CN107910385B - 一种铟镓砷红外探测器制备方法 - Google Patents

一种铟镓砷红外探测器制备方法 Download PDF

Info

Publication number
CN107910385B
CN107910385B CN201711057712.7A CN201711057712A CN107910385B CN 107910385 B CN107910385 B CN 107910385B CN 201711057712 A CN201711057712 A CN 201711057712A CN 107910385 B CN107910385 B CN 107910385B
Authority
CN
China
Prior art keywords
infrared detector
indium gallium
gallium arsenic
inp
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711057712.7A
Other languages
English (en)
Other versions
CN107910385A (zh
Inventor
汤乃云
仇志军
单亚兵
龚海梅
李雪
邵秀梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201711057712.7A priority Critical patent/CN107910385B/zh
Publication of CN107910385A publication Critical patent/CN107910385A/zh
Application granted granted Critical
Publication of CN107910385B publication Critical patent/CN107910385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种铟镓砷红外探测器制备方法,为一种InP/InGaAs/InP类型的P‑I‑N结构红外探测器,用旋涂法制备一层掺杂稀土材料的下转换发光薄膜到铟镓砷红外探测器InP帽层上作为转换层,此转换层吸收400nm~600nm可见光,发射1μm近红外光。利用掺杂稀土元素的氯硫玻璃完成可见光到近红外光的转换,不影响铟镓砷红外探测器对短波红外的吸收,同时吸收400nm~600nm可见光,发射1μm左右的近红外光被铟镓砷红外探测器吸收,实现铟镓砷红外探测器可见光范围的扩展。具有结构简单,成本低的优点。当需要进行多波段探测时,扩展铟镓砷红外探测器探测范围到可见光这种方式优势非常明显、实用性很强。

