CN107950571A - 一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法 - Google Patents

一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法 Download PDF

Info

Publication number
CN107950571A
CN107950571A CN201710941668.XA CN201710941668A CN107950571A CN 107950571 A CN107950571 A CN 107950571A CN 201710941668 A CN201710941668 A CN 201710941668A CN 107950571 A CN107950571 A CN 107950571A
Authority
CN
China
Prior art keywords
nickel cobalt
layered double
composite material
hydroxide
cobalt layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710941668.XA
Other languages
English (en)
Inventor
董文佩
王洁
蒋涛
张艳
辛鹏洋
申家轩
苏莉
陈长坡
张家亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201710941668.XA priority Critical patent/CN107950571A/zh
Publication of CN107950571A publication Critical patent/CN107950571A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法,属于纳米功能材料的合成技术领域。本发明的技术方案要点为:向含有Ni2+和Co 2+的混合水溶液中加入氨水,通过沉淀法合成镍钴层状双氢氧化物复合材料,再将镍钴层状双氢氧化物复合材料与硫酸铜反应使铜离子吸附于镍钴层状双氢氧化物复合材料的纳米片层之间及表面,即得到含铜离子的镍钴层状双氢氧化物复合材料。本发明的制备过程简单,制得的含铜离子的镍钴层状双氢氧化物复合材料结构中含有二维纳米片层,吸附铜离子多且分散性较好。

Description

一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法
技术领域
本发明属于纳米功能材料的合成技术领域,具体涉及一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法。
背景技术
层状双氢氧化物是一类由层间银离子和带正电荷层板堆积而成的化合物,其层板上的原子之间以共价键结合,层与层之间以氢键等共价键结合。层状双氢氧化物独特的结构使其表现出组成和结构上的可调控性、阻燃性、吸附性以及强碱性等多种特性,在电化学、催化化学、功能高分子材料等领域具有广泛的应用。
纳米铜离子的抗菌性能研究起步较晚,抗菌机理研究尚有不足,许多学者都认为纳米铜离子的抗菌机理与纳米银离子的不同,为催化反应抗菌机理;纳米铜离子能激活水或空气中的氧产生羟基自由基·OH或超氧阴离子O2-,破坏微生物细胞膜的完整性或者破坏微生物细胞的增殖能力,从而导致细胞死亡。层状双氢氧化物复合材料比表面积大,吸附能力强,通过吸附铜离子能够拓展层状双氢氧化物复合材料在抗菌材料领域中的应用。
发明内容
本发明解决的技术问题是提供了一种工艺简单且易于实现的含铜离子的镍钴层状双氢氧化物复合材料的制备方法。
本发明为解决上述技术问题采用如下技术方案,一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于具体过程为:向含有Ni2+和Co 2+的混合水溶液中加入氨水,通过沉淀法合成镍钴层状双氢氧化物复合材料,再将镍钴层状双氢氧化物复合材料与硫酸铜反应使铜离子吸附于镍钴层状双氢氧化物复合材料的纳米片层之间及表面,即得到含铜离子的镍钴层状双氢氧化物复合材料。
进一步优选,所述含有Ni2+和Co 2+的混合水溶液中Ni2+与Co 2+的摩尔比为2:1。
进一步优选,所述氨水的质量浓度为35%,该氨水与含有Ni2+和Co 2+的混合水溶液中Co 2+的配比为1mL:1mmol。
进一步优选,所述镍钴层状双氢氧化物复合材料与硫酸铜的投料配比为1g:0.04mmol。
进一步优选,所述含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于具体步骤为:将10mL摩尔浓度为0.1mol/L的Co(NO3)2•6H2O和20mL摩尔浓度为0.1mol/L的Ni(NO3)2•6H2O混合均匀,再将1mL质量浓度为35%的氨水滴加到上述混合溶液中,滴加完毕后在室温下密封在50mL的玻璃瓶中反应3h,离心分离,用蒸馏水和无水乙醇反复洗涤沉淀数次直至上清液无色,置于60℃烘箱中干燥24h得到镍钴层状双氢氧化物复合材料;将1.0g镍钴层状双氢氧化物复合材料加入到50mL摩尔浓度为0.8mol/L的硫酸铜溶液中,控制反应体系的pH=8.0,于25℃反应1h,用去离子水洗涤3遍,再于25℃真空干燥24h即得含铜离子的镍钴层状双氢氧化物复合材料。
本发明具有以下有益效果:本发明的制备过程简单,制得的含铜离子的镍钴层状双氢氧化物复合材料结构中含有二维纳米片层,吸附铜离子多且分散性较好。
附图说明
图1是实施例1制得的含铜离子的镍钴层状双氢氧化物复合材料的ICP图;
图2是实施例1制得的含铜离子的镍钴层状双氢氧化物复合材料的SEM图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
含铜离子的镍钴层状双氢氧化物复合材料的制备
将10mL摩尔浓度为0.1mol/L的Co(NO3)2•6H2O和20mL摩尔浓度为0.1mol/L的Ni(NO3)2•6H2O混合均匀,再将1mL质量浓度为35%的氨水滴加到上述混合溶液中,滴加完毕后在室温下密封在50mL的玻璃瓶中反应3h,离心分离,用蒸馏水和无水乙醇反复洗涤沉淀数次直至上清液无色,置于60℃烘箱中干燥24h得到镍钴层状双氢氧化物复合材料;
将1.0g镍钴层状双氢氧化物复合材料加入到50mL摩尔浓度为0.8mmol/L的硫酸铜溶液中,控制反应体系的pH=8.0,于25℃反应1h,用去离子水洗涤3遍,再于25℃真空干燥24h即得含铜离子的镍钴层状双氢氧化物复合材料。
检测复合材料中镍、钴、铜离子的浓度,待测液浓度是0.01mg/mL,10000rmp离心10min,取上清液在ICP-AES检测,检测结果见图1。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (5)

