。色谱条件:甲醇 70%,水30%,流速1.0mL/min,进样量80μL,柱温25℃,检测波长290nm;溴离子测定采用PBr-1-01溴离子电极。
实施例1
一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,步骤如下:
1)称取100mg 2,4,6-三溴苯酚,放入烧杯中加蒸馏水以及适量氢氧化钠搅拌后放入KH-100E型超声波清洗器直到三溴苯酚完全溶解。
2)将溶解完全的三溴苯酚移液定容至1L容量瓶中,反应溶液用高纯氮气曝气8min以出溶解氧,避光保存。
3)分别取20mL三溴苯酚母液于石英试管中,放入2XF-LCA光催化反应器中光照0min、2min、5min、10min、20min、40min。
4)将光照后的溶液分别取样用高效液相色谱测定三溴苯酚的浓度并记录数据。
不同光照时间紫外体系下,对三溴苯酚的降解效果如图1所示,与无光照相比,2,4,6-三溴苯酚在紫外体系下降解效果有显著提高,光照2min降解效果不明显,2min~10min降解速率明显增加,光照20min几乎降解完全。
实施例2
一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,步骤如下:
(1)配置1mmol/L亚硫酸钠+100mg/L三溴苯酚溶液,用AE124型电子天平称取0.0126g亚硫酸钠,用三溴苯酚将其溶解并定容到100mL容量瓶中,实验前反应溶液用高纯氮气曝气2min以出溶解氧,避光保存。
(2)重复以上步骤,配置5mmol/L亚硫酸钠+100mg/L三溴苯酚溶液、10mmol/L亚硫酸钠+100mg/L三溴苯酚溶液、20mmol/L亚硫酸钠+100mg/L三溴苯酚溶液、40mmol/L亚硫酸钠+100mg/L三溴苯酚溶液。
(3)分别取20mL配置好的溶液于石英试管中,放入2XF-LCA光催化反应器中光照0min、2min、5min、10min、20min。
(4)将光照后的溶液分别取样用高效液相色谱测定三溴苯酚的浓度并记录数据。
在三溴苯酚初始质量浓度100mg·L-1,初始pH值10.0±0.2,考察SO3 2-浓度分别为1、5、10、20和40mmol·L-1时三溴苯酚的降解情况,结果如图2所示。由图2可知,随SO3 2-浓度的增加,三溴苯酚的降解率均有较大的提升,当SO3 2-浓度从1mmol·L-1提高至5mmol·L-1时,三溴苯酚的降解率相似,提高SO3 2-浓度至10mmol·L-1时,反应终点的三溴苯酚的降解率明显提高,进一步提高SO3 2-浓度至40mmol·L-1时,三溴苯酚的降解率明显降低。因此UV/Na2SO3光还原降解2,4,6-三溴酚,亚硫酸钠浓度优选采用10mmol/L。
实施例3
一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,步骤如下:
(1)称取100mg2,4,6-三溴苯酚,放入烧杯中加蒸馏水以及适量氢氧化钠搅拌后放入KH-100E型超声波清洗器直到三溴苯酚完全溶解定容至1L容量瓶中。
(2)用AE124型电子天平称取0. 1260g亚硫酸钠,放入烘干的烧杯中,加入配置好的100mg/L的三溴苯酚将其溶解,用三溴苯酚溶液定容到1L容量瓶中,反应溶液用高纯氮气曝气8min以出溶解氧,避光保存。
(3)取四个烘干的烧杯分别倒入10mmol/L亚硫酸钠+100mg/L三溴苯酚溶液用NaOH、HCl溶液调节pH值到6、8、10、12。
(4)将调节好pH值的溶液分别取20ml至石英试管中光照0min、2min、3.5min、5min、7.5min、10min。
(5)将光照后的溶液分别取样用高效液相色谱测定三溴苯酚的浓度并记录数据。
在2,4,6-三溴苯酚初始质量浓度100mg·L-1,SO3 2- 浓度为10 mmol·L-1,用氢氧化钠(1mol/L)或盐酸( 2.8 mol·L-1)调节溶液的pH值分别为6.0、8.0、10.0和12.0,三溴苯酚的降解情况如图3所示,在光照2min时,三溴苯酚在pH=6的降解效果最佳,降解率为19.04%,其次是pH=12的降解效果较好,pH=8和pH=10的降解效果不明显。
如图4所示,在光照3.5min时,三溴苯酚在pH=6、pH=10、pH=12的降解效果比较明显,其中pH=6的降解效果最佳,降解率为31.91%,pH=8的降解效果不明显。
图5所示,在光照5min时,三溴苯酚在pH=6、pH=8、pH=12的降解效果比较明显,其中pH=6的降解效果最佳,降解率为53.61%,pH=10的降解效果不明显。
如图6所示,在光照7.5min时,三溴苯酚在pH=6、pH=10的降解效果相似,pH=6的降解率是77.94%,pH=10的降解率是76.75%,pH=8的降解效果不明显。
如图7所示,在光照10min时,三溴苯酚在pH=6、pH=8、 pH=10的降解效果相似,都比较明显,pH=6的降解率是94.22%,pH=8的降解率是92.36%,pH=10的降解率是96.14%,pH=12降解效果不明显。

Claims (7)

