CN107966050A - 一种含有不凝气体的多孔式稳流装置换热器 - Google Patents

一种含有不凝气体的多孔式稳流装置换热器 Download PDF

Info

Publication number
CN107966050A
CN107966050A CN201710267204.5A CN201710267204A CN107966050A CN 107966050 A CN107966050 A CN 107966050A CN 201710267204 A CN201710267204 A CN 201710267204A CN 107966050 A CN107966050 A CN 107966050A
Authority
CN
China
Prior art keywords
heat exchanger
constant
current stabilizer
tube
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710267204.5A
Other languages
English (en)
Other versions
CN107966050B (zh
Inventor
郭春生
刘勇
齐超
宋金圣
邓伊涵
高军
宁淑荣
张斌
曲芳仪
陈子昂
年显勃
李言伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Free Trade Zone Jianju Technology Co.,Ltd.
Guangxi Qinbao Real Estate Co., Ltd
Original Assignee
Qingdao Jinyu Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Jinyu Trading Co Ltd filed Critical Qingdao Jinyu Trading Co Ltd
Priority to CN201710267204.5A priority Critical patent/CN107966050B/zh
Publication of CN107966050A publication Critical patent/CN107966050A/zh
Application granted granted Critical
Publication of CN107966050B publication Critical patent/CN107966050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明提供了一种含有不凝气体的多孔结构管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,气液两相流中的气相是不溶或者难溶性气体,即换热过程中,气体不会溶于液体,所述换热管内设置稳流装置,所述稳流装置包括芯体和外壳,所述芯体设置在外壳中,所述外壳与换热管内壁连接固定,所述芯体是沿着外壳长度方向延伸的一体化结构件,所述结构件上设置有若干数量的贯通孔。本发明提供一种新式结构的稳流装置的换热器,在管道内存在气液两相流动时,相对于背景技术,进一步强化传热,减弱管道的振动,降低噪声水平。

