CN107970965B - 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用 - Google Patents

碳氮烯/碳酸银复合纳米材料、其制备方法及其应用 Download PDF

Info

Publication number
CN107970965B
CN107970965B CN201610921788.9A CN201610921788A CN107970965B CN 107970965 B CN107970965 B CN 107970965B CN 201610921788 A CN201610921788 A CN 201610921788A CN 107970965 B CN107970965 B CN 107970965B
Authority
CN
China
Prior art keywords
silver
silver carbonate
carbon
nano material
carbonate composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610921788.9A
Other languages
English (en)
Other versions
CN107970965A (zh
Inventor
唐国钢
唐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang College
Original Assignee
Zhenjiang College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang College filed Critical Zhenjiang College
Priority to CN201610921788.9A priority Critical patent/CN107970965B/zh
Publication of CN107970965A publication Critical patent/CN107970965A/zh
Application granted granted Critical
Publication of CN107970965B publication Critical patent/CN107970965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了碳氮烯/碳酸银复合纳米材料、其制备方法及其应用,复合纳米材料中,g‑C3N4占1wt%~10wt%,余量为Ag2CO3,且Ag2CO3微米棒附着在片层g‑C3N4的表面。制备方法是:将尿素与三聚氰胺在管式炉内固相烧结制得g‑C3N4纳米片;在搅拌及超声波的条件下,将g‑C3N4纳米片分散到去离子水中,再加入可溶性的银盐和沉淀剂,室温发生溶液沉淀反应,清洗、干燥,得到反应产物,可应用于有机废水处理、空气中有机污染物的降解。g‑C3N4的加入能有效提高光催化降解有机物的能力。

