CN107961816A - 一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法 - Google Patents

一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107961816A
CN107961816A CN201711210890.9A CN201711210890A CN107961816A CN 107961816 A CN107961816 A CN 107961816A CN 201711210890 A CN201711210890 A CN 201711210890A CN 107961816 A CN107961816 A CN 107961816A
Authority
CN
China
Prior art keywords
mof
sodium
nano particle
photochemical catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711210890.9A
Other languages
English (en)
Inventor
蔡廷栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201711210890.9A priority Critical patent/CN107961816A/zh
Publication of CN107961816A publication Critical patent/CN107961816A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种WO3/MOF‑SO3@Bi4Ti3O12复合光催化剂制备方法,氧化铋、二氧化钛、氯化钾、氯化钠、N‑N—二甲基乙酰胺、水合氧氯化锆、钨酸钠和2—磺酸对苯二甲酸钠为主要原料,催化剂具备典型三维结构,形貌规则,这种钒酸铋和有机共价化合物组合而成的三维结构,既具有二维片载流子传输效率高的优势,又具有三维结构高比表面积,充足反应位点,高可见光利用率的特点;本发明制备工艺新颖,既具有良好可见光降解效果,又可以降低成本、减少污染,在有机污染物分解方面具有较好的应用前景和经济效益。