Description

一种含有不凝气体的多孔式稳流装置换热器
技术领域
本发明涉及一种管壳式换热器,尤其是涉及一种含有不凝气体的两相流动换热器。
背景技术
含有不凝气体的两相流换热广泛地存在于换热装置中,例如在换热过程中混入了不凝气体,或者在流体运输过程中因为设备老化产生的不凝气体,还有例如天然气液化(主要成分为沸点-162℃甲烷、沸点-88℃乙烷、沸点-42℃丙烷等)过程中的不同沸点混合介质的冷凝、空气分离、混合冷剂制冷、石油或废塑料裂解、生物质气生产等行业的主要工艺过程。
含有不凝气体的流体在换热过程中因为气相的存在,会导致换热效率低,恶化换热,流体流动过程不稳定,而且会导致水锤现象的发生。当两相工质的汽液相没有均匀混合且不连续流动时,大尺寸的液团会高速地占据气团空间,导致两相流动不稳定,从而剧烈地冲击设备与管道,产生强烈震动和噪声,严重地威胁设备运行安全。
针对气液两相流的换热恶化问题,已经有人提出了新的解决方式来解决上述问题,例如公开号为CN105258535A专利申请,通过设置突刺破坏层流底层,通过“刺”和“孔”可以分别在不同高度上扰动流体,从而进行强化传热。但是上述技术并没有解决气液两相流换热器中的震动和噪音问题,而且上述的解决方式结构复杂,而且因为突刺的尺寸问题,无法保证换热管中部的整个横截面上的扰动,无法实现整体上的气相液相的均匀,噪音和震动问题依然严重。针对上述问题,本发明提供了一种新式结构的稳流装置的换热器,从而解决上述的问题。
本发明人在前面申请中也设计了一种多管式稳流装置,参见图7所示。但是此种装置在运行中发现,因为管子之间是紧密结合在一起,因此三根管子之间形成的空间A相对较小,因为空间A是三根管子的凸弧形成,因此空间A的大部分区域狭窄,会造成流体无法进入通过,造成流体短路,从而影响了流体的换热,无法起到很好的稳流作用。同时因为上述结构的多根管子组合在一起,制造困难。
发明内容
本发明的目的是提供一种新式结构的稳流装置的换热器,在管道内存在气液两相流动时,减弱气液两相流换热管内的振动,降低噪声水平,同时强化传热。
为了实现上述目的,本发明的技术方案如下:
一种管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,气液两相流中的气相是不溶或者难溶性气体,即换热过程中,气体不会溶于液体,其特征在于,所述换热管内设置稳流装置,所述稳流装置包括芯体和外壳,所述芯体设置在外壳中,所述外壳与换热管内壁连接固定,所述芯体是沿着外壳长度方向延伸的一体化结构件,所述结构件上设置有若干数量的贯通孔。
作为优选,所述贯通孔是圆形,相邻的贯通孔圆心之间的距离L1>2R,其中R是贯通孔半径。
作为优选,相邻贯通孔之间设置小孔,通过小孔实现贯通孔之间的连通。
作为优选,换热管的长度为L,距离换热管入口的距离为X,相邻稳流装置之间的距离为S,S=F1(X),满足如下要求:
S’>0, S”>0,0<=X<L/2;
S’<0, S”>0, L/2<=X<=L。
作为优选,换热管的长度为L,距离换热管入口的距离为X,稳流装置的长度为C,C=F2(X),满足如下要求:
C’<0, C”>0,0<=X<L/2;
C’>0, C”>0, L/2<=X<L。
作为优选,换热管的长度为L,距离换热管入口的距离为X,稳流装置的贯通孔外径为D,D=F3(X),满足如下要求:
D’>0, D”>0,0<=X<L/2;
D’<0, D”>0, L/2<=X<=L。
作为优选,所述换热管内壁设置凹槽,所述稳流装置的外壳设置在凹槽内,所述外壳的内壁与换热管的内壁对齐。
作为优选,换热管为多段结构焊接而成,多段结构的连接处设置稳流装置。
作为优选,相邻稳流装置之间的距离为S,稳流装置的长度为C,换热管的外径为W,贯通孔的半径为R,相邻的贯通孔圆心之间的距离L1,满足如下要求:
S/C=a-b*LN(W/(2*R));
L1/(2*R) =c*(W/(2*R))-d*(W/(2*R))2-e;
其中LN是对数函数,a,b,c,d,e是参数,其中5<a<6,1.5<b<2.0;2.9<c<3.1,0.33<d<0.37,4.8<e<5.3;
其中稳流装置的间距是以相邻稳流装置相对的两端之间的距离;
34<W<58mm;
4<R<6mm;
15<C<23mm;
49<S<70mm。
1.05<L1/(2*R)<1.25;
作为优选,a=5.53,b=1.79,c=3.03,d=0.35,e=5.12。
与现有技术相比较,本发明的具有如下的优点:
1)本发明提供了一种新式结构的稳流装置,相对于通过稳流装置将两相流体分离成液相和气相,将液相分割成小液团,将气相分割成小气泡,抑制液相的回流,促使气相顺畅流动,起到稳定流量的作用,具有减振降噪的效果。相对于多管式稳流装置,进一步提高稳流效果,强化传热,而且制造简单。
2)本发明通过设置稳流装置,相当于在换热管内增加了内换热面积,强化了换热,提高了换热效果。
3)本发明因为将气液两相在换热管的整个横截面位置上进行了分割,避免了现有技术中仅仅换热管内壁面进行分割,从而在整个换热管截面上实现扩大气液界面以及气相边界层与冷却壁面的接触面积并增强扰动,降低了噪音和震动,强化了传热。