Description

碳氮烯/碳酸银复合纳米材料、其制备方法及其应用
技术领域
本发明涉及纳米材料领域,具体地,是一种碳氮烯/碳酸银复合纳米材料、其制备方法及其用作光催化剂的用途。
背景技术
Ag2CO3半导体光催化剂对RhB、MO和MB等多种染料都具有高效的可见光催化活性,但是其光催化稳定性还不够理想。因此,需要在不影响其光催化活性的同时提高其稳定性。最近,类石墨结构的氮化碳(g-C3N4)半导体光催化剂由于其稳定性、无毒性且带隙能只有2.7eV引起人们的广泛关注。g-C3N4是一种非金属半导体光催化剂,它可以应用于分解水和有机污染物。近期大量的g-C3N4半导体光催化剂与银基的复合材料被报道,如g-C3N4/Ag3VO4,g-C3N4/Ag3PO4,g-C3N4/Ag2O等,同时这些g-C3N4修饰的银基半导体复合材料都表现出较高的光催化活性和稳定性。
发明内容
针对现有技术的不足,本发明的目的在于提供碳氮烯/碳酸银复合纳米材料、其制备方法及其应用,成本低廉、工艺简单、产率高、光催化效率高。
上述发明目的是通过如下技术方案实现的:
一种碳氮烯/碳酸银(g-C3N4/Ag2CO3)复合纳米材料,Ag2CO3微米棒附着在片层g-C3N4的表面,其主要成份g-C3N4的质量百分含量为1%~10%,余量为Ag2CO3
较佳地,g-C3N4的质量百分含量为2%~6%。,余量为Ag2CO3,因为在该g-C3N4范围的复合纳米材料有更好的催化效果。
一种碳氮烯/碳酸银(g-C3N4/Ag2CO3)复合纳米材料的制备方法,包括如下步骤:
步骤(1)、片层结构的g-C3N4纳米片的合成:将尿素与三聚氰胺的混合物置于石英坩埚内,在管式炉内固相烧结制得g-C3N4片状结构;
尿素与三聚氰胺的混合物,其摩尔比为1:0.5-1:6,优选1:1;
固相烧结的温度400℃~650℃,保温时间为0.5~4h;优选为580℃反应1h,升温速率为5/min。
步骤(2)、碳氮烯/碳酸银复合光催化剂的合成:在搅拌及超声波的条件下,将步骤(1)制备所得g-C3N4纳米片分散到去离子水中,再将可溶性的银盐和碳酸盐或碳酸氢盐加入上述反应液,然后在室温条件下,发生溶液沉淀反应,用去离子水与无水乙醇反复清洗产物,干燥后得到反应产物。
所述银盐为AgNO3
可溶性碳酸盐为Na2CO3·10H2O或K2CO3
碳酸氢盐为NaHCO3、KHCO3或(NH4)2CO3
碳氮烯/碳酸银复合纳米材料,作为光纳米催化剂,应用于有机废水处理、空气中有机污染物的降解。
本发明方法的成本价廉,生产工艺简单易控,产物差率高,适合大规模的工业生产。
本发明合成高光催化性能碳氮烯/碳酸银复合材料,g-C3N4的加入能有效提高光催化降解有机物的能力,其效率提升20%,同时降解速度提升30%-50%,其在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。
附图说明
图1为本发明制得的纯Ag2CO3、纯g-C3N4和碳氮烯/碳酸银复合光催化剂的XRD图谱。从图中可以看出,纯Ag2CO3的衍射峰与标准卡片(JCPDS NO.70-2184)单斜Ag2CO3的衍射峰相一致,且具有良好的结晶性能。纯g-C3N4在2θ角度27.4°出现一个强特征峰,对应六方相g-C3N4的(002)晶面(JCPDS NO.87-1526)。在碳氮烯/碳酸银复合光催化剂XRD图谱中,Ag2CO3特征衍射峰的位置没有发生变化。当g-C3N4的质量比为2%时(碳氮烯/碳酸银-1),我们并没有发现g-C3N4的特征衍射峰,可能是含量太低超出了XRD检测极限,而当继续增加g-C3N4的质量,在碳氮烯/碳酸银-2和碳氮烯/碳酸银-3都观察到g-C3N4的特征峰,证明制备的样品是碳氮烯/碳酸银复合光催化剂。另外,从碳氮烯/碳酸银复合光催化剂的XRD图谱中并没有观察到其他杂峰,说明制备得到的样品有较高的纯度。
图2为本发明制得的g-C3N4、Ag2CO3和不同含量的碳氮烯/碳酸银光催化剂的红外图谱。从纯Ag2CO3的红外谱图可以看出,3440cm-1周围出现了较宽的吸收峰,对应样品表面羟基的特征伸缩振动峰,1449cm-1、1382cm-1、883cm-1和705cm-1吸收峰则为碳酸盐的拉伸振动峰。从g-C3N4的FT-IR谱图可看出,800cm-1处的吸收峰是组成g-C3N4单元的碳氮环的弯曲振动特征峰;1250cm-1、1560cm-1和1630cm-1为g-C3N4碳氮杂环上的C=N、C-N和环外C-N伸缩振动特征峰;而在3000-3500cm-1的吸收带则是其表面吸附水分子的伸缩振动峰。仔细观察碳氮烯/碳酸银复合光催化剂样品的红外光谱图,从图中可以同时看出g-C3N4和Ag2CO3的特征吸收峰,这一结果说明实验成功制备出碳氮烯/碳酸银复合光催化剂,也进一步验证了XRD的结果。
