CN107955260A - 一种石墨烯分散方法及应用 - Google Patents

一种石墨烯分散方法及应用 Download PDF

Info

Publication number
CN107955260A
CN107955260A CN201711123670.2A CN201711123670A CN107955260A CN 107955260 A CN107955260 A CN 107955260A CN 201711123670 A CN201711123670 A CN 201711123670A CN 107955260 A CN107955260 A CN 107955260A
Authority
CN
China
Prior art keywords
graphene
dispersion method
hour
polymerization
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711123670.2A
Other languages
English (en)
Inventor
聂玉静
翁文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnan Normal University
Original Assignee
Minnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnan Normal University filed Critical Minnan Normal University
Priority to CN201711123670.2A priority Critical patent/CN107955260A/zh
Publication of CN107955260A publication Critical patent/CN107955260A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于石墨烯开发技术领域,公开了一种石墨烯分散方法及应用,取一定分量的表面活性剂加入到100mg石墨烯中,球磨机球磨半小时,使石墨烯表面包裹一层表面活性剂;加入适量苯乙烯单体,超声半小时,完成苯乙烯单体在石墨烯表面的自组装,加入引发剂,搅拌加热至80℃,预聚半小时;按配方比例将预聚后的聚苯乙烯与聚丙烯单体一起采用真空负压输送到挤出机料斗;维持挤出反应温度220℃,完成苯乙烯聚合,形成聚苯乙烯与聚丙烯互穿网络型聚合物;最后挤出流延成膜。本发明改善了石墨在基材中的分散性;不破坏石墨烯的结构,从而可保持优异的导电性;制备方法为反应性挤出,具有工艺简单,不添加有机溶剂,绿色环保,加工效率高的优点。

