CN107955669A - 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用 - Google Patents

二硫化钼或二硫化钨-正烷基硫醇复合物及其应用 Download PDF

Info

Publication number
CN107955669A
CN107955669A CN201711143269.5A CN201711143269A CN107955669A CN 107955669 A CN107955669 A CN 107955669A CN 201711143269 A CN201711143269 A CN 201711143269A CN 107955669 A CN107955669 A CN 107955669A
Authority
CN
China
Prior art keywords
compound
alkyl mercaptan
pao
mos
pda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711143269.5A
Other languages
English (en)
Inventor
王晓波
刘维民
吴新虎
宫奎亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201711143269.5A priority Critical patent/CN107955669A/zh
Publication of CN107955669A publication Critical patent/CN107955669A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了二硫化钼或二硫化钨‑正烷基硫醇复合物,该复合物通过以下方法制备得到:将纳米尺寸的MS2分散到5 g/L的多巴胺水溶液中,加入1M三羟甲基氨基甲烷(Tris)缓冲溶液,然后在室温下搅拌4~8小时,将得到的悬浮液离心,用水和乙醇洗涤,真空干燥;将MS2‑PDA分散到PH>12的NaOH溶液中,之后加入正烷基硫醇,在室温下反应4~8小时,真空过滤,用乙醇和乙醚洗涤,真空干燥。本发明还公开了该复合物作为聚α‑烯烃减摩抗磨添加剂的应用。