图3为纯Ag2CO3和碳氮烯/碳酸银复合光催化剂的SEM图谱。由图3(a)可得,Ag2CO3是由一些短棒构成,其表面光滑且具有较好的分散性。随着g-C3N4的加入,与Ag2CO3形成复合光催化剂,整体的尺寸、形貌发生了明显的改变(图3(b-d)分别对应碳氮烯/碳酸银-1、2、3),类石墨结构的氮化碳呈现片层结构,Ag2CO3微米棒附着在片层g-C3N4的表面,且随着g-C3N4量的增加,片层g-C3N4包覆着Ag2CO3微米棒开始出现。
图4为本发明制得的纯Ag2CO3和碳氮烯/碳酸银复合光催化剂性能考核曲线:(a)降解RhB曲线和(b)动力学曲线。如图所示,相较于纯Ag2CO3(40min),碳氮烯/碳酸银-1、碳氮烯/碳酸银-2和碳氮烯/碳酸银-3复合光催化剂的光催化活性都有显著提高,分别能够在25min、15min和20min将RhB染料降解完全。同样地,实验采用准一级反应动力学模型ln(Ct/C)=-kt求解一级反应速率常数来考察碳氮烯/碳酸银复合光催化剂降解RhB的动力学曲线。由图4(b)可知,纯Ag2CO3、碳氮烯/碳酸银-1、碳氮烯/碳酸银-2和碳氮烯/碳酸银-3复合光催化剂的一级反应速率常数分别为0.072min-1、0.113min-1、0.193min-1以及0.131min-1,其中碳氮烯/碳酸银-2的k值是最大的,是纯Ag2CO3的2.68倍。
具体实施方式
以下通过具体实施方式进一步描述本发明,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。本发明所涉及的试剂均为商业产品,不需要再制备。
实施例1:
步骤(1)、称取10g尿素与三聚氰胺混合物(摩尔比1:1)加入坩埚中,接着再马弗炉中以580℃焙烧1h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
步骤(2)、室温条件下,将2mg(1)所制备的g-C3N4溶解在20mL去离子水中超声分散至少1h,然后将2mmol AgNO3分散在20mL去离子水中,充分溶解后将其逐步滴加到上述g-C3N4溶液中搅拌充分,最后将20mL Na2CO3·10H2O(0.05M)溶液逐滴滴加到上述溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,得2%-碳氮烯/碳酸银样品,定义为碳氮烯/碳酸银-1。
实施例2:
步骤(1)、将称取的10g尿素与三聚氰胺混合物(摩尔比1:0.5)加入坩埚中,接着再马弗炉中以400℃焙烧4h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
步骤(2)、室温条件下,将4mg(1)所制备的g-C3N4溶解在20mL去离子水中超声分散至少1h,然后将2mmol AgNO3分散在20mL去离子水中,充分溶解后将其逐步滴加到上述g-C3N4溶液中搅拌充分,最后将20mL NaHCO3(0.05M)溶液逐滴滴加到上述溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,得4%-碳氮烯/碳酸银样品,定义为碳氮烯/碳酸银-2。
实施例3:
步骤(1)、将称取的10g尿素与三聚氰胺混合物(摩尔比1:6)加入坩埚中,接着再马弗炉中以650℃焙烧0.5h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
步骤(2)、室温条件下,将6mg(1)所制备的g-C3N4溶解在20mL去离子水中超声分散至少1h,然后将2mmol AgNO3分散在20mL去离子水中,充分溶解后将其逐步滴加到上述g-C3N4溶液中搅拌充分,最后将20mL K2CO3(0.05M)溶液逐滴滴加到上述溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,得6%-碳氮烯/碳酸银样品,定义为碳氮烯/碳酸银-3。
实施例4:
与实施例1不同之处在于:步骤(2)所用沉淀剂为KHCO3
实施例5:
与实施例1不同之处在于:步骤(2)所用沉淀剂为(NH4)2CO3。发明人还制备了主要成份g-C3N4的质量百分含量为1%、10%的样品。