4)本发明通过在换热管长度方向上设置相邻稳流装置之间的距离、稳流装置的长度、贯通孔的外径等参数大小的规律变化,从而进一步达到稳流效果,降低噪音,提高换热效果。
5)本发明通过对多孔式稳流装置各个参数的变化导致的换热规律进行了广泛的研究,在满足流动阻力情况下,实现减振降噪的效果的最佳关系式。
附图说明
图1是本发明的两相流管壳式换热器的结构示意图;
图2是本发明的两相流管壳式换热器的换热管结构示意图;
图3本发明稳流装置结构示意图;
图4是本发明稳流装置在换热管内布置示意图;
图5是是本发明稳流装置在换热管内布置的另一个示意图。
图6是是本发明稳流装置在换热管内布置横截面示意图。
图7是背景技术中的两相流管壳式换热器的结构示意图。
附图标记如下:前封头1,封头法兰2,前管板3,壳体4,稳流装置5,换热管6、后管板7,封头法兰8,后封头9,支座10,支座11,管程入口管12,管程出口管13,壳程入口管14,壳程出口管15,稳流装置外壳51,孔洞52,结构件53。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。
本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。
需要说明的是,如果没有特殊说明,本发明提到的两相流是气液两相流,此处的气体是不溶或者难溶性气体,即在换热过程中,气体不会溶于液体。
如图1所示的一种管壳式换热器,所述管壳式换热器包括有壳体4、换热管6、管程入口管12、管程出口管13、壳程入口接管14和壳程出口接管15;多个平行设置的换热管6组成的换热管束连接在前管板3、后管板7上;所述前管板3的前端与前封头1连接,后管板7的后端连接后封头9;所述的管程入口管12设置在后封头9上;所述的管程出口管13设置在前封头1上;所述的壳程入口接管14和壳程出口接管15均设置在壳体4上;两相流的流体从管程入口管12进入,经过换热管进行换热,从管程出口管13出去。
如图4-5所示,在换热管6内设置多孔式稳流装置5。所述多孔式稳流装置5的结构见图3。如图3所示,所述稳流装置5包括芯体和外壳51,所述芯体设置在外壳51中,所述外壳与换热管内壁连接固定,所述芯体是沿着外壳长度方向延伸的一体化结构件53,所述结构件上设置有若干数量的贯通孔52。
本发明在换热管内设置多孔式稳流装置,通过多管式稳流装置将两相流体中的液相和气相进行分离,将液相分割成小液团,将气相分割成小气泡,抑制液相的回流,促使气相顺畅流动,起到稳定流量的作用,具有减振降噪的效果。相对于多管式稳流装置,进一步提高稳流效果,强化传热,而且制造简单。
本发明通过设置多孔式稳流装置,相当于在换热管内增加了内换热面积,强化了换热,提高了换热效果。
本发明因为将气液两相在所有换热管的所有横截面位置进行了分割,从而在整个换热管截面上实现气液界面以及气相边界层的分割与冷却壁面的接触面积并增强扰动,大大的降低了噪音和震动,强化了传热。
作为优选,所述贯通孔是圆形,相邻的贯通孔圆心之间的距离L1>2R,其中R是贯通孔半径。
通过贯通孔圆心之间的距离L1>2R,使得相邻的贯通孔52之间保持一定的距离,从而保证各孔更好的分隔两相流流体。
作为优选,所述芯体是一体化进行加工的结构件。通过设置多孔芯体,可以使得制造简单。
作为优选,相邻贯通孔之间设置小孔,通过小孔实现贯通孔52之间的连通。
通过设置小孔,可以保证相邻的贯通孔之间互相连通,能够均匀贯通孔之间的压力,使得高压流道的流体流向低压,同时也可以在流体流动的同时进一步分隔液相和气相,有利于进一步稳定两相流动。
作为优选,沿着换热管内流体的流动方向,换热管内设置多个稳流装置,从换热管的入口到换热管的中部,相邻稳流装置之间的距离越来越长,从换热管的中部到换热管的出口,相邻的稳流装置之间的距离越来越短。即换热管的长度为L,距离换热管入口的距离为X,相邻稳流装置之间的距离为S,S=F1(X),S’是S的一次导数,满足如下要求:
S’>0, 0<=X<L/2;
S’<0, L/2<=X<=L;
主要原因是因为流体中含有不凝气体,因此沿着流体的流动方向,不凝气体依然存在,不会因为换热管内流体放热而冷凝。从换热管6入口到换热管6中部,因为流体从前封头1进入换热管内,在换热管6的前部流动中,流体的震动和噪音相对少,因此此时可以将稳流装置之间的距离设置的大一些,既可以实现减震和降低噪音,同时还能够降低阻力。但是从换热管的中部往后,因为存在从换热管6到后封头9这一段的空间从小到大的变化,这一段的变化会导致气体的快速向上流出和聚集,液体也会快速的项下部流出和聚集,因此空间变化会导致聚集的气相(气团)从管板位置进入封头,由于气(汽)液密度差,气团离开接管位置将迅速向上运动,而气团原空间位置被气团推离壁面的液体同时也将迅速回弹并撞击壁面,形成水锤现象。气(汽)液相越不连续,气团聚集越大,水锤能量越大。水锤现象会造成较大的噪声震动和机械冲击,对设备造成破坏。因此为了避免这种现象的发生,此时设置的相邻稳流装置之间的距离越来越短,从而不断的在流体输送过程中分隔气相和液相,从而最大程度上减少震动和噪音。
通过实验发现,通过上述的设置,既可以最大程度上减少震动和噪音,同时可以保证降低流体的流动阻力。