Description

二硫化钼或二硫化钨-正烷基硫醇复合物及其应用
技术领域
本发明涉及二硫化钼或二硫化钨(MoS2/WS2)-正烷基硫醇复合物及其应用。
背景技术
近些年来,大量研究工作集中在将纳米颗粒作为润滑油添加剂,例如氧化石墨烯、二氧化硅、过渡金属硫化物等。特别是将具有二维层状结构的二硫化钼(MoS2)或二硫化钨(WS2)纳米颗粒(MoS2/WS2)作为润滑油减摩抗磨添加剂的研究已经引起人们广泛关注。由于这些纳米颗粒层与层间具有较弱的范德华作用力而易于滑动,以及MoS2/WS2纳米颗粒能够与摩擦副表面的金属元素发生摩擦化学反应生成一种边界润滑膜,因此MoS2/WS2纳米颗粒具有非常优异的减摩抗磨性能。然而,对于所有固体添加剂来说,在润滑油中不能稳定存在是限制它们广泛应用的最大障碍,MoS2/WS2纳米颗粒尤为突出。为了增强它们在润滑油中的分散稳定性,对MoS2/WS2的表面进行化学修饰是非常有效的一种方法。
发明内容
本发明的目的在于提供MoS2/WS2-正烷基硫醇复合物及其作为聚α-烯烃减摩抗磨添加剂的应用。
本发明通过仿贻贝粘附方法结合迈克尔加成反应将正烷基硫醇修饰到MoS2或WS2表面,考察了目标产物MS2-正烷基硫醇复合物(M=Mo或W)在聚α-烯烃(PAO)中的分散稳定性,及其作为PAO减摩抗磨添加剂的摩擦学行为。
MoS2/WS2-正烷基硫醇复合物,其特征在于该复合物通过以下方法制备得到:
1)MS2(M=Mo或W)-多巴胺复合物(MS2-PDA)的制备
将纳米尺寸的MS2分散到5 g/L的多巴胺水溶液中,加入1M 三羟甲基氨基甲烷(Tris)缓冲溶液,然后在室温下搅拌4~8小时,将得到的悬浮液离心,用水和乙醇洗涤,真空干燥;
2)由MS2-PDA制备MS2-正烷基硫醇复合物
将MS2-PDA分散到PH>12的NaOH溶液中,之后加入正烷基硫醇,在室温下反应4~8小时,真空过滤,用乙醇和乙醚洗涤,真空干燥。
步骤1)中所述纳米尺寸的MS2的粒径为30~90 nm。
步骤1)中所述MS2与多巴胺水溶液的质量体积比为2~4 mg/mL;多巴胺水溶液与Tris缓冲液的体积比为50~200。
步骤2)中所述MS2-PDA与NaOH溶液的质量体积比为1~3 mg/mL;MS2-PDA与正烷基硫醇的质量体积比为0.5~4mg/μL。
所述正烷基硫醇的分子结构为CnH2n+1SH,其中6﹤n﹤18。
所述二硫化钼或二硫化钨-正烷基硫醇复合物作为PAO减摩抗磨添加剂的应用。
所述MS2-正烷基硫醇复合物在PAO中的添加量为0.1wt%~1.0 wt%。
所述MS2-正烷基硫醇复合物在PAO中稳定存在时间随PAO粘度的增大而延长;适用的PAO粘度大于5 cSt,稳定存在时间大于一周。
所述MS2-正烷基硫醇复合物在50~200℃范围能够显著增强PAO的减摩抗磨性能。
附图说明
图1为PAO 10(I),PAO 10 中添加1wt% MoS2(II)和1wt% 实施例1的产物(III),在放置一天(A)和一周后(B)的照片。
图2 为PAO 10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在50 ℃,载荷100 N,频率25 Hz,振幅1 mm,长磨30 min时的摩擦系数曲线。
图3为PAO 10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在50 ℃,载荷100 N,频率25 Hz,振幅1 mm,长磨30 min时的磨斑的磨损量。
图4 PAO 10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在50 ℃,频率25 Hz,振幅1 mm,载荷从50 N增加到500 N时的摩擦系数曲线。
图5 PAO 10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在100 N,频率25 Hz,振幅1 mm,温度从25℃增加到200℃时的摩擦系数曲线。
具体实施方式
实施例1
将500 mg 纳米尺寸的MoS2(粒径~40 nm)分散到160 mL 5g/L的多巴胺(PDA)溶液中,然后加入1.6 mL 1M Tris溶液。反应体系在室温下搅拌6 h。反应完后将悬浮液在转速2000rpm离心5 min。再用水和乙醇洗涤数次,真空干燥。得到中间产物MoS2-PDA。
将100 mg MoS2-PDA浸入60 mL NaOH溶液中(PH>12),之后加入100μL正十八硫醇(NOM)。体系在室温搅拌反应6 h,用乙醇和乙醚洗涤。真空干燥,得到目标产物MoS2-NOM。
实施例2
将500 mg 纳米尺寸的WS2(粒径~90 nm)分散到160 mL 5g/L的多巴胺(PDA)溶液中,然后加入1.6 mL 1M Tris溶液。反应体系在室温下搅拌6 h。反应完后将悬浮液在转速2000rpm离心5 min。再用水和乙醇洗涤数次,真空干燥。得到中间产物WS2-PDA。
将100 mg WS2-PDA浸入60 mL NaOH溶液中(PH>12),之后加入100μL正十八硫醇(NOM)。体系在室温搅拌反应6 h,用乙醇和乙醚洗涤。真空干燥,得到目标产物WS2-NOM.
实施例3
将500 mg 纳米尺寸的MoS2(粒径~40 nm)分散到160 mL 5g/L的多巴胺(PDA)溶液中,然后加入1.6 mL 1M Tris溶液。反应体系在室温下搅拌6 h。反应完后将悬浮液在转速2000rpm离心5 min。再用水和乙醇洗涤数次,真空干燥。得到中间产物MoS2-PDA。
将100 mg MoS2-PDA浸入60 mL NaOH溶液中(PH>12),之后加入150μL正十二硫醇(NDM)。体系在室温搅拌反应6 h,用乙醇和乙醚洗涤。真空干燥,得到目标产物MoS2-NDM.
分散稳定性评价:将MoS2和实施例1的产物加入到PAO 10中,用超声波分散30-60 min。附图1为PAO 10(I),PAO 10 中添加1wt% MoS2(II)和1wt% 实施例1的产物(III),在放置一天(A)和一周后(B)的照片。从附图1可以看出,实施例1的产物MoS2-NOM在PAO 10中的分散稳定性大幅度提升,明显好于没有修饰的MoS2
产物的摩擦学性能评价
1.采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试PAO 10 和PAO 10中添加1.0 wt%实施例1中制备的MoS2-NOM,在温度50 ℃,频率25Hz,振幅1mm,载荷100N长磨30min时的摩擦系数f,试验所用钢球为φ=10mm的GCr15轴承钢,下试样为φ24×7.9mm的GCr15钢块。作为比较,PAO 10中添加1.0 wt% MoS2的摩擦系数也在相同条件下获得。由附图2可以看出,在50℃,1.0 wt% MoS2-NOM和MoS2都可以大幅度降低摩擦系数,但MoS2-NOM的减摩性能要优于MoS2
2. 采用MicroXAM 3D 非接触的表面测试仪测试PAO 10 和 PAO 10中添加1.0wt%实施例1中制备的MoS2-NOM,在温度50 ℃,频率25 Hz,振幅1 mm,载荷100 N长磨30 min时磨斑的磨损量,试验所用钢球为φ=10 mm的GCr15轴承钢,下试样为φ24×7.9 mm的GCr15钢块。作为比较,PAO 10中添加1.0 wt% MoS2的磨斑磨损量也在相同条件下获得。由附图3可以看出,在50℃,1.0 wt% MoS2-NOM和MoS2都可以大幅度降低磨损量,但MoS2-NOM的抗磨性能要优于MoS2
3. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试PAO10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在50 ℃,频率25 Hz,振幅1 mm,载荷从50 N增加到500 N时的摩擦系数曲线。由附图4可以看出,在50 ℃,加入1.0 wt% MoS2和1.0 wt% MoS2-NOM可以显著增强PAO 10的承重能力:PAO 10的承重能力为150 N,MoS2为300 N,MoS2-NOM为400 N。
4. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试PAO10,PAO 10 中添加1.0 wt% MoS2和1.0 wt%实施例1中制备的MoS2-NOM在100 N,频率25 Hz,振幅1 mm,温度从25增加到200 ℃时的摩擦系数曲线。由附图5可以看出,在温度小于150℃,加入1.0 wt% MoS2和1.0 wt% MoS2-NOM都可以显著降低PAO 10摩擦系数。