Description

一种铟镓砷红外探测器制备方法
技术领域
本发明涉及一种红外探测器制备方法,特别涉及一种可见范围扩展的铟镓砷红外探测器制备方法。
背景技术
在自然界中,温度高于绝对零度的任何物体,都会不断地向四周辐射红外谱线,物体发出的辐射,都要通过大气传输才能到达红外接收装置。由于大气中二氧化碳、水蒸气等气体对红外辐射会产生选择性吸收和微粒散射,使红外辐射发生不同程度的衰减。通常将大气窗口分为短波红外(1~3μm)、中波红外(3~6μm)、和长波红外(6~15μm)。
红外探测技术是利用目标与背景间的红外辐射差所形成的热点或图像获取目标及背景信息。根据探测目标波长的不同,所选用的探测器也不同,在短波红外探测领域,铟镓砷红外探测器因其具有常温工作特性以及铟镓砷材料生长的稳定性而倍受青睐。
下转换材料发光材料,是指能够在吸收一个高能光子的可见光后,发射两个或多个低能光子的材料。由于下转换发光可将一个高能光子转换为两个以上的可被利用的低能光子,在理论上量子效率可达到200%以上。在氯硫玻璃GeS2–Ga2S3–CsCl中掺杂稀土元素Er,Yb能有效的将400nm~600nm可见光转换为1μm的近红外光。
随着现代应用的需要,对红外探测器的研究主要集中在以下几个方面:
1)充分利用大气窗口,探测光谱从近红外光谱扩展到长波红外光谱,甚至甚长波红外光谱;
2)实现对目标的非制冷探测;
3)从单元器件发展到多元、凝视型焦平面阵列,以及探测器读出电路实现单片集成;
4)由单波段发展到双波段甚至多波段的红外探测器。
因此,通过组合铟镓砷红外探测器与稀土掺杂GeS2–Ga2S3–CsCl:Er,Yb下转换发光材料来扩展铟镓砷红外探测器探测范围到可见光是符合研究趋势的。
发明内容
本发明是针对目前铟镓砷红外探测器仅能探测单一波长的近红外波的问题,提出了一种铟镓砷红外探测器制备方法,该探测器中InP帽层上的下转换发光材料能够透过近红外波,不影响铟镓砷红外探测器对短波红外的吸收,同时吸收400nm~600nm可见光,发射1μm左右的近红外光被铟镓砷红外探测器吸收,能够实现铟镓砷红外探测器可见光范围的扩展。
本发明的技术方案为:一种铟镓砷红外探测器制备方法,为一种InP/InGaAs/InP类型的P-I-N结构红外探测器,用旋涂法制备一层掺杂稀土材料的下转换发光薄膜到铟镓砷红外探测器InP帽层上作为转换层,此转换层吸收400nm~600nm可见光,发射1μm近红外光。
所述下转换发光薄膜的制作:使用高纯度多晶99.999%锗、99.999%镓、99.999%硫和99.9%氯化铯人工合成GeS2–Ga2S3–CsCl基质氯硫玻璃,以99.9%Er2S3、99.9%Yb2S3的形式掺杂稀土元素Er,Yb到基质氯硫玻璃,用旋涂法制备一层GeS2–Ga2S3–CsCl:Er,Yb下转换发光薄膜。
所述掺杂稀土材料的下转换发光薄膜中的稀土离子为Pr3+或者Tb3+或者Tm3+与Yb3+之间的组合。
所述InP/InGaAs/InP类型的P-I-N结构红外探测器的制作:采用金属有机化学气相沉积技术在InP半绝缘衬底上依次生长
1)、厚度0.5μm,掺Si浓度为2×1018cm-3的N+型InP缓冲层;
2)、N+型InP缓冲层4中间段上面的厚度为2.5μm,掺Si浓度为5×1016cm-3的N-型InGaAs吸收层;
3)整个N-型InGaAs吸收层3上面的厚度为1.0μm,掺Zn浓度为4×1018的P型InP帽层。
在制作后InP/InGaAs/InP类型的P-I-N结构红外探测器上,以SiNx作为扩散阻挡层,扩散源为磷化锌,在InP缓冲层两端生长N型接触电极Au,厚度为20nm,在InP帽层生长欧姆接触P型接触电极Au/Zn/Au,厚度分别为20/70/300nm。
本发明的有益效果在于:本发明一种铟镓砷红外探测器制备方法,利用掺杂稀土元素的氯硫玻璃完成可见光到近红外光的转换,将400nm~600nm可见光转换成铟镓砷探测器可以探测的1μm近红外光,具有结构简单,成本低的优点。当需要进行多波段探测时,扩展铟镓砷红外探测器探测范围到可见光这种方式优势非常明显、实用性很强。
附图说明
图1为本发明扩展后铟镓砷红外探测器结构示意图;
图2为本发明下转换材料GeS2–Ga2S3–CsCl:Er,Yb转换过程图;
图3为本发明下转换膜在458nm激发光谱下的发射光谱图.
具体实施方式
如图1所示扩展后铟镓砷红外探测器结构示意图,为一种InP/InGaAs/InP类型的P-I-N结构红外探测器,本实例采用金属有机化学气相沉积(MOCVD)技术在InP半绝缘衬底上依次生长1)、厚度0.5μm,掺Si浓度为2×1018cm-3的N+型InP缓冲层4;2)、N+型InP缓冲层4中间段上面的厚度为2.5μm,掺Si浓度为5×1016cm-3的N-型InGaAs吸收层3;3)整个N-型InGaAs吸收层3上面的厚度为1.0μm,掺Zn浓度为4×1018的P型InP帽层2。
SiNx作为扩散阻挡层,扩散源为磷化锌,在InP缓冲层4两端生长N型接触电极Au,厚度为20nm,在InP帽层2生长欧姆接触P型接触电极Au/Zn/Au,厚度分别为20/70/300nm。
使用三氯乙烯、乙醚、丙酮、乙醇对外延片进行清洗,用等离子体增强化学气相沉积(200nm)的SiNx作为扩散阻挡层,在SiNx层上利用标准光刻工艺和湿法腐蚀开孔扩散,然后以磷化锌为扩散源,利用闭管扩散工艺进行Zn扩散,形成P-InP帽层。在扩散窗口层再淀积200nm的SiNx层作为抗反射钝化层,开P电极孔并生长Au/Zn/Au作为P型电极,厚度分别为20/70/300nm,然后480℃退火15s。
本实例使用高纯度多晶锗(99.999%)、镓(99.999%)、硫(99.999%)和氯化铯(99.9%)人工合成GeS2–Ga2S3–CsCl基质氯硫玻璃,以Er2S3(99.9%)、Yb2S3(99.9%)的形式掺杂稀土元素Er,Yb到基质玻璃,用旋涂法制备一层GeS2–Ga2S3–CsCl:Er,Yb下转换发光薄膜到铟镓砷红外探测器InP帽层上作为转换层1,该转换层转换一个可见光子为两个近红外光子的过程如图2所示,图3为在458nm可见光激发下下转换材料膜的发射光谱,由结果可以看出发射光谱集中在1μm近红外光波段,体现出铟镓砷红外探测器探测范围由近红外波段向可见光的扩展。
所述旋涂法制备一层掺杂稀土材料的下转换发光薄膜,吸收400nm~600nm可见光,发射1μm近红外光。除了实施例中的掺杂稀土元素Er,Yb外,掺杂的稀土离子还可以为Pr3+或者Tb3+或者Tm3+与Yb3+之间的组合。

Claims (2)