进一步优选,从换热管的入口到换热管的中部,相邻稳流装置之间的距离越来越长的幅度不断增加,从换热管的中部到换热管的出口,相邻的稳流装置之间的距离越来越短的幅度不断增加。即S”是S的二次导数,满足如下要求:
S”>0,0<=X<L/2;
S”>0, L/2<=X<=L;
通过实验发现,通过如此设置,能够进一步降低10%左右的震动和噪音,同时降低流动5%左右的阻力。
作为优选,每个稳流装置的长度保持不变。
作为优选,除了相邻的稳流装置之间的距离外,稳流装置其它的参数(例如长度、管径等)保持不变。
作为优选,沿着换热管6内流体的流动方向,换热管6内设置多个稳流装置5,从换热管6的入口到换热管6的中部,稳流装置5的长度越来越短,从换热管6的中部到换热管6的出口,稳流装置5的长度越来越长。即稳流装置的长度为C,C=F2(X),C’是C的一次导数,满足如下要求:
C’<0, 0<=X<L/2;
C’>0, L/2<=X<=L;
进一步优选,从换热管的入口到换热管的中部,稳流装置的长度越来越短的幅度不断增加,从换热管的中部到换热管的出口,稳流装置的长度越来越长的幅度不断增加。即C”是C的二次导数,满足如下要求:
C”>0,0<=X<L/2;
C”>0, L/2<=X<=L;
具体理由如相邻稳流装置之间的距离的变化相同。
作为优选,相邻稳流装置之间的距离保持不变。
作为优选,除了稳流装置的长度外,稳流装置其它的参数(例如相邻的间距、管径等)保持不变。
作为优选,沿着换热管6内流体的流动方向,换热管6内设置多个稳流装置,从换热管6的入口到换热管6的中部,不同稳流装置5内的贯通孔52的直径越来越大,从换热管的中部到换热管的出口,不同稳流装置5内的贯通孔52的直径越来越小。即稳流装置的贯通孔直径为D,D=F3(X),D’是D的一次导数,满足如下要求:
D’>0, 0<=X<L/2;
D’<0, L/2<=X<=L;
作为优选,从换热管的入口到换热管的中部,稳流装置的贯通孔直径越来越大的幅度不断增加,从换热管的中部到换热管的出口,稳流装置的贯通孔直径越来越小的幅度不断增加。即
D”是D的二次导数,满足如下要求:
D”>0,0<=X<L/2;
D”>0, L/2<=X<=L。
具体理由如相邻稳流装置之间的距离的变化相同。
作为优选,稳流装置的长度和相邻稳流装置的距离保持不变。
作为优选,除了稳流装置的贯通孔直径外,稳流装置其它的参数(例如长度、相邻稳流装置之间的距离等)保持不变。
进一步优选,如图4所示,所述换热管6内部设置凹槽,所述稳流装置5的外壳51设置在凹槽内。
作为优选,外壳51的内壁与换热管6的内壁对齐。通过对齐,使得换热管内壁面表面上达到在同一个平面上,保证表面的光滑。
作为优选,外壳51的厚度小于凹槽的深度,这样可以使得换热管内壁面形成凹槽,从而进行强化传热。
进一步有选,如图5所示,换热管6为多段结构焊接而成,多段结构的连接处设置稳流装置5。这种方式使得设置稳流装置的换热管的制造简单,成本降低。
通过分析以及实验得知,稳流装置之间的间距不能过大,过大的话导致减震降噪的效果不好,同时也不能过小,过小的话导致阻力过大,同理,贯通孔的直径也不能过大或者过小,也会导致减震降噪的效果不好或者阻力过大,因此本发明通过大量的实验,在优先满足正常的流动阻力(总承压为10Mpa以下,或者单根换热管的沿程阻力小于等于50Pa/M)的情况下,使得减震降噪达到最优化,整理了各个参数最佳的关系。
相邻稳流装置之间的距离为S,稳流装置的长度为C,换热管的外径为W,贯通孔的半径为R,相邻的贯通孔圆心之间的距离L1,满足如下要求:
S/C=a-b*LN(W/(2*R));
L1/(2*R) =c*(W/(2*R))-d*(W/(2*R))2-e;
其中LN是对数函数,a,b,c,d,e是参数,其中5<a<6,1.5<b<2.0;2.9<c<3.1,0.33<d<0.37,4.8<e<5.3;
其中稳流装置的间距S是以相邻稳流装置相对的两端之间的距离;即前面稳流装置的尾端与后面稳流装置的前端之间的距离。具体参见图4的标识。
34<W<58mm;
4<R<6mm;
15<C<23mm;
49<S<70mm。
1.05<L1/(2*R)<1.25;
作为优选,中5.5<a<5.6,1.75<b<1.85;3.0<c<3.05,0.34<d<0.36,5.0<e<5.2;
进一步优选,a=5.53,b=1.79,c=3.03,d=0.35,e=5.12。
优选,3.8<W/(2*R)<5.0;
作为优选,换热管长度L为3000-7500mm之间。进一步优选,4500-6000mm之间。
进一步优选,40mm<W<50mm;
9mm<2R <10mm;
18mm<C<20mm;
55mm<S<60mm。
通过上述公式的最佳的几何尺度的优选,能够实现满足正常的流动阻力条件下,减震降噪达到最佳效果。
进一步优选,随着W/(2R)的增加,a不断增加,b不断的减小。
对于其他的参数,例如管壁、壳体壁厚等参数按照正常的标准设置即可。
作为优选,壳程内流体是水。
作为优选,管程内流体流速3-5m/S。
作为优选,换热管的长度L与换热器的壳体直径比为6-10。
作为优选,贯通孔52在稳流装置5的整个长度方向延伸。即贯通孔52的长度等于稳流装置5的长度。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