Claims (9)

1.二硫化钼或二硫化钨-正烷基硫醇复合物,其特征在于该复合物通过以下方法制备得到:
1)MS2-多巴胺复合物的制备
将纳米尺寸的MS2分散到5 g/L的多巴胺水溶液中,加入1M Tris缓冲溶液,然后在室温下搅拌4~8小时,将得到的悬浮液离心,用水和乙醇洗涤,真空干燥;
2)由MS2-PDA制备MS2-正烷基硫醇复合物
将MS2-PDA分散到PH>12的NaOH溶液中,之后加入正烷基硫醇,在室温下反应4~8小时,真空过滤,用乙醇和乙醚洗涤,真空干燥。
2.如权利要求1所述的复合物,其特征在于步骤1)中所述纳米尺寸的MS2的粒径为30~90 nm。
3.如权利要求1所述的复合物,其特征在于步骤1)中所述MS2与多巴胺水溶液的质量体积比为2~4 mg/mL;多巴胺水溶液与Tris缓冲液的体积比为50~200。
4.如权利要求1所述的复合物,其特征在于步骤2)中所述MS2-PDA与NaOH溶液的质量体积比为1~3 mg/mL;MS2-PDA与正烷基硫醇的质量体积比为0.5~4 mg/μL。
5.如权利要求1或4所述的复合物,其特征在于所述正烷基硫醇的分子结构为CnH2n+1SH,其中6﹤n﹤18。
6.如权利要求1至4任一项所述二硫化钼或二硫化钨-正烷基硫醇复合物作为PAO减摩抗磨添加剂的应用。
7.如权利要求6所述的应用,其特征在于所述PAO粘度大于5 cSt。
8.如权利要求6所述的应用,其特征在于所述二硫化钼或二硫化钨-正烷基硫醇复合物在50~200℃时作为PAO的减摩抗磨添加剂。
9.如权利要求6所述的应用,其特征在于所述MS2-正烷基硫醇复合物在PAO中的添加量为0.1 wt%~1.0 wt%。
CN201711143269.5A 2017-11-17 2017-11-17 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用 Pending CN107955669A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711143269.5A CN107955669A (zh) 2017-11-17 2017-11-17 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711143269.5A CN107955669A (zh) 2017-11-17 2017-11-17 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用

Publications (1)

Publication Number Publication Date
CN107955669A true CN107955669A (zh) 2018-04-24

Family

ID=61964906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711143269.5A Pending CN107955669A (zh) 2017-11-17 2017-11-17 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用

Country Status (1)