1.一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,在含有2,4,6-三溴酚的水中,加入亚硫酸钠,曝气除去溶解氧,控制溶液pH,进行紫外光照反应,实现降解2,4,6-三溴酚。
2.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,所述的亚硫酸钠的浓度为5~10mmol/L。
3.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,用高纯氮气曝气,除去溶解氧。
4.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,pH值为6~12。
5.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,pH值为6。
6.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,光照2~20min。
7.根据权利要求1所述的采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法,其特征在于,光照10min。
CN201711311841.4A 2017-12-11 2017-12-11 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法 Pending CN107986386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711311841.4A CN107986386A (zh) 2017-12-11 2017-12-11 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711311841.4A CN107986386A (zh) 2017-12-11 2017-12-11 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法

Publications (1)

Publication Number Publication Date
CN107986386A true CN107986386A (zh) 2018-05-04

Family

ID=62035797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711311841.4A Pending CN107986386A (zh) 2017-12-11 2017-12-11 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法

Country Status (1)

Country Link
CN (1) CN107986386A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996653A (zh) * 2018-07-03 2018-12-14 江苏开放大学(江苏城市职业学院) 一种利用UV/Na2SO3协同体系对4-氯酚进行还原脱氯的方法
CN110002533A (zh) * 2019-03-25 2019-07-12 中国科学院化学研究所 一种利用乙酸的协同作用实现三氯乙酸光降解的方法
CN112624259A (zh) * 2020-12-20 2021-04-09 中国科学院南京土壤研究所 一种利用亚硫酸盐光去除水中邻苯二甲酸二乙酯的方法
CN114772812A (zh) * 2022-04-20 2022-07-22 武汉理工大学 一种基于紫外/亚硫酸盐体系降解氯霉素的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708883B (zh) * 2009-12-18 2011-08-03 哈尔滨工业大学 一种光促脱卤复合药剂/光联用去除水中卤代有机物的方法
JP6036011B2 (ja) * 2012-08-28 2016-11-30 栗田工業株式会社 ホルムアルデヒド含有排水の処理方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708883B (zh) * 2009-12-18 2011-08-03 哈尔滨工业大学 一种光促脱卤复合药剂/光联用去除水中卤代有机物的方法
JP6036011B2 (ja) * 2012-08-28 2016-11-30 栗田工業株式会社 ホルムアルデヒド含有排水の処理方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙培德等: "亚硫酸盐/紫外体系的还原脱卤效能", 《环境科学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996653A (zh) * 2018-07-03 2018-12-14 江苏开放大学(江苏城市职业学院) 一种利用UV/Na2SO3协同体系对4-氯酚进行还原脱氯的方法
CN110002533A (zh) * 2019-03-25 2019-07-12 中国科学院化学研究所 一种利用乙酸的协同作用实现三氯乙酸光降解的方法
CN110002533B (zh) * 2019-03-25 2021-02-05 中国科学院化学研究所 一种利用乙酸的协同作用实现三氯乙酸光降解的方法
CN112624259A (zh) * 2020-12-20 2021-04-09 中国科学院南京土壤研究所 一种利用亚硫酸盐光去除水中邻苯二甲酸二乙酯的方法
CN114772812A (zh) * 2022-04-20 2022-07-22 武汉理工大学 一种基于紫外/亚硫酸盐体系降解氯霉素的方法

Similar Documents

Publication Publication Date Title
CN107986386A (zh) 一种采用UV/Na2SO3光还原降解2,4,6-三溴酚的方法
Malakootian et al. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor
US10723644B2 (en) Method for controlling chlorinated nitrogen-containing disinfection by-product in water
Shang et al. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles
Su et al. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation
Capelo et al. Room temperature sonolysis-based advanced oxidation process for degradation of organomercurials: application to determination of inorganic and total mercury in waters by flow injection-cold vapor atomic absorption spectrometry
Kataria et al. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms
Coleman et al. Bactericidal effects of titanium dioxide-based photocatalysts
Kosaka et al. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper (II) ion and 2, 9-dimethyl-1, 10-phenanthroline
Samarghandi et al. Degradation of azo dye Acid Red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation
Fatta-Kassinos et al. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes–degradation, elucidation of byproducts and assessment of their biological potency
He et al. H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species
Zhao et al. Effect of low-level H2O2 and Fe (II) on the UV treatment of tetracycline antibiotics and the toxicity of reaction solutions to zebrafish embryos
Keen et al. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation
Graham et al. Observations of 2, 4, 6-trichlorophenol degradation by ozone
Moumeni et al. Sonochemical degradation of malachite green in water
CN107298478B (zh) 一种快速降解水中beta-内酰胺类抗生素的方法
CN103058321A (zh) 一种强化降解有机物的光化学方法
CN111943311A (zh) 一种紫外/过硫酸盐组合工艺去除水中苯脲类除草剂绿麦隆的方法
Kribéche et al. Insight into photochemical oxidation of Fenuron in water using iron oxide and oxalate: the roles of the dissolved oxygen
Nakajima et al. Combined use of photocatalyst and adsorbent for the removal of inorganic arsenic (III) and organoarsenic compounds from aqueous media
Hu et al. Mechanisms of photochemical release of dissolved organic matter and iron from resuspended sediments
Shao et al. Chemiluminescence quenching capacity as a surrogate for total organic carbon in wastewater
Akbari et al. Synthesis of ZnO@ VC for enhancement of synergic photocatalytic degradation of SMX: Toxicity assessment, kinetics and transformation pathway determination
Yang et al. Synergistic Fe2+/UV activated peroxydisulfate as an efficient method for the degradation of thiacloprid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504