1.一种管壳式换热器,包括壳体,所述壳体两端分别设置封头,所述封头和壳体的连接位置设置管板,换热管连接两端的管板,气液两相流中的气相是不溶或者难溶性气体,即换热过程中,气体不会溶于液体,其特征在于,所述换热管内设置稳流装置,所述稳流装置包括芯体和外壳,所述芯体设置在外壳中,所述外壳与换热管内壁连接固定,所述芯体是沿着外壳长度方向延伸的一体化结构件,所述结构件上设置有若干数量的贯通孔。
2.如权利要求1所述的换热器,其特征在于,所述贯通孔是圆形,相邻的贯通孔圆心之间的距离L1>2R,其中R是贯通孔半径。
3.如权利要求1所述的换热器,其特征在于,相邻贯通孔之间设置小孔,通过小孔实现贯通孔之间的连通。
4.如权利要求1所述的换热器,其特征在于,换热管的长度为L,距离换热管入口的距离为X,相邻稳流装置之间的距离为S,S=F1(X),满足如下要求:
S’>0, S”>0,0<=X<L/2;
S’<0, S”>0, L/2<=X<=L。
5.如权利要求1所述的换热器,其特征在于,换热管的长度为L,距离换热管入口的距离为X,稳流装置的长度为C,C=F2(X),满足如下要求:
C’<0, C”>0,0<=X<L/2;
C’>0, C”>0, L/2<=X<L。
6.如权利要求1所述的换热器,其特征在于,换热管的长度为L,距离换热管入口的距离为X,稳流装置的贯通孔直径为D,D=F3(X),满足如下要求:
D’>0, D”>0,0<=X<L/2;
D’<0, D”>0, L/2<=X<=L。
7.如权利要求1所述的换热器,其特征在于,所述换热管内壁设置凹槽,所述稳流装置的外壳设置在凹槽内,所述外壳的内壁与换热管的内壁对齐。
8.如权利要求7所述的换热器,其特征在于,换热管为多段结构焊接而成,多段结构的连接处设置稳流装置。
9.如权利要求1所述的换热器,其特征在于,相邻稳流装置之间的距离为S,稳流装置的长度为C,换热管的外径为W,贯通孔的半径为R,相邻的贯通孔圆心之间的距离L1,满足如下要求:
S/C=a-b*LN(W/(2*R));
L1/(2*R) =c*(W/(2*R))-d*(W/(2*R))2-e
其中LN是对数函数,a,b,c,d,e是参数,其中5<a<6,1.5<b<2.0;2.9<c<3.1,0.33<d<0.37,4.8<e<5.3;
其中稳流装置的间距是以相邻稳流装置相对的两端之间的距离;
34<W<58mm;
4<R<6mm;
15<C<23mm;
49<S<70mm;
1.05<L1/(2*R)<1.25。
10.如权利要求9所述的换热器,其特征在于,a=5.53,b=1.79,c=3.03,d=0.35,e=5.12。
CN201710267204.5A 2017-04-21 2017-04-21 一种含有不凝气体的多孔式稳流装置换热器 Active CN107966050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710267204.5A CN107966050B (zh) 2017-04-21 2017-04-21 一种含有不凝气体的多孔式稳流装置换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710267204.5A CN107966050B (zh) 2017-04-21 2017-04-21 一种含有不凝气体的多孔式稳流装置换热器