Claims (3)

1.碳氮烯/碳酸银复合纳米材料的制备方法,碳氮烯/碳酸银复合纳米材料的Ag2CO3微米棒附着在片层g-C3N4的表面,主要成份g-C3N4的质量百分含量为2%~6%,余量为Ag2CO3;其特征在于,包括如下步骤:
步骤(1)、片层结构的g-C3N4纳米片的合成:将尿素与三聚氰胺的混合物置于石英坩埚内,在管式炉内400℃~650℃固相烧结0.5~4 h制得g-C3N4片状结构;尿素与三聚氰胺的摩尔比为1:0.5-1:6;
步骤(2)、碳氮烯/碳酸银复合光催化剂的合成:在搅拌及超声波的条件下,将步骤(1)制备所得g-C3N4纳米片分散到去离子水中,再将可溶性的银盐和碳酸盐或碳酸氢盐加入反应液,然后在室温条件下,发生溶液沉淀反应,用去离子水与无水乙醇反复清洗产物,干燥后得到反应产物;
所述银盐为AgNO3;可溶性碳酸盐为Na2CO3•10H2O或K2CO3;碳酸氢盐为NaHCO3、KHCO3或(NH4)2CO3
2.根据权利要求1所述的碳氮烯/碳酸银复合纳米材料的制备方法,其特征在于步骤(1)中,尿素与三聚氰胺的摩尔比为1:1。
3.根据权利要求1所述的碳氮烯/碳酸银复合纳米材料的制备方法,其特征在于步骤(1)中固相烧结的温度580℃,反应时间为1h。
CN201610921788.9A 2016-10-21 2016-10-21 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用 Active CN107970965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610921788.9A CN107970965B (zh) 2016-10-21 2016-10-21 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610921788.9A CN107970965B (zh) 2016-10-21 2016-10-21 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107970965A CN107970965A (zh) 2018-05-01
CN107970965B true CN107970965B (zh) 2020-04-07

Family

ID=62003918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610921788.9A Active CN107970965B (zh) 2016-10-21 2016-10-21 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107970965B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786873A (zh) * 2018-07-05 2018-11-13 河南师范大学 一种MoS2/Ag2CO3异质结光催化材料的合成及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
银【1】基半导体复合材料的制备及光催化性能研究;董超;《中国优秀硕士学位论文全文数据库-工程科技I辑》;20150315;第47-58页 *

Also Published As

Publication number Publication date
CN107970965A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
CN106914264B (zh) 复合可见光催化剂的制备方法
Tong et al. Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity
CN102614871B (zh) 一种液相法制备石墨烯/银纳米粒子复合材料的方法
Zhang et al. Porous TiO 2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties
Xu et al. Simple synthesis of ZnO nanoflowers and its photocatalytic performances toward the photodegradation of metamitron
Wei et al. Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance
Sun et al. Enhancement of photocatalytic activity of g-C3N4 by hydrochloric acid treatment of melamine
Huang et al. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2− xNy coupled photocatalysts
CN110038605B (zh) 应用于光催化氮气还原合成氨的AgInS2/Ti3C2纳米催化剂的应用方法
Li et al. Synthesis and characterization of copper ions surface-doped titanium dioxide nanotubes
CN104891460A (zh) 一种溶液相制备石墨相氮化碳纳米片的方法
Beshkar et al. Novel dendrite-like CuCr 2 O 4 photocatalyst prepared by a simple route in order to remove of Azo Dye in textile and dyeing wastewater
Liu et al. Cu/C or Cu2O/C composites: selective synthesis, characterization, and applications in water treatment
CN108772092A (zh) 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
CN102580720B (zh) 可见光响应的纳米氧化锌-氧化铋复合光催化剂及其制备方法
Dong et al. Ammonia induced formation of N-doped (BiO) 2 CO 3 hierarchical microspheres: the effect of hydrothermal temperature on the morphology and photocatalytic activity
CN104128180B (zh) 电子束辐照法合成氧化亚铜/石墨烯光催化复合纳米材料的方法
CN111905796A (zh) 一种超细金属纳米颗粒/氮化碳纳米片复合材料的制备方法
CN108126728B (zh) 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
CN107970965B (zh) 碳氮烯/碳酸银复合纳米材料、其制备方法及其应用
CN102070178A (zh) 基于水热技术调控制备氧化钇微纳米材料的方法
Feng et al. Structural characterization and photocatalytic properties of ZnO by solid-state synthesis using aminated lignin template
Fu et al. Ultrasonic-assisted synthesis of cellulose/Cu (OH) 2/CuO hybrids and its thermal transformation to CuO and Cu/C
CN109078644B (zh) 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant