CN107941570A - 整车voc自动采样舱 - Google Patents

整车voc自动采样舱 Download PDF

Info

Publication number
CN107941570A
CN107941570A CN201711490134.6A CN201711490134A CN107941570A CN 107941570 A CN107941570 A CN 107941570A CN 201711490134 A CN201711490134 A CN 201711490134A CN 107941570 A CN107941570 A CN 107941570A
Authority
CN
China
Prior art keywords
air
nacelle
real
sampling
parking area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711490134.6A
Other languages
English (en)
Inventor
黄发新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Bo Fu Tong Test Equipment Co Ltd
Original Assignee
Wuhan Bo Fu Tong Test Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Bo Fu Tong Test Equipment Co Ltd filed Critical Wuhan Bo Fu Tong Test Equipment Co Ltd
Priority to CN201711490134.6A priority Critical patent/CN107941570A/zh
Publication of CN107941570A publication Critical patent/CN107941570A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • G01N2001/245Fans

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提出了一种整车VOC自动采样舱,通过鼓风机强制将风送到舱内,再经过过滤器进入混合风通道,与新风进风系统鼓入的新风混合均匀,再经过加湿器、空调蒸发器、电加热器后,再到鼓风机,形成循环,新风与舱内循环空气在混合风通道内混合更加均匀,在舱内测得的采样数据更加精准;通过设置自动化控制系统,可自动调节舱内环境,并检测、显示甲醛、甲苯、一氧化碳和二氧化碳实时浓度,减少人为采样的干扰,提高检测精度;混合风通道出风口出风经天花板反弹后向下进入停车区域内,在舱内分散更加均匀,采样数据更加精准;设置通风隔板和承重台,形成回风通道,使得混合风通道出风口出风从上至下循环,分散更加均匀,采样数据更加精准。