Publications (2)

Publication Number Publication Date
CN107966050A true CN107966050A (zh) 2018-04-27
CN107966050B CN107966050B (zh) 2019-03-29

Family

ID=61996521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710267204.5A Active CN107966050B (zh) 2017-04-21 2017-04-21 一种含有不凝气体的多孔式稳流装置换热器

Country Status (1)

Country Link
CN (1) CN107966050B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114310621A (zh) * 2022-03-04 2022-04-12 沈阳和研科技有限公司 侧喷水部件、喷水罩及划片机
CN115507289A (zh) * 2022-09-19 2022-12-23 浙江天辰测控科技股份有限公司 一种滞止容器以及燃气表检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627607A2 (de) * 1993-06-02 1994-12-07 Wieland-Werke Ag Dampfbeheizter Wärmeübertrager
CN201449176U (zh) * 2009-06-29 2010-05-05 山东宏易城实业有限公司 高效双纹湍流换热器
CN204944237U (zh) * 2015-07-21 2016-01-06 天津霍普环保科技有限公司 一种废气余热回收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627607A2 (de) * 1993-06-02 1994-12-07 Wieland-Werke Ag Dampfbeheizter Wärmeübertrager
CN201449176U (zh) * 2009-06-29 2010-05-05 山东宏易城实业有限公司 高效双纹湍流换热器
CN204944237U (zh) * 2015-07-21 2016-01-06 天津霍普环保科技有限公司 一种废气余热回收装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114310621A (zh) * 2022-03-04 2022-04-12 沈阳和研科技有限公司 侧喷水部件、喷水罩及划片机
CN115507289A (zh) * 2022-09-19 2022-12-23 浙江天辰测控科技股份有限公司 一种滞止容器以及燃气表检测装置