Description

一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法
技术领域
本发明涉及一种WO3/MOF-SO3@ Bi4Ti3O12复合光催化剂及其制备方法,属于催化剂技术领域。
背景技术
我国工业经济的飞速发展,带来了众多日益严重的新型环境污染问题,工农业废水中以染料废水为代表的含有有机污染物的水污染是急待解决的环境污染问题之一。由于工农业种类繁多,其产生的废水组分非常复杂,而且废水中往往含有一定量的盐浓度,如煤化工、氯碱工业以及农药工业等,其废水中的盐浓度都较高大多在以上。这些高含盐废水中的有机污染物,往往难以应用传统的微生物处理技术进行有效降解,因而不能满足国家对煤化工等行业工业废水的“零排放”要求。光催化技术在这个背景下应运而生,其价格低廉,适用性广,但是传统催化材料光量子效率和光能利用率普遍低,需要发明新型的光催化剂以适应工业需求。
发明内容
本发明的目的在于提供一种WO3/MOF-SO3@ Bi4Ti3O12复合光催化剂及其制备方法,催化剂的稳定性高,对苯具有较高的降解率。
一种WO3/MOF-SO3@ Bi4Ti3O12光催化剂的制备方法,其特征在于该方法包括以下步骤:步骤1、将20g的SPEEK(磺化度62%),加入3g DMF,溶解形成SPEEK溶液,向上述溶液中加入18g MOF-SO3@ Bi4Ti3O12纳米颗粒,并超声3h而使其分散均匀;
步骤2、将上述分散液小心倾倒于模具中并快速置于60℃烘箱中,保持8h而后,升高温度至80℃,保持8h,在室温下用1mol/L的盐酸酸化48h将纳米颗粒转化为H+型;
步骤3、取10g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。
所述的MOF-SO3@ Bi4Ti3O12纳米颗粒制备方法如下:
步骤1、分别取3.4g氧化铋、7.7g二氧化钛、3.5g氯化钾和10.5g氯化钠于研钵中,研磨均匀后,将得到的淡黄色粉末放置于石英舟中,800℃下锻烧2h,冷却到室温后,将产物水洗烘干,得到纳米Bi4Ti3O12
步骤2、取15g上述纳米Bi4Ti3O12超声分散在45gN-N—二甲基乙酰胺(DMA)中,而后分别称取50g 水合氧氯化锆和8g 2—磺酸对苯二甲酸钠加入上述分散液中,而后添加11份甲酸,超声分散20min;
步骤3、将其转移至聚四氟乙烯内衬中,盖好盖子并放入反应釜中密封紧密,然后置于150℃的恒温烘箱中持续反应24h,将反应产物通过离心分离出来,先用新鲜的DMF溶剂清洗3次,再用新鲜的乙醇溶剂多次洗涤,离心分离产物最后置于50℃的烘箱中保持6h,即得到MOF-SO3@ Bi4Ti3O12纳米颗粒。
有益效果:本发明制备的WO3/MOF-SO3@ Bi4Ti3O12光催化剂,具备典型三维结构,形貌规则,这种钒酸铋和有机共价化合物组合而成的三维结构,既具有二维片载流子传输效率高的优势,又具有三维结构高比表面积,充足反应位点,高可见光利用率的特点;WO3掺杂能够促进二氧化钛光催化剂由无定型转化为有利于光催化的晶相,且使二氧化钛的带隙中产生中间能级,降低了二氧化钛的禁带宽度,扩展了二氧化钛的吸光范围,过渡金属的掺杂能够取代晶格氧或晶格钛形成二氧化钛表面缺陷或者晶格缺陷,从而抑制电子空穴的表面复合,提高了二氧化钛光催化剂的光催化活性和光生电子和空穴的分离,降低了二氧化钛的禁带宽度,具有较好降解有机污染物的优点。
具体实施方式
实施例1
一种WO3/MOF-SO3@ Bi4Ti3O12光催化剂的制备方法,该方法包括以下步骤:
步骤1、将20g的SPEEK(磺化度62%),加入3g DMF,溶解形成SPEEK溶液,向上述溶液中加入18g MOF-SO3@ Bi4Ti3O12纳米颗粒,并超声3h而使其分散均匀;
步骤2、将上述分散液小心倾倒于模具中并快速置于60℃烘箱中,保持8h而后,升高温度至80℃,保持8h,在室温下用1mol/L的盐酸酸化48h将纳米颗粒转化为H+型;
步骤3、取10g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。
所述的MOF-SO3@ Bi4Ti3O12纳米颗粒制备方法如下:
步骤1、分别取3.4g氧化铋、7.7g二氧化钛、3.5g氯化钾和10.5g氯化钠于研钵中,研磨均匀后,将得到的淡黄色粉末放置于石英舟中,800℃下锻烧2h,冷却到室温后,将产物水洗烘干,得到纳米Bi4Ti3O12
步骤2、取15g上述纳米Bi4Ti3O12超声分散在45gN-N—二甲基乙酰胺(DMA)中,而后分别称取50g 水合氧氯化锆和8g 2—磺酸对苯二甲酸钠加入上述分散液中,而后添加11份甲酸,超声分散20min;
步骤3、将其转移至聚四氟乙烯内衬中,盖好盖子并放入反应釜中密封紧密,然后置于150℃的恒温烘箱中持续反应24h,将反应产物通过离心分离出来,先用新鲜的DMF溶剂清洗3次,再用新鲜的乙醇溶剂多次洗涤,离心分离产物最后置于50℃的烘箱中保持6h,即得到MOF-SO3@ Bi4Ti3O12纳米颗粒;
实施例2
步骤3、取5g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例3
步骤3、取1g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例4
步骤3、取0.1g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例5
步骤3、取10g钨酸钠、25g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例6
步骤3、取10g钨酸钠、10g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例7
步骤3、取10g钨酸钠、75g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例8
步骤3、取10g钨酸钠、100g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例9
步骤3、取10g钨酸钠、150g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例10
步骤3、取10g钨酸钠、200g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
实施例11
步骤3、取10g钨酸钠、20gCu-MOF多孔纳米材料、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。其余步骤同实施例1。
所述的Cu-MOF多孔纳米材料制备如下:
步骤1、将24份体积分数为66.7%的乙醇溶液、1.75份有机配体H3BTC和2份支持电解质TBAP加入到烧杯中,超声10min,超声功率为100W,使之分散溶解均匀,制成电解质溶液;
步骤2、将金属Cu棒(纯度为99.98%)作为阳极,采用石墨棒作为阴极,将所述阳极、阴极和电解质溶液连接成电解反应电路,保证阳极和阴极之间的距离为5cm,在电路电压为30V的条件下反应3h,将所得的产物用乙醇和水分别洗涤3次,并将其在100℃下干燥24h,随后在120℃的静态真空条件下处理12h,得到Cu-MOF纳米晶体材料。
对照例1
与实施例1不同点在于:光催化剂制备的步骤1中,将10g的SPEEK(磺化度62%),加入3gDMF,溶解形成SPEEK溶液,其余步骤与实施例1完全相同。
对照例2
与实施例1不同点在于:光催化剂制备的步骤1中,将40g的SPEEK(磺化度62%),加入3gDMF,溶解形成SPEEK溶液,其余步骤与实施例1完全相同。
对照例3
与实施例1不同点在于:光催化剂制备的步骤3中,逐滴滴入浓度为0.3mol/L的NaOH至PH=10,其余步骤与实施例1完全相同。
对照例4
与实施例1不同点在于:光催化剂制备的步骤3中,逐滴滴入浓度为0.3mol/L的醋酸至PH=6,其余步骤与实施例1完全相同。
对照例5
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备的步骤1中,分别取1.7g氧化铋、3.7g二氧化钛、5.0g氯化钾和10.5g氯化钠于研钵中,其余步骤与实施例1完全相同。
对照例6
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备的步骤1中,分别取6.8g氧化铋、1.7g二氧化钛、0.5g氯化钾和1.5g氯化钠于研钵中,其余步骤与实施例1完全相同。
对照例7
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备步骤2中,取5g上述纳米Bi4Ti3O12超声分散在45gN-N—二甲基乙酰胺(DMA)中,其余步骤与实施例1完全相同。
对照例8
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备步骤2中,取30g上述纳米Bi4Ti3O12超声分散在45gN-N—二甲基乙酰胺(DMA)中,其余步骤与实施例1完全相同。
对照例9
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备步骤2中,分散液中不再加入水合氧氯化锆,其余步骤与实施例1完全相同。
对照例10
与实施例1不同点在于:MOF-SO3@ Bi4Ti3O12纳米颗粒制备步骤2中,分散液中不再加入2—磺酸对苯二甲酸钠,其余步骤与实施例1完全相同。
使用实施例和对照例制备的光催化剂对有机污染物苯进行降解:气相降解反应在连续反应装置上进行,采用苯(吹扫发生)做为模拟反应物,流速均设为20ml/min,浓度调为200ppm。催化剂在石英反应器的装填量约为0.85g,以泊菲莱PLS-XE300C为光源,灯口与反应器距离固定为10cm左右。反应物和产物由气相色谱在线监测。吸附饱和后开灯,并每隔30min自动进样分析,有机污染物和产物的浓度采用外标法标定,测定苯的降解率。
结果如表所示。
实验结果表明光催化剂对有机污染物苯分解反应具有良好的降解效果,在反应条件一定时,苯降解率越高,催化性能越好,反之越差;在钨酸钠、H型MOF-SO3@ Bi4Ti3O12纳米颗粒比质量为1:5时,其他配料固定,催化效果最好,与实施例1不同点在于,实施例2至实施例10分别改变光催化剂主要原料钨酸钠、H型MOF-SO3@ Bi4Ti3O12纳米颗粒的用量和配比,对光催化剂的分解性能有不同的影响,值得注意的是实施例11加入了Cu-MOF纳米晶体材料,苯分解率明显提高,说明Cu-MOF纳米晶体材料对光催化材料的结构活性有更好的优化作用;对照例1至对照例 2 改变SPEEK溶液SPEEK和DMF用量,其他步骤完全相同,导致催化剂的纳米颗粒活性发生变化,苯降解率明显降低;对照例3至对照例4用氢氧化钠和醋酸改变混合液PH,纳米颗粒酸性发生变化,分解效果明显变差;对照例5至对照例6,MOF-SO3@ Bi4Ti3O12纳米颗粒主要原料的配比改变,导致材料结构发生变化,降解效果依然不好;对照例7至对照例10,改变N-N—二甲基乙酰胺(DMA)的用量和分散液的组分,效果明显变差,说明水合氧氯化锆和2—磺酸对苯二甲酸钠对纳米颗粒的合成很重要;因此使用本发明制备的光催化剂对有机污染物苯的分解具有优异的效果。