Description

整车VOC自动采样舱
技术领域
本发明涉及环境试验系统,尤其涉及一种整车VOC自动采样舱。
背景技术
汽车内饰因为材料的特性及在加工过程使用了带VOC的物质,当我们人员在车内活动时可能呼吸道甲醛等VOC物质,同时会给我们人身安全带来一定程度的伤害。
传统的整车VOC自动采样舱安装在地基上,在测试舱内装设循环风道,循环风道与测试舱之间围合而成测试空间,测试空间的气体经过设置在测试舱内的过滤装置进入循环风道,该循环风道内装设有蒸发器、加热加湿器和循环风机,其气体循环方式是在过滤装置、循环风道和测试空间之间进行循环,气体在测试空间内产生纹流,分布不均匀,降低了测试精度。
此外,现有的整车VOC采样舱,往往通过人工检测控制整个系统的运行并采样,效率低下,人为进出也会对整车VOC采样舱内的空气环境造成影响,导致检测精度较低。
发明内容
有鉴于此,本发明提出了一种气体分布均匀、测试精度高的整车VOC自动采样舱。
本发明的技术方案是这样实现的:本发明提供了一种整车VOC自动采样舱,其包括采样舱体、新风进风系统、新风进风通道、过滤器、加湿器、空调蒸发器、电加热器和风机,采样舱体内设置有停车区域,新风进风系统连通新风进风通道,还包括混合风通道、湿度传感器、温度传感器、风速传感器和PLC控制电路,过滤器连通混合风通道与采样舱体内停车区域,加湿器、空调蒸发器、电加热器和风机设置于混合风通道内,新风进风通道连通混合风通道,混合风通道出风口设置于采样舱体顶部,其中,
湿度传感器,检测停车区域实时湿度并发送给PLC控制电路;
温度传感器,检测停车区域实时温度并发送给PLC控制电路;
风速传感器,检测混合风通道出风口实时风速并发送给PLC控制电路;
PLC控制电路,分别与湿度传感器、温度传感器和风速传感器信号连接,与加湿器、空调蒸发器、电加热器和风机电性连接,将实时湿度与预设湿度范围进行对比,并通过调节加湿器输出功率将实时湿度控制在预设湿度范围内;将实时温度与预设温度范围进行对比,并通过调节电加热器输出功率将实时温度控制在预设温度范围内;将实时风速与预设风速范围进行对比,并通过调节风机输出功率将实时风速控制在预设风速范围内。
在以上技术方案的基础上,优选的,混合风通道出风口正对采样舱体天花板设置,出风经天花板反弹后向下进入停车区域内,过滤器设置于采样舱体底部。
所述采样舱体内设置有通风隔板和承重台,承重台设置于采样舱体底部并支撑通风隔板,通风隔板底部形成回风通道,采样舱体内停车区域通过回风通道连通过滤器。
在以上技术方案的基础上,优选的,还包括接水盘,设置于混合风通道内,并位于空调蒸发器下方。
在以上技术方案的基础上,优选的,所述采样舱体内设置有通风隔板和承重台,承重台设置于采样舱体底部并支撑通风隔板,通风隔板底部形成回风通道,采样舱体通过回风通道连通过滤器。
在以上技术方案的基础上,优选的,所述新风进风系统包括鼓风机、过滤通道、风阀和过滤网,鼓风机、过滤通道、风阀和新风进风通道依次连通,过滤通道内设置有过滤网。进一步优选的,所述新风进风系统风量满足以下公式,
其中
N为换气次数,W2为鼓风机换气状态下最大功率,W1为鼓风机不换气状态下功率,V为采样舱体体积,ρ为空气密度,t1为外界环境温度,t2为采样舱体内温度。
在以上技术方案的基础上,优选的,所述采样舱体停车区域正上方设置有卤素射灯,卤素射灯设置有多个,呈矩阵排列,最小照射范围3*4米,照射强度150W~450W/m2,每个卤素射灯前配制可滤除300nm波长的滤光片,采样舱体停车区域四周设置有矩阵排列的红外灯管,停车区域每个方向的红外灯管设置有多个,呈矩阵排列,红外灯管距离照射面500mm距离。进一步优选的,还包括光照度传感器和功率调整器,其中,
光照度传感器,检测采样舱体停车区域实时光照度并发送给PLC控制电路;
PLC控制电路,与光照度传感器信号连接,与功率调整器电性连接,将实时光照度与预设光照度范围进行对比,并通过调节功率调整器输出功率将卤素射灯和红外灯管实时温度控制在预设光照度范围内;
功率调整器,分别与卤素射灯和红外灯管电性连接。
在以上技术方案的基础上,优选的,还包括碳氢化合物传感器、处理器与人机交互界面,其中,碳氢化合物传感器、处理器与人机交互界面依次信号连接,
碳氢化合物传感器,检测采样舱体内甲醛、甲苯、一氧化碳和二氧化碳实时浓度,并发送给处理器;
处理器,将实时甲醛、甲苯、一氧化碳和二氧化碳实时浓度与预设范围进行对比,在实时浓度超出预设范围时,发出警示信息;
人机交互界面,显示实时浓度数据和警示信息。
本发明的整车VOC自动采样舱相对于现有技术具有以下有益效果:
(1)通过鼓风机强制将风送到舱内,再经过过滤器进入混合风通道,与新风进风系统鼓入的新风混合均匀,再经过加湿器、空调蒸发器、电加热器后,再到鼓风机,形成循环,新风与舱内循环空气在混合风通道内混合更加均匀,在舱内测得的采样数据更加精准;
(2)通过设置自动化控制系统,可自动调节舱内环境,并检测、显示甲醛、甲苯、一氧化碳和二氧化碳实时浓度,减少人为采样的干扰,提高检测精度;
(3)混合风通道出风口出风经天花板反弹后向下进入停车区域内,在舱内分散更加均匀,采样数据更加精准;
(4)设置通风隔板和承重台,形成回风通道,使得混合风通道出风口出风从上至下循环,分散更加均匀,采样数据更加精准。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明整车VOC自动采样舱的剖视图;
图2为本发明整车VOC自动采样舱的电路部分的框图;
图3为新风进风系统的正剖视图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
如图1所示,结合图2,本发明的整车VOC自动采样舱体,其包括采样舱体2、新风进风系统3、新风进风通道4、过滤器6、加湿器7、空调蒸发器8、电加热器9、风机10、混合风通道5、湿度传感器1、温度传感器11、风速传感器12、PLC控制电路13、通风隔板14、承重台15、回风通道16、接水盘17、红外灯管18、卤素射灯24、光照度传感器19、功率调整器20、氢化合物传感器21、处理器22与人机交互界面23。
其中,作为机械部分:
采样舱体2内设置有停车区域,供停入整车;并提供风循环的空间,设置采样器材。
作为内部风循环部分,过滤器6连通混合风通道5与采样舱体2,加湿器7、空调蒸发器8、电加热器9和风机10设置于混合风通道5内,混合风通道5出风口设置于采样舱体2顶部。如此,通过风机10将混合风强制从混合风通道5出风口送出,经采样舱体2,从上至下运动,再经过滤器6回到混合风通道5内。优选的,为了使得舱内混合风从上至下运动,混合风通道5出风口正对采样舱体2天花板设置,出风经天花板反弹后向下进入停车区域内。具体的,所述过滤器6设置于采样舱体2底部。为了使得采样舱体2内的风分散更加均匀,所述采样舱体2内设置有风机14和承重台15,承重台15设置于采样舱体2底部并支撑风机14,风机14底部形成回风通道16,采样舱体2通过回风通道16连通过滤器6。空调蒸发器8在运行过程中会产生冷凝水,接水盘9,设置于混合风通道5内,并位于空调蒸发器8下方,便于收集并排出冷凝水。具体的,风机10可采用变频器,将风速控制在0.3m/s。
作为本发明改进之处,新风进风系统3连通新风进风通道4,新风进风通道4连通混合风通道5,如此,新风与舱内风在混合风通道5内均匀混合后再从混合风通道5出风口送出,混合更加均匀,在舱内测得的采样数据更加精准。具体的,如图3,所述新风进风系统3包括鼓风机31、过滤通道32、风阀33和过滤网34,鼓风机31、过滤通道32、风阀33和新风进风通道4依次连通,过滤通道32内设置有过滤网34。如此,通过鼓风机31鼓入新风,新风经过滤网34过滤出去杂质成分后进入新风进风通道4,防止对检测判断产生影响。具体的,所述过滤网34设置有三层,按照进风方向,依次为初滤网、HEPA滤网和活性炭滤网。具体的,所述新风进风系统3设置有三台,分别与新风进风通道4连通。具体的,所述新风进风系统3风量满足以下公式,
其中
N为换气次数,W2为鼓风机31换气状态下最大功率,W1为鼓风机31不换气状态下功率,V为采样舱体2体积,ρ为空气密度,t1为外界环境温度,t2为采样舱体2内温度。