Also Published As

Publication number Publication date
CN107966050B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN107101514B (zh) 一种间距变化的不可凝汽体环形分隔装置换热器
CN107131781B (zh) 一种长度变化的不可凝汽体环形分隔装置换热器
CN107036478B (zh) 一种含有不凝气体的环形分隔装置换热器
CN108204751B (zh) 一种稳流装置间距变化的不可凝气体管式换热器
CN107869924A (zh) 一种汽相可冷凝的多管式稳流装置的管壳式换热器
CN106969652A (zh) 一种长度变化的可冷凝的环形分隔装置换热器
CN107966051A (zh) 一种间距变化的可冷凝的多孔式稳流装置换热器
CN107044788B (zh) 一种可冷凝的环形分隔装置换热器
CN107869925B (zh) 一种含有不凝气体的多管式稳流装置的管壳式换热器
CN107976093A (zh) 一种间距变化的不可凝气体多孔式稳流装置换热器
CN107869927B (zh) 一种稳流装置长度变化的不可凝气体管式换热器
CN107966050A (zh) 一种含有不凝气体的多孔式稳流装置换热器
CN106979709B (zh) 一种间距变化的可冷凝的环形分隔装置换热器
CN107894178A (zh) 一种稳流装置间距变大的可凝结汽体的换热器
CN107976094B (zh) 一种长度变化的不可凝气体多孔式稳流装置换热器
CN108332581B (zh) 一种管壳式换热器
CN107869926A (zh) 一种稳流装置尺寸逐渐变小的可凝结汽体换热器
CN107966052A (zh) 一种长度变化的可冷凝的多孔式稳流装置换热器
CN107966053A (zh) 一种可冷凝的多孔式稳流装置换热器
CN108332578B (zh) 一种气液两相流管壳式换热器
CN108332579B (zh) 一种管壳式换热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 266071 102 unit 2, 1 building, 16 Gutian Road, Shinan District, Qingdao, Shandong.

Applicant after: Qingdao Jinyu Trading Co. Ltd.

Address before: 266071 102 unit 2, 1 building, 16 Gutian Road, Qingdao, Shandong.

Applicant before: Qingdao Jinyu Trading Co. Ltd.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190612

Address after: Room 407, 19 Qutangxia Road, Southern District, Qingdao City, Shandong Province

Patentee after: QINGDAO JIYUNDER AND COMMERCIAL TRADE CO., LTD.

Address before: 266071 102 unit 2, 1 building, 16 Gutian Road, Shinan District, Qingdao, Shandong.

Patentee before: Qingdao Jinyu Trading Co. Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210329

Address after: 226200 No. 101 Nanhai Road, Qidong high tech Industrial Development Zone, Qidong, Nantong, Jiangsu

Patentee after: QIDONG CHUANGLU NEW MATERIAL Co.,Ltd.

Address before: Room 407, No.19, qutangxia Road, Shinan District, Qingdao City, Shandong Province

Patentee before: QINGDAO JIYUNDER AND COMMERCIAL TRADE Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211213

Address after: 535008 room A107, public service center, No. 1, Zhongma street, Zhongma Qinzhou Industrial Park, Qinzhou port area, China (Guangxi) pilot Free Trade Zone, Qinzhou City, Guangxi Zhuang Autonomous Region

Patentee after: Guangxi Free Trade Zone Jianju Technology Co.,Ltd.

Patentee after: Guangxi Qinbao Real Estate Co., Ltd

Address before: 226200 No. 101 Nanhai Road, Qidong high tech Industrial Development Zone, Qidong, Nantong, Jiangsu

Patentee before: QIDONG CHUANGLU NEW MATERIAL Co.,Ltd.