Claims (2)

1.一种WO3/MOF-SO3@ Bi4Ti3O12光催化剂的制备方法,其特征在于该方法包括以下步骤:
步骤1、将20g的SPEEK,加入3g DMF,溶解形成SPEEK溶液,向上述溶液中加入18g MOF-SO3@ Bi4Ti3O12纳米颗粒,并超声3h而使其分散均匀;
步骤2、将上述分散液小心倾倒于模具中并快速置于60℃烘箱中,保持8h而后,升高温度至80℃,保持8h,在室温下用1mol/L的盐酸酸化48h将纳米颗粒转化为H+型;
步骤3、取10g钨酸钠、50g H型MOF-SO3@ Bi4Ti3O12纳米颗粒、0.2g 十六烷基三甲基溴化铵溶于100ml蒸馏水,搅拌后混匀,向所得混合溶液中逐滴滴入浓度为3mol/L的HCl至PH=3,搅拌使之反应完全,离心沉降,用蒸馏水、乙醇反复交替洗涤3次,在100℃鼓风干燥箱中烘干,研磨后得到WO3/MOF-SO3@ Bi4Ti3O12光催化剂。
2.权利要求1所述一种WO3/MOF-SO3@ Bi4Ti3O12光催化剂的制备方法,其特征在于,
所述的MOF-SO3@ Bi4Ti3O12纳米颗粒制备方法如下:
步骤1、分别取3.4g氧化铋、7.7g二氧化钛、3.5g氯化钾和10.5g氯化钠于研钵中,研磨均匀后,将得到的淡黄色粉末放置于石英舟中,800℃下锻烧2h,冷却到室温后,将产物水洗烘干,得到纳米Bi4Ti3O12
步骤2、取15g上述纳米Bi4Ti3O12超声分散在45gN-N—二甲基乙酰胺中,而后分别称取50g 水合氧氯化锆和8g 2—磺酸对苯二甲酸钠加入上述分散液中,而后添加11份甲酸,超声分散20min;
步骤3、将其转移至聚四氟乙烯内衬中,盖好盖子并放入反应釜中密封紧密,然后置于150℃的恒温烘箱中持续反应24h,将反应产物通过离心分离出来,先用新鲜的DMF溶剂清洗3次,再用新鲜的乙醇溶剂多次洗涤,离心分离产物最后置于50℃的烘箱中保持6h,即得到MOF-SO3@ Bi4Ti3O12纳米颗粒。
CN201711210890.9A 2017-11-28 2017-11-28 一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法 Pending CN107961816A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711210890.9A CN107961816A (zh) 2017-11-28 2017-11-28 一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711210890.9A CN107961816A (zh) 2017-11-28 2017-11-28 一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107961816A true CN107961816A (zh) 2018-04-27