1.一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于具体过程为:向含有Ni2+和Co 2+的混合水溶液中加入氨水,通过沉淀法合成镍钴层状双氢氧化物复合材料,再将镍钴层状双氢氧化物复合材料与硫酸铜反应使铜离子吸附于镍钴层状双氢氧化物复合材料的纳米片层之间及表面,即得到含铜离子的镍钴层状双氢氧化物复合材料。
2.根据权利要求1所述的含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于:所述含有Ni2+和Co 2+的混合水溶液中Ni2+与Co 2+的摩尔比为2:1。
3.根据权利要求1所述的含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于:所述氨水的质量浓度为35%,该氨水与含有Ni2+和Co 2+的混合水溶液中Co 2+的配比为1mL:1mmol。
4.根据权利要求1所述的含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于:所述镍钴层状双氢氧化物复合材料与硫酸铜的投料配比为1g:0.04mmol。
5.根据权利要求1所述的含铜离子的镍钴层状双氢氧化物复合材料的制备方法,其特征在于具体步骤为:将10mL摩尔浓度为0.1mol/L的Co(NO3)2•6H2O和20mL摩尔浓度为0.1mol/L的Ni(NO3)2•6H2O混合均匀,再将1mL质量浓度为35%的氨水滴加到上述混合溶液中,滴加完毕后在室温下密封在50mL的玻璃瓶中反应3h,离心分离,用蒸馏水和无水乙醇反复洗涤沉淀数次直至上清液无色,置于60℃烘箱中干燥24h得到镍钴层状双氢氧化物复合材料;将1.0g镍钴层状双氢氧化物复合材料加入到50mL摩尔浓度为0.8mol/L的硫酸铜溶液中,控制反应体系的pH=8.0,于25℃反应1h,用去离子水洗涤3遍,再于25℃真空干燥24h即得含铜离子的镍钴层状双氢氧化物复合材料。
CN201710941668.XA 2017-10-11 2017-10-11 一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法 Pending CN107950571A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710941668.XA CN107950571A (zh) 2017-10-11 2017-10-11 一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710941668.XA CN107950571A (zh) 2017-10-11 2017-10-11 一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107950571A true CN107950571A (zh) 2018-04-24