对于采样舱体2内产生的尾气,经过空气处理器处理后排放,这部分可采用现有技术。
采样舱体2的板材选择需要考虑到保温、密封和防止释放VOC的影响。具体的,采样舱体2包括三层材料,外层采用钢板,厚度1mm;中间层采用高阻燃聚氨酯发泡材料,厚度75mm,密度40K,防火等级B级,阻燃耐温性可达90℃长期运行不碳化,以免释放VOC;内层采用SUS304镜面材料,厚度为1mm,边封部位采用不锈钢。
此外,本发明还增加了太阳照射模拟装置,具体的,所述采样舱体2停车区域正上方设置有卤素射灯24,对车顶进行照射。卤素射灯24发射紫外线和红外线光,光照度大,可减少使用数量。具体的,卤素射灯24设置有多个,呈矩阵排列,最小照射范围3*4米,照射强度150W~450W/m2,每个卤素射灯24前配制可滤除300nm波长的滤光片。具体的,所述采样舱体2停车区域四周设置有矩阵排列的红外灯管18,对车身进行照射。具体的,采样舱体2停车区域每个方向的红外灯管18设置有多个,呈矩阵排列,红外灯管18距离照射面500mm距离。为了方便调节照射角度和移动,矩阵排列的红外灯管18固定在角度可调的照射板上,可对车辆前后、两侧加热。
作为电路控制部分,如图2所示,
湿度传感器1,检测停车区域实时湿度并发送给PLC控制电路13;
温度传感器11,检测停车区域实时温度并发送给PLC控制电路13;
风速传感器12,检测混合风通道5出风口实时风速并发送给PLC控制电路13;
PLC控制电路13,分别与湿度传感器1、温度传感器11和风速传感器12信号连接,与加湿器7、空调蒸发器8、电加热器9和风机10电性连接,将实时湿度与预设湿度范围进行对比,并通过调节加湿器7输出功率将实时湿度控制在预设湿度范围内;将实时温度与预设温度范围进行对比,并通过调节电加热器9输出功率将实时温度控制在预设温度范围内;将实时风速与预设风速范围进行对比,并通过调节风机10输出功率将实时风速控制在预设风速范围内。
作为光照度控制部分,包括光照度传感器19和功率调整器20,其中,
光照度传感器19,检测采样舱体2停车区域实时光照度并发送给PLC控制电路13;
PLC控制电路13,与光照度传感器19信号连接,与功率调整器20电性连接,将实时光照度与预设光照度范围进行对比,并通过调节功率调整器20输出功率将卤素射灯24和红外灯管18实时温度控制在预设光照度范围内;
功率调整器20,分别与卤素射灯17和红外灯管18电性连接。
作为浓度检测部分,包括碳氢化合物传感器21、处理器22与人机交互界面23,其中,碳氢化合物传感器21、处理器22与人机交互界面23依次信号连接,
碳氢化合物传感器21,检测采样舱体2内甲醛、甲苯、一氧化碳和二氧化碳实时浓度,并发送给处理器22;
处理器22,将实时甲醛、甲苯、一氧化碳和二氧化碳实时浓度与预设范围进行对比,在实时浓度超出预设范围时,发出警示信息;
人机交互界面23,显示实时浓度数据和警示信息。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种整车VOC自动采样舱,其包括采样舱体(2)、新风进风系统(3)、新风进风通道(4)、过滤器(6)、加湿器(7)、空调蒸发器(8)、电加热器(9)和风机(10),采样舱体(2)内设置有停车区域,新风进风系统(3)连通新风进风通道(4),其特征在于:还包括混合风通道(5)、湿度传感器(1)、温度传感器(11)、风速传感器(12)和PLC控制电路(13),过滤器(6)连通混合风通道(5)与采样舱体(2)内停车区域,加湿器(7)、空调蒸发器(8)、电加热器(9)和风机(10)设置于混合风通道(5)内,新风进风通道(4)连通混合风通道(5),混合风通道(5)出风口设置于采样舱体(2)顶部,其中,
湿度传感器(1),检测停车区域实时湿度并发送给PLC控制电路(13);
温度传感器(11),检测停车区域实时温度并发送给PLC控制电路(13);
风速传感器(12),检测混合风通道(5)出风口实时风速并发送给PLC控制电路(13);
PLC控制电路(13),分别与湿度传感器(1)、温度传感器(11)和风速传感器(12)信号连接,与加湿器(7)、空调蒸发器(8)、电加热器(9)和风机(10)电性连接,将实时湿度与预设湿度范围进行对比,并通过调节加湿器(7)输出功率将实时湿度控制在预设湿度范围内;将实时温度与预设温度范围进行对比,并通过调节电加热器(9)输出功率将实时温度控制在预设温度范围内;将实时风速与预设风速范围进行对比,并通过调节风机(10)输出功率将实时风速控制在预设风速范围内。
2.如权利要求1所述的整车VOC自动采样舱,其特征在于:混合风通道(5)出风口正对采样舱体(2)天花板设置,出风经天花板反弹后向下进入停车区域内,过滤器(6)设置于采样舱体(2)底部。
3.如权利要求1所述的整车VOC自动采样舱,其特征在于:所述采样舱体(2)内设置有通风隔板(14)和承重台(15),承重台(15)设置于采样舱体(2)底部并支撑通风隔板(14),通风隔板(14)底部形成回风通道(16),采样舱体(2)内停车区域通过回风通道(16)连通过滤器(6)。
4.如权利要求1所述的整车VOC自动采样舱,其特征在于:还包括接水盘(17),设置于混合风通道(5)内,并位于空调蒸发器(8)下方。
5.如权利要求1所述的整车VOC自动采样舱,其特征在于:所述新风进风系统(3)包括鼓风机(31)、过滤通道(32)、风阀(33)和过滤网(34),鼓风机(31)、过滤通道(32)、风阀(33)和新风进风通道(4)依次连通,过滤通道(32)内设置有过滤网(34)。
6.如权利要求5所述的整车VOC自动采样舱,其特征在于:所述新风进风系统(3)风量满足以下公式,
其中
N为换气次数,W2为鼓风机(31)换气状态下最大功率,W1为鼓风机(31)不换气状态下功率,V为采样舱体(2)体积,ρ为空气密度,t1为外界环境温度,t2为采样舱体(2)内温度。
7.如权利要求1所述的整车VOC自动采样舱,其特征在于:所述采样舱体(2)停车区域正上方设置有卤素射灯(24),卤素射灯(24)设置有多个,呈矩阵排列,最小照射范围3*4米,照射强度150W~450W/m2,每个卤素射灯(24)前配制可滤除300nm波长的滤光片,采样舱体(2)停车区域四周设置有矩阵排列的红外灯管(18),停车区域每个方向的红外灯管(18)设置有多个,呈矩阵排列,红外灯管(18)距离照射面500mm距离。
8.如权利要求8所述的整车VOC自动采样舱,其特征在于:还包括光照度传感器(19)和功率调整器(20),其中,
光照度传感器(19),检测采样舱体(2)停车区域实时光照度并发送给PLC控制电路(13);
PLC控制电路(13),与光照度传感器(19)信号连接,与功率调整器(20)电性连接,将实时光照度与预设光照度范围进行对比,并通过调节功率调整器(20)输出功率将卤素射灯(24)和红外灯管(18)实时温度控制在预设光照度范围内;
功率调整器(20),分别与卤素射灯(17)和红外灯管(18)电性连接。
9.如权利要求1所述的整车VOC自动采样舱,其特征在于:还包括碳氢化合物传感器(21)、处理器(22)与人机交互界面(23),其中,碳氢化合物传感器(21)、处理器(22)与人机交互界面(23)依次信号连接,
碳氢化合物传感器(21),检测采样舱体(2)内甲醛、甲苯、一氧化碳和二氧化碳实时浓度,并发送给处理器(22);
处理器(22),将实时甲醛、甲苯、一氧化碳和二氧化碳实时浓度与预设范围进行对比,在实时浓度超出预设范围时,发出警示信息;
人机交互界面(23),显示实时浓度数据和警示信息。
CN201711490134.6A 2017-12-30 2017-12-30 整车voc自动采样舱 Pending CN107941570A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711490134.6A CN107941570A (zh) 2017-12-30 2017-12-30 整车voc自动采样舱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711490134.6A CN107941570A (zh) 2017-12-30 2017-12-30 整车voc自动采样舱