Description

一种石墨烯分散方法及应用
技术领域
本发明属于石墨烯开发技术领域,尤其涉及一种石墨烯分散方法及应用。
背景技术
石墨烯是继发现碳纳米管后的又一种新型碳纳米材料。自从2004年发现以来,石墨烯一直是人们的研究热点,它由单层碳原子组成,具有优良的机械、电学、热学和光学特性,在电池材料、储能材料、电子器件、复合材料等领域具有广泛的应用前景。
然而,如何在应用时保持石墨烯的有效分散也是一个亟待解决的难题。
由于石墨烯材料表面呈惰性状态,化学稳定性高,与其他介质的相互作用较弱,并且石墨片间有较强的范德华力作用而容易发生聚集。因为得到的石墨烯易于再团聚,使得其无法充分发挥石墨烯的单片层优异特性。因此,石墨烯的分散技术是制约石墨烯推广应用的关键技术瓶颈。石墨烯在极性溶剂中较差的分散性限制了其在电子材料、复合材料等领域的实际应用。
目前,石墨烯的高效分散是石墨烯应用过程的重要技术。目前,石墨烯通常采用直接加入分散剂的方法进行分散,采用的分散剂如十二烷基苯磺酸钠,聚乙烯吡咯烷酮等,分散效果并不理想,分散的石墨烯稳定性也较差,并影响其导电性能。
综上所述,现有技术存在的问题是:
目前关于分散石墨烯粉体的研究报道极少,主要集中在采用各种分散液处理石墨烯粉末得到单分散的水性、油性石墨烯分散液,而且所得分散液浓度不高。实际应用时,往往由于分散液用量过大带来成本问题。另一方面,分散液分散石墨烯主要用于防腐涂料、防静电涂料、导电油墨。在干燥过程中,分散液大量挥发会导致石墨烯沉降团聚。现有技术没有采用反应性挤出工艺解决石墨烯在固体基材中分散性差的问题。
发明内容
针对现有技术存在的问题,本发明提供了一种石墨烯分散方法及应用。
本发明是这样实现的,一种石墨烯分散方法,所述石墨烯分散方法,采用反应挤出工艺,在石墨烯表面包裹一层聚苯乙烯,再与聚丙烯形成互穿网络型共混聚合物。另外挤出设备中螺杆的挤压剪切作用可促进单层石墨烯在基材中的分散,同时模头处的聚合物熔体在挤出时的层流流动,可促进石墨烯的定向排列,提高制品性能。最后。制品在冷却辊上骤冷,促进石墨烯在基材中的分散稳定性,避免其迁移团聚。
进一步,所述石墨烯分散方法具体包括:
取20ml的表面活性剂加入到500mg石墨烯中,球磨机球磨半小时,使石墨烯表面包裹一层表面活性剂;
加入10.4g苯乙烯单体,超声半小时,完成苯乙烯单体在石墨烯表面的自组装,加入引发剂过硫酸铵0.16g,搅拌加热至80℃,预聚半小时;
按质量比1:2将预聚后的聚苯乙烯与聚丙烯一起通过加料口输送至挤出机料斗;
维持挤出反应温度220℃,完成苯乙烯聚合,形成聚苯乙烯与聚丙烯互穿网络型聚合物;最后挤出流延成膜。
进一步,所述引发剂为过硫酸铵。
本发明的另一目的在于提供一种利用上述的石墨烯分散方法制备的石墨烯。
本发明的另一目的在于提供一种利用上述的石墨烯制备的抗静电材料。
本发明的另一目的在于提供一种利用上述的石墨烯制备的电子产品的电磁屏蔽材料。
本发明的另一目的在于提供一种利用上述的石墨烯制备的锂离子电池的电极材料。
本发明的另一目的在于提供一种利用上述的石墨烯制备的微波吸收材料。
本发明的优点及积极效果为:本发明改善了石墨在固体基材中的分散性。不破坏石墨烯的结构,从而可保持优异的导电性。制备方法为反应性挤出,具有工艺简单,加工效率高的优点。本发明提供的石墨烯分散液可作为导电添加剂,广泛应用于导电材料、抗静电材料、电子产品的电磁屏蔽材料、锂离子电池的电极材料、微波吸收材料等领域。
附图说明
图1是本发明实施例提供的石墨烯分散方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
现有技术没有采用反应性挤出工艺解决石墨烯在基材中分散性差。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
如图1所示,本发明实施例提供的石墨烯分散方法,采用反应挤出工艺,在石墨烯表面包裹一层聚苯乙烯,再与聚丙烯形成互穿网络型共混聚合物,可以有效解决石墨烯分散差的影响获得优良的电磁屏蔽效果。
取一定分量的表面活性剂(如十二烷基苯磺酸钠)加入到100mg石墨烯中,球磨机球磨半小时,使石墨烯表面包裹一层表面活性剂,加入适量苯乙烯单体,超声半小时,完成苯乙烯单体在石墨烯表面的自组装,加入引发剂(如过硫酸铵),搅拌加热至80℃,预聚半小时。按配方比例将预聚后的聚苯乙烯与聚丙烯单体一起采用真空负压输送到挤出机料斗。维持挤出反应温度220℃,完成苯乙烯聚合,形成聚苯乙烯与聚丙烯互穿网络型聚合物。最后挤出流延成膜。
下面结合原理分析对本发明作进一步描述。
本发明实施例提供的石墨烯分散方法包括:将配好适当比例的原料送入原料仓,真空负压输送到挤出机料斗,挤出机塑化成熔体,熔体经过挤出螺杆挤出,过滤器过滤,经分配器分配到模头,其后经过流延法制膜,薄膜在牵引单元经电晕单面处理,牵引收成母卷。母卷经过时效处理,最后分切成薄膜成品
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种石墨烯分散方法,其特征在于,所述石墨烯分散方法,采用反应挤出工艺,在石墨烯表面包裹一层聚苯乙烯,再与聚丙烯形成互穿网络型共混聚合物。
2.如权利要求1所述的石墨烯分散方法,其特征在于,所述石墨烯分散方法具体包括:
取20ml的表面活性剂加入到500mg石墨烯中,球磨机球磨半小时,使石墨烯表面包裹一层表面活性剂;
加入10.4g苯乙烯单体,超声半小时,完成苯乙烯单体在石墨烯表面的自组装,加入引发剂过硫酸铵0.16g,搅拌加热至80℃,预聚半小时;
按质量比1:2将预聚后的聚苯乙烯与聚丙烯一起通过加料口输送至挤出机料斗;
维持挤出反应温度220℃,完成苯乙烯聚合,形成聚苯乙烯与聚丙烯互穿网络型聚合物;最后挤出流延成膜。
3.如权利要求2所述的石墨烯分散方法,其特征在于,所述引发剂为过硫酸铵。
4.一种利用权利要求1所述的石墨烯分散方法制备的石墨烯。
5.一种利用权利要求4所述的石墨烯制备的抗静电材料。
6.一种利用权利要求4所述的石墨烯制备的电子产品的电磁屏蔽材料。
7.一种利用权利要求4所述的石墨烯制备的锂离子电池的电极材料。
8.一种利用权利要求4所述的石墨烯制备的微波吸收材料。
CN201711123670.2A 2017-11-14 2017-11-14 一种石墨烯分散方法及应用 Pending CN107955260A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711123670.2A CN107955260A (zh) 2017-11-14 2017-11-14 一种石墨烯分散方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711123670.2A CN107955260A (zh) 2017-11-14 2017-11-14 一种石墨烯分散方法及应用

Publications (1)

Publication Number Publication Date
CN107955260A true CN107955260A (zh) 2018-04-24

Family

ID=61964655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711123670.2A Pending CN107955260A (zh) 2017-11-14 2017-11-14 一种石墨烯分散方法及应用

Country Status (1)