Family

ID=61954012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710941668.XA Pending CN107950571A (zh) 2017-10-11 2017-10-11 一种含铜离子的镍钴层状双氢氧化物复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107950571A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993716A (zh) * 2020-08-28 2020-11-27 无锡市宇寿医疗器械有限公司 一种除菌杀菌织物层及口罩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956924A (zh) * 2004-04-26 2007-05-02 阿尔伯麦尔荷兰有限公司 含有添加剂的阴离子粘土的制备方法
CN1962046A (zh) * 2006-10-20 2007-05-16 山东大学 一种重金属离子吸附剂及其在去除重金属离子中的应用
CN101804358A (zh) * 2010-04-07 2010-08-18 山西大同大学 金属配合物水滑石复合材料的制备方法
CN102583631A (zh) * 2012-03-02 2012-07-18 北京化工大学 一种采用层状双金属氢氧化物回收利用污水中重金属离子的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956924A (zh) * 2004-04-26 2007-05-02 阿尔伯麦尔荷兰有限公司 含有添加剂的阴离子粘土的制备方法
CN1962046A (zh) * 2006-10-20 2007-05-16 山东大学 一种重金属离子吸附剂及其在去除重金属离子中的应用
CN101804358A (zh) * 2010-04-07 2010-08-18 山西大同大学 金属配合物水滑石复合材料的制备方法
CN102583631A (zh) * 2012-03-02 2012-07-18 北京化工大学 一种采用层状双金属氢氧化物回收利用污水中重金属离子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI SU ET AL: "One-step analysis of glucose and acetylcholine based on intrinsic peroxidaselike activity of Ni/Co LDHs microspheres in water", 《JOURNAL OF MATERIALS CHEMISTRY B》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993716A (zh) * 2020-08-28 2020-11-27 无锡市宇寿医疗器械有限公司 一种除菌杀菌织物层及口罩

Similar Documents

Publication Publication Date Title
Eltaweil et al. Highly efficient removal for methylene blue and Cu2+ onto UiO-66 metal–organic framework/carboxylated graphene oxide-incorporated sodium alginate beads
Wen et al. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade
Kamran et al. Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media
Gao et al. Hydrothermal synthesis of hierarchical hollow hydroxyapatite microspheres with excellent fluoride adsorption property
Guo et al. Environmental-friendly preparation of Ni–Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium (VI)
Qiu et al. Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration
Peng et al. Facile synthesis of Fe3O4@ Cu (OH) 2 composites and their arsenic adsorption application
Dinari et al. Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites
Sheela et al. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles
Jainae et al. Extraction and recovery of precious metal ions in wastewater by polystyrene-coated magnetic particles functionalized with 2-(3-(2-aminoethylthio) propylthio) ethanamine
Li et al. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite
Rethinasabapathy et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration
Duan et al. Effect of Fe3O4@ PDA morphology on the U (VI) entrapment from aqueous solution
Kołodyńska et al. Titania-coated silica alone and modified by sodium alginate as sorbents for heavy metal ions
Viltužnik et al. The removal of Hg (II) ions from aqueous solutions by using thiol-functionalized cobalt ferrite magnetic nanoparticles
Cai et al. Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr (VI)
Yuan et al. Simultaneous adsorption and oxidation of Sb (III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite
Hassan et al. Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution
Venkateswarlu et al. Biopolymer-coated magnetite nanoparticles and metal–organic framework ternary composites for cooperative Pb (II) adsorption
Zavareh et al. Cu (II) binded chitosan/Fe3O4 nanocomomposite as a new biosorbent for efficient and selective removal of phosphate
Sahu et al. Synthesis and characterization of an eco-friendly composite of jute fiber and Fe2O3 nanoparticles and its application as an adsorbent for removal of As (V) from water
Wu et al. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: A case study using porous CeO 2 nanotubes
Gao et al. Constructing hydrangea-like hierarchical zinc-zirconium oxide microspheres for accelerating fluoride elimination
Ji et al. Three-dimensional network graphene oxide/sodium alginate aerogel beads with slit-shaped structure: Synthesis, performance and selective adsorption mechanism for Cu (II)
Vences-Alvarez et al. New bimetallic adsorbent material based on cerium-iron nanoparticles highly selective and affine for arsenic (V)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180424