Country Link
CN (1) CN107955669A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法
CN110078124A (zh) * 2019-04-18 2019-08-02 哈尔滨理工大学 一种硫醇修饰二硫化钼复合材料及其制备方法
CN112852075A (zh) * 2021-02-03 2021-05-28 宁国市瑞普密封件有限公司 一种低渗透氟橡胶制品材料
CN115820091A (zh) * 2022-11-30 2023-03-21 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572591A (zh) * 2013-11-15 2014-02-12 复旦大学 一种对碳纤维进行表面改性的方法
CN106367753A (zh) * 2016-08-03 2017-02-01 上海师范大学 一种金属表面耐腐蚀疏水膜的制备方法
CN106520265A (zh) * 2016-10-14 2017-03-22 常州亚环环保科技有限公司 一种润滑油复合纳米抗磨剂的制备方法
CN106967476A (zh) * 2017-03-23 2017-07-21 聊城大学 一种片状硼酸钙/聚多巴胺复合微粒的制备方法
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
CN107216689A (zh) * 2017-06-23 2017-09-29 西北工业大学 一种多巴胺表面改性二维纳米材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572591A (zh) * 2013-11-15 2014-02-12 复旦大学 一种对碳纤维进行表面改性的方法
CN106367753A (zh) * 2016-08-03 2017-02-01 上海师范大学 一种金属表面耐腐蚀疏水膜的制备方法
CN106520265A (zh) * 2016-10-14 2017-03-22 常州亚环环保科技有限公司 一种润滑油复合纳米抗磨剂的制备方法
CN106967476A (zh) * 2017-03-23 2017-07-21 聊城大学 一种片状硼酸钙/聚多巴胺复合微粒的制备方法
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
CN107216689A (zh) * 2017-06-23 2017-09-29 西北工业大学 一种多巴胺表面改性二维纳米材料及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法
CN110078124A (zh) * 2019-04-18 2019-08-02 哈尔滨理工大学 一种硫醇修饰二硫化钼复合材料及其制备方法
CN112852075A (zh) * 2021-02-03 2021-05-28 宁国市瑞普密封件有限公司 一种低渗透氟橡胶制品材料
CN115820091A (zh) * 2022-11-30 2023-03-21 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法
CN115820091B (zh) * 2022-11-30 2023-08-25 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法

Similar Documents

Publication Publication Date Title
Singh et al. A review on tribological performance of lubricants with nanoparticles additives
CN107955669A (zh) 二硫化钼或二硫化钨-正烷基硫醇复合物及其应用
Battez et al. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating
Battez et al. Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions
Jatti et al. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil
Battez et al. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants
Battez et al. The tribological behaviour of ZnO nanoparticles as an additive to PAO6
Qu et al. Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive
CN104031722B (zh) 一种润滑油
Wu et al. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures
Liu et al. Exploring the effect of nanoparticle size on the tribological properties of SiO2/polyalkylene glycol nanofluid under different lubrication conditions
Kheireddin et al. Inorganic nanoparticle-based ionic liquid lubricants
Qu et al. Tribological study of polytetrafluoroethylene lubricant additives filled with Cu microparticles or SiO2 nanoparticles
Chen Tribological properties of polytetrafluoroethylene, nano-titanium dioxide, and nano-silicon dioxide as additives in mixed oil-based titanium complex grease
WO2012166615A1 (en) Hybrid nanolubricant
Song et al. Tribological performance of an imidazolium ionic liquid-functionalized SiO2@ graphene oxide as an additive
Cao et al. Synthesis and tribological properties of polyaniline functionalized by ionic liquids
Gupta et al. Tribological evaluation of calcium‐copper‐titanate/cerium oxide‐based nanolubricants in sliding contact
Levanov et al. Study of effect of metal oleates on mixed and boundary lubrication
JP2001089778A (ja) 樹脂用グリース組成物
Chen et al. Tribological properties and lubrication mechanism of protic ionic liquid-modified nanosilica as high-temperature antiwear additive for pentaerythritol ester
Saini et al. Augmenting the lubrication performance of nano-oils through synergistic co-functioning of nanoparticles
Saxena et al. Development of vegetable oil-based greases for extreme pressure applications: an integration of non-toxic, eco-friendly ingredients for enhanced performance
Müller et al. Bismuth (III) sulfide as additive: towards better lubricity without toxicity
Gow Lubricating grease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180424

RJ01 Rejection of invention patent application after publication