Country Link
CN (1) CN107955260A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699465A (zh) * 2004-05-17 2005-11-23 淄博市临淄天野塑化有限公司 高分子抗静电母料
CN1906031A (zh) * 2003-12-22 2007-01-31 诺瓦化学公司 互聚物树脂颗粒
CN101062958A (zh) * 2006-04-24 2007-10-31 东丽纤维研究所(中国)有限公司 有机聚合物与介孔分子筛形成的复合材料及其界面结构和制备方法
CN103304887A (zh) * 2012-03-06 2013-09-18 上海杰事杰新材料(集团)股份有限公司 一种石墨烯改性的高强度导电聚丙烯粒子及其制备方法
CN103642198A (zh) * 2013-12-02 2014-03-19 厦门凯纳石墨烯技术有限公司 具有高分散性的石墨烯/炭黑热塑性树脂母料及其制备方法
CN104151695A (zh) * 2014-05-07 2014-11-19 武汉金牛经济发展有限公司 一种用石墨烯改性的聚丙烯复合管材的制备方法
CN105602103A (zh) * 2015-12-30 2016-05-25 上海普利特复合材料股份有限公司 一种含石墨烯抗静电聚丙烯材料及其制备方法
CN106220774A (zh) * 2016-08-31 2016-12-14 齐齐哈尔大学 一种聚苯乙烯/石墨烯纳米复合材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906031A (zh) * 2003-12-22 2007-01-31 诺瓦化学公司 互聚物树脂颗粒
CN1699465A (zh) * 2004-05-17 2005-11-23 淄博市临淄天野塑化有限公司 高分子抗静电母料
CN101062958A (zh) * 2006-04-24 2007-10-31 东丽纤维研究所(中国)有限公司 有机聚合物与介孔分子筛形成的复合材料及其界面结构和制备方法
CN103304887A (zh) * 2012-03-06 2013-09-18 上海杰事杰新材料(集团)股份有限公司 一种石墨烯改性的高强度导电聚丙烯粒子及其制备方法
CN103642198A (zh) * 2013-12-02 2014-03-19 厦门凯纳石墨烯技术有限公司 具有高分散性的石墨烯/炭黑热塑性树脂母料及其制备方法
CN104151695A (zh) * 2014-05-07 2014-11-19 武汉金牛经济发展有限公司 一种用石墨烯改性的聚丙烯复合管材的制备方法
CN105602103A (zh) * 2015-12-30 2016-05-25 上海普利特复合材料股份有限公司 一种含石墨烯抗静电聚丙烯材料及其制备方法
CN106220774A (zh) * 2016-08-31 2016-12-14 齐齐哈尔大学 一种聚苯乙烯/石墨烯纳米复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAN LI ET AL.: "Preparation of nanometer dispersed polypropylene/polystyrene interpenetrating network using supercritical CO2 as a swelling agent", 《POLYMER》 *
王国建: "《多组分聚合物 原理、结构与性能》", 30 October 2013, 同济大学出版社 *
莫志超 等: "功能化石墨烯及其聚苯乙烯复合材料的制备及其性能", 《青岛科技大学学报(自然科学版)》 *

Similar Documents

Publication Publication Date Title
Abbasi et al. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding
Al-Saleh Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites
Al-Saleh Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites
Pu et al. Application of nitrogen-doped graphene nanosheets in electrically conductive adhesives
Mohiuddin et al. Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites
Banerjee et al. Conducting polyaniline nanoparticle blends with extremely low percolation thresholds
CN103146024B (zh) 多孔石墨烯/聚合物复合结构、其制备方法及应用
Dang et al. Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites
Balogun et al. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs)
Pei et al. Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance
El Shafee et al. Electrical properties of multi walled carbon nanotubes/poly (vinylidene fluoride/trifluoroethylene) nanocomposites
Al-Saleh et al. Hybrids of conductive polymer nanocomposites
WO2014210584A8 (en) Dispersions for nanoplatelets of graphene-like materials
CN105542377B (zh) 一种利用双螺杆挤出机制备导电3d打印耗材的方法
Shi et al. 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding
CN107033478A (zh) 一种石墨烯稳定胶体的制备方法
Xiang et al. Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures
He et al. Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes
Na et al. Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites
Cesano et al. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold
CN103342027A (zh) 一种可设计的聚合物基多层介电复合材料的制备方法
Du et al. A surfactant-free water-processable all-carbon composite and its application to supercapacitor
TWI448422B (zh) 奈米碳管粉體與其形成方法、複合材料之形成方法
JP2013014448A (ja) カーボンナノチューブ分散組成物およびそれを用いたカーボンナノチューブ含有組成物
Amrin et al. Electrical properties and conduction mechanism in carboxyl-functionalized multiwalled carbon nanotubes/poly (vinyl alcohol) composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180424

RJ01 Rejection of invention patent application after publication