Publications (1)

Publication Number Publication Date
CN107941570A true CN107941570A (zh) 2018-04-20

Family

ID=61937204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711490134.6A Pending CN107941570A (zh) 2017-12-30 2017-12-30 整车voc自动采样舱

Country Status (1)

Country Link
CN (1) CN107941570A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018025A (zh) * 2019-01-15 2019-07-16 厦门明鼎环境科技有限公司 一种组合式整车车内空气质量检测采样环境舱
CN113063811A (zh) * 2021-03-26 2021-07-02 定远蓝恩汽车试验检测有限公司 一种用于汽车内部环境检测机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040096824A (ko) * 2004-09-06 2004-11-17 주식회사 코만도텍 도장부스용 휘발성유기화합물 저감장치
CN201811955U (zh) * 2010-10-21 2011-04-27 上海科绿特环境科技有限公司 汽车voc释放量测试环境箱
CN202305279U (zh) * 2011-08-19 2012-07-04 东莞市升微机电设备科技有限公司 挥发性有机物检测系统的孔板式风道结构
CN102928235A (zh) * 2012-11-12 2013-02-13 东莞市升微机电设备科技有限公司 汽车整车voc测试舱循环风道结构
CN104111266A (zh) * 2014-07-18 2014-10-22 常熟市环境试验设备有限公司 高精度自然通风热老化试验箱
CN104614206A (zh) * 2015-02-09 2015-05-13 通标标准技术服务(上海)有限公司 一种voc整车环境采样舱及其测试方法
CN106288247A (zh) * 2015-05-14 2017-01-04 上海秦沛环保科技有限公司 步入式整车voc和醛酮类采样环境舱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040096824A (ko) * 2004-09-06 2004-11-17 주식회사 코만도텍 도장부스용 휘발성유기화합물 저감장치
CN201811955U (zh) * 2010-10-21 2011-04-27 上海科绿特环境科技有限公司 汽车voc释放量测试环境箱
CN202305279U (zh) * 2011-08-19 2012-07-04 东莞市升微机电设备科技有限公司 挥发性有机物检测系统的孔板式风道结构
CN102928235A (zh) * 2012-11-12 2013-02-13 东莞市升微机电设备科技有限公司 汽车整车voc测试舱循环风道结构
CN104111266A (zh) * 2014-07-18 2014-10-22 常熟市环境试验设备有限公司 高精度自然通风热老化试验箱
CN104614206A (zh) * 2015-02-09 2015-05-13 通标标准技术服务(上海)有限公司 一种voc整车环境采样舱及其测试方法
CN106288247A (zh) * 2015-05-14 2017-01-04 上海秦沛环保科技有限公司 步入式整车voc和醛酮类采样环境舱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018025A (zh) * 2019-01-15 2019-07-16 厦门明鼎环境科技有限公司 一种组合式整车车内空气质量检测采样环境舱
CN113063811A (zh) * 2021-03-26 2021-07-02 定远蓝恩汽车试验检测有限公司 一种用于汽车内部环境检测机构

Similar Documents

Publication Publication Date Title
CN106288247A (zh) 步入式整车voc和醛酮类采样环境舱
CN108025623A (zh) 汽车的主动式空气净化器
CN201811955U (zh) 汽车voc释放量测试环境箱
CN105784929B (zh) 一种测定室内环境中建材散发特性的系统及其环境舱
CN103717978B (zh) 空调系统
CN101566531A (zh) 一种环境测试舱及应用其获得测试环境的方法
CN104399539B (zh) 一种空气净化器的开窗试验测试舱及其测试方法
US6625995B2 (en) Device for detecting a risk of misting of a motor-vehicle window, and installation including such a device
CN106093311A (zh) 气味、voc及漂浮有害物质测试装置
CN106553775B (zh) 环境模拟试验箱及其环境模拟方法
DE602007009912D1 (de) Niedrigprofil-HVAC-System
CN103091116A (zh) 风沙环境模拟实验台
CN107941570A (zh) 整车voc自动采样舱
Bosbach et al. Evaluation of cabin displacement ventilation under flight conditions
CN110579366A (zh) 一种基于净化性能确定新风净化机适用面积的方法
CN115290520A (zh) 一种移动式细颗粒物在线校准方法
CN106769796A (zh) 一种测量大气颗粒物室内外穿透系数的实验装置及其实验方法
US4324146A (en) Sampling apparatus and process
CN205982221U (zh) 气味、voc及漂浮有害物质测试装置
CN204575393U (zh) 一种步入式整车voc和醛酮类采样环境舱
KR101012087B1 (ko) 항원 폭로장치
CN108195657A (zh) 整车voc采样环境舱
CN207133092U (zh) 天然雾霾气体收集浓缩实验装置
CN217520703U (zh) 一种可变环境燃烧舱小型森林火灾燃烧风洞实验平台
CN107389514A (zh) 一种大气雾霾采集分析释放装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420