Family

ID=61998644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711210890.9A Pending CN107961816A (zh) 2017-11-28 2017-11-28 一种WO3/MOF-SO3@Bi4Ti3O12复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107961816A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120149560A1 (en) * 2010-12-08 2012-06-14 Electronics And Telecommunications Research Institute Method of manufacturing porous metal oxide
CN106964338A (zh) * 2017-03-28 2017-07-21 辽宁大学 一种wo3/钛酸盐复合光催化剂及其制备方法和应用
CN107008248A (zh) * 2017-05-18 2017-08-04 江苏大学 一种黑色Bi4Ti3O12光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120149560A1 (en) * 2010-12-08 2012-06-14 Electronics And Telecommunications Research Institute Method of manufacturing porous metal oxide
CN106964338A (zh) * 2017-03-28 2017-07-21 辽宁大学 一种wo3/钛酸盐复合光催化剂及其制备方法和应用
CN107008248A (zh) * 2017-05-18 2017-08-04 江苏大学 一种黑色Bi4Ti3O12光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIXIAYANG等: "High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2pn Heterojunction Network Catalyst", 《ENVIRON. SCI. TECHNOL.》 *
王涛: "金属有机骨架负载TiO2复合催化剂的制备及性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Lv et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Zhang et al. Construction of a novel BON-Br-AgBr heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity
Zhang et al. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants
US20200354235A1 (en) Heterojunction composite material consisting of one-dimensional in2o3 hollow nanotube and two-dimensional znfe2o4 nanosheet, and application thereof in water pollutant removal
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Fang et al. Establishing a high-speed electron transfer channel via CuS/MIL-Fe heterojunction catalyst for photo-Fenton degradation of acetaminophen
CN105289693B (zh) 一种Zn0.5Co0.5Fe2O4/g‑C3N4复合光催化剂的制备方法
Bano et al. Sunlight driven photocatalytic degradation of organic pollutants using a MnV 2 O 6/BiVO 4 heterojunction: Mechanistic perception and degradation pathways
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
CN106563485A (zh) 一种氮化碳/铌酸钙钾复合材料及其制备方法与用途
CN101972645B (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
Zhou et al. Boosting photoelectron transport in Zn0. 5Cd0. 5S/Sn3O4 heterostructure through close interface contact for enhancing photocatalytic H2 generation and degradation of tetracycline hydrochloride
Zhao et al. Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia
Ghorbani et al. Facile synthesis of Z-scheme ZnO-nanorod@ BiOBr-nanosheet heterojunction as efficient visible-light responsive photocatalyst: The effect of electrolyte and scavengers
Wu et al. Acidification of potassium bismuthate for enhanced visible-light photocatalytic degradation ability: An effective strategy for regulating the abilities of adsorption, oxidation, and photocatalysis
CN110639563B (zh) 氯氧化铋/银/铁酸银三元复合z型光催化剂及其制备方法和应用
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
CN105289578A (zh) 一种金属氧化物/碳纳米管复合光催化剂及其制法与应用
Chen et al. In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency
CN106582626A (zh) 一种新型银离子掺杂TiO2复合材料的制备方法及应用
CN106552651A (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
CN106582718B (zh) 一种石墨烯-硫化锑微米棒复合光催化剂的制备方法
CN107876099A (zh) 一种Fe‑BiOBr/MOF‑SO3@TiO2光催化剂的制备方法
Zhang et al. Construction of ZnIn2S4/MOF-525 heterojunction system to enhance photocatalytic degradation of tetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180427