1.一种铟镓砷红外探测器制备方法,为一种InP/InGaAs/InP类型的P-I-N结构红外探测器,其特征在于,用旋涂法制备一层掺杂稀土材料的下转换发光薄膜到铟镓砷红外探测器InP帽层上作为转换层,此转换层吸收400nm~600nm可见光,发射1μm近红外光;
所述下转换发光薄膜的制作:使用高纯度多晶99.999%锗、99.999%镓、99.999%硫和99.9%氯化铯人工合成GeS2–Ga2S3–CsCl基质氯硫玻璃,以99.9%Er2S3、99.9%Yb2S3的形式掺杂稀土元素Er,Yb到基质氯硫玻璃,用旋涂法制备一层GeS2–Ga2S3–CsCl:Er,Yb下转换发光薄膜。
2.根据权利要求1所述铟镓砷红外探测器制备方法,其特征在于,所述掺杂稀土材料的下转换发光薄膜中的稀土离子还可以为Pr3+或者Tb3+或者Tm3+与Yb3+之间的组合。
CN201711057712.7A 2017-11-01 2017-11-01 一种铟镓砷红外探测器制备方法 Active CN107910385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711057712.7A CN107910385B (zh) 2017-11-01 2017-11-01 一种铟镓砷红外探测器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711057712.7A CN107910385B (zh) 2017-11-01 2017-11-01 一种铟镓砷红外探测器制备方法

Publications (2)

Publication Number Publication Date
CN107910385A CN107910385A (zh) 2018-04-13
CN107910385B true CN107910385B (zh) 2021-08-27

Family

ID=61843342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711057712.7A Active CN107910385B (zh) 2017-11-01 2017-11-01 一种铟镓砷红外探测器制备方法

Country Status (1)

Country Link
CN (1) CN107910385B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461788A (zh) * 2018-10-22 2019-03-12 中国科学院上海技术物理研究所 一种背照射型的可见及短波红外宽光谱InGaAs探测器
CN109461785A (zh) * 2018-10-22 2019-03-12 中国科学院上海技术物理研究所 一种正照射型的可见及短波红外宽光谱InGaAs探测器
CN113959272B (zh) * 2018-12-26 2023-04-11 昆明凯航光电科技有限公司 一种近红外激光波长转换靶板
CN111694179A (zh) * 2020-06-02 2020-09-22 深圳市华星光电半导体显示技术有限公司 一种显示装置及其制备方法
CN114649423B (zh) * 2022-03-24 2023-03-24 中国科学院半导体研究所 光谱探测器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017167B (zh) * 2008-04-29 2016-05-18 皇家飞利浦电子股份有限公司 具有波长转换体的光检测器
CN102208480A (zh) * 2010-03-30 2011-10-05 连洪洲 太阳能电池用光转换氟化物纳米粒子的制备
CN103194231B (zh) * 2013-04-08 2015-03-04 北京工业大学 一种稀土/金属离子掺杂下转换发光增强材料及其制备方法
CN104332527B (zh) * 2014-10-08 2016-08-24 中国电子科技集团公司第五十研究所 一种提高铟镓砷红外探测器响应率的方法及相应探测器

Also Published As

Publication number Publication date
CN107910385A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107910385B (zh) 一种铟镓砷红外探测器制备方法
Muñoz (Al, In, Ga) N‐based photodetectors. Some materials issues
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
US20200212237A1 (en) Short wavelength infrared optoelectronic devices having a dilute nitride layer
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN108878576B (zh) 一种氧化镓基紫外探测器
US20150179863A1 (en) Avalanche photodiode utilizing interfacial misfit array
Vigue et al. Evaluation of the potential of ZnSe and Zn (Mg) BeSe compounds for ultraviolet photodetection
CN105261668A (zh) 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
Nie et al. The excellent performance of β-Ga2O3 Schottky photodiode under forward bias and its application in solar-blind ultraviolet communication
Rogalski et al. Ultraviolet photodetectors: From photocathodes to low-dimensional solids
CN108538930A (zh) 光电探测器
Parakh et al. Ensemble GaAsSb/GaAs axial configured nanowire-based separate absorption, charge, and multiplication avalanche near-infrared photodetectors
Boltar et al. Solid-state photoelectronics of the ultraviolet range
Cho et al. Photoresponse of n-ZnO/p-Si photodiodes to violet-green bandwidth light caused by defect states
Yang et al. Zero-biased solar-blind photodetector based on ZnBeMgO/Si heterojunction
Joshi et al. Low-noise UV-to-SWIR broadband photodiodes for large-format focal plane array sensors
Lee et al. Characterization of electron irradiated GaN n+–p diode
Dabiran et al. Direct deposition of GaN-based photocathodes on microchannel plates
CN113782403B (zh) 一种AlGaN/GaN量子阱近红外-紫外双色探测光电阴极及其制备工艺
Maddox et al. Low-noise high-gain tunneling staircase photodetector
Plis et al. Lateral diffusion of minority carriers in InAsSb-based nBn detectors
Hwang et al. Mg x Zn 1–x O/ZnO Quantum Well Photodetectors Fabricated by Radio-Frequency Magnetron Sputtering
Brazzini et al. Impact of AlN spacer on metal–semiconductor–metal Pt–InAlGaN/GaN heterostructures for ultraviolet detection
Liu et al. Investigation and fabrication of p-Si/N-Mg 0.3 Zn 0.7 O: In self-powered heterojunction photodiodes by mist atmospheric pressure chemical vapor deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant