CN107907236A - 一种电池管理系统的高精度温度检测电路 - Google Patents

一种电池管理系统的高精度温度检测电路 Download PDF

Info

Publication number
CN107907236A
CN107907236A CN201711215246.0A CN201711215246A CN107907236A CN 107907236 A CN107907236 A CN 107907236A CN 201711215246 A CN201711215246 A CN 201711215246A CN 107907236 A CN107907236 A CN 107907236A
Authority
CN
China
Prior art keywords
temperature detection
unit
partial pressure
detection circuit
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711215246.0A
Other languages
English (en)
Inventor
周春苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Blueway New Energy Technology Co Ltd
Original Assignee
Huizhou Blueway New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Blueway New Energy Technology Co Ltd filed Critical Huizhou Blueway New Energy Technology Co Ltd
Priority to CN201711215246.0A priority Critical patent/CN107907236A/zh
Publication of CN107907236A publication Critical patent/CN107907236A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种电池管理系统的高精度温度检测电路,包括:控制单元、温度检测单元、分压切换单元、模数转换器和温度传感器;分压切换单元的输入端与外部电源连接,输出端与温度检测单元的输入端连接,第一控制输入端与控制单元的第一控制输出端连接,第二控制输入端与控制单元的第二控制输出端连接,第三控制输入端与控制单元的第三控制输出端连接。本发明通过分压切换单元,在温度传感器对应的温度区间,控制单元输出信号导通对应的分压支路,实现电路的分段测量,保证输入至模数转换器的电压靠近模数转换器的最佳检测电压点V0,提高了检测电路的测量精度。

Description

一种电池管理系统的高精度温度检测电路
技术领域
本发明涉及温度检测领域,特别是涉及一种电池管理系统的高精度温度检测电路。
背景技术
如图1所示为现有技术中温度检测电路的电路原理示意图,包括热敏电阻、温度检测单元10和模数转换器(附图未标识),温度检测单元10的输入端与外部电源连接,温度检测端(即附图1中的Rntc端口)与热敏电阻的温度信号输出端连接,输出端(即附图1中的Input_AD端口)与模数转换器的输入端连接。其通过模数转换器检测的电压VAD=Vcc_NTC/(R1+Rntc)={[AD数字值]/2a}*Vref,其中,Vcc_NTC为外部电源的输入电压值,a为模数转换器的AD位数,Vref为模数转换器的参考电压,利用电压VAD得到温度检测值。虽然采用此电路可以得到温度检测值,但还是存在缺陷。一是在电压VAD=Vcc_NTC/(R8+Rntc)={[AD 数字值]/2a}*Vref的计算公式中,影响电压VAD的因子有4个,分别是Vcc_NTC、 R8、Rntc和Vref。由于影响因子较多,使得得到的温度检测值误差就相对较大,无法得到准确的温度检测值;二是温度检测电路存在抗干扰能力较弱的问题,容易使得外部高电压信号损坏电路元器件的管脚,安全性和可靠性不强。
更重要的是,如图2所示为模数转换器的测量精度(即AD特性)与电压的关系示意图。从图2我们可以很明显地看出,在[V1,V2]这个电压区间,模数转换器的测量精度高,且V0这个电压点时,模数转换器的测量精度最高。而在图1的温度检测电路中,无法保证输入至模数转换器的电压稳定在[V1,V2] 这个电压区间,因此无法保证模数转换器测量精度达到最佳。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种电池管理系统的高精度温度检测电路。
本发明的目的是通过以下技术方案来实现的:
一种电池管理系统的高精度温度检测电路,包括:控制单元、温度检测单元、分压切换单元、模数转换器和温度传感器;
所述分压切换单元的输入端与外部电源连接,输出端与所述温度检测单元的输入端连接,第一控制输入端与所述控制单元的第一控制输出端连接,第二控制输入端与所述控制单元的第二控制输出端连接,第三控制输入端与所述控制单元的第三控制输出端连接;
所述温度检测单元的温度检测输入端与所述温度传感器的温度信号输出端连接,输出端与所述模数转换器的输入端连接;
所述模数转换器的电源输入端与外部电源连接。
在其中一个实施例中,所述分压切换单元包括第一电阻、第二电阻、第三电阻、第一开关管、第二开关管和第三开关管;
所述第二电阻的一端作为所述分压切换单元的输入端分别与所述第一电阻的一端和第三电阻的一端连接,另一端与所述第二开关管的漏极连接;
所述第二开关管的源极作为所述分压切换单元的输出端分别与所述第一开关管的源极和第三开关管的源极连接,栅极作为所述分压切换单元的第二控制输入端;
所述第一开关管的漏极与所述第一电阻的另一端连接,栅极作为所述分压切换单元的第一控制输入端;
所述第三开关管的漏极与所述第三电阻的另一端连接,栅极作为所述分压切换单元的第三控制输入端。
在其中一个实施例中,所述温度检测单元包括第一瞬态抑制二极管、第一电容、第二电容和第四电阻;
所述第一瞬态抑制二极管的一端作为所述温度检测单元的温度检测输入端分别与所述第一电容的一端和所述第四电阻的一端连接,另一端接地;
所述第四电阻的另一端作为所述温度检测单元的输出端与所述第二电容的一端连接;
所述第一电容的另一端与所述第二电容的另一端连接后接于地。
在其中一个实施例中,还包括隔离单元,所述隔离单元的第一输入端与所述温度检测单元的输出端连接,输出端分别与所述隔离单元的第二输入端和所述模数转换器的输入端连接,电源输入端与外部电源连接,接地端接于地。
在其中一个实施例中,所述隔离单元包括电压跟随器,所述电压跟随器的正相输入端作为所述隔离单元的第一输入端,反相输入端作为所述隔离单元的第二输入端,输出端作为所述隔离单元的输出端,电源输入端作为所述隔离单元的电源输入端,接地端作为所述隔离单元的接地端。
在其中一个实施例中,所述第一开关管为MOS管。
在其中一个实施例中,所述第二开关管为MOS管。
在其中一个实施例中,所述第三开关管为MOS管。
在其中一个实施例中,所述第一瞬态抑制二极管为TVS二极管。
在其中一个实施例中,所述温度传感器为热敏电阻。
本次技术方案相比于现有技术以下有益效果:
本发明通过分压切换单元,在温度传感器对应的温度区间,控制单元输出信号导通对应的分压支路,实现电路的分段测量,保证输入至模数转换器的电压靠近最佳电压点V0,提高了模数转换器的测量精度。
附图说明
图1为现有技术中的温度检测电路的电路原理示意图;
图2为模数转换器的测量精度与电压的关系示意图;
图3为本实施例中的电池管理系统的高精度温度检测电路的电路示意图;
图4为本实施例中的热敏电阻在温度区间[1℃,10℃]阻值与温度的关系示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图3所示为电池管理系统的高精度温度检测电路的原理示意图,请一并结合参照图4,包括:控制单元、温度检测单元100、分压切换单元200、模数转换器和温度传感器;
所述分压切换单元200的输入端与外部电源(即附图3中的Vcc_NTC)连接,输出端与所述温度检测单元100的输入端连接,第一控制输入端(即附图3 中的CPU_C1端)与所述控制单元的第一控制输出端连接,第二控制输入端(即附图3中的CPU_C2)端与所述控制单元的第二控制输出端连接,第三控制输入端(即附图3中的CPU_C3端)与所述控制单元的第三控制输出端连接;
所述温度检测单元100的温度检测输入端(即附图3中的Rntc端)与所述温度传感器的温度信号输出端连接,输出端(即附图3中的U1_AD端)与所述模数转换器的输入端连接;
所述模数转换器的电源输入端与外部电源连接。
具体地,所述分压切换单元200包括第一电阻R1、第二电阻R2、第三电阻 R3、第一开关管Q1、第二开关管Q2和第三开关管Q3;
所述第二电阻R2的一端作为所述分压切换单元200的输入端分别与所述第一电阻R1的一端和第三电阻R3的一端连接,另一端与所述第二开关管Q2的漏极连接;
所述第二开关管Q2的源极作为所述分压切换单元200的输出端分别与所述第一开关管Q1的源极和第三开关管Q3的源极连接,栅极作为所述分压切换单元200的第二控制输入端;
所述第一开关管Q1的漏极与所述第一电阻R1的另一端连接,栅极作为所述分压切换单元200的第一控制输入端;
所述第三开关管Q3的漏极与所述第三电阻R3的另一端连接,栅极作为所述分压切换单元200的第三控制输入端。
请参阅图2和图3,需要说明的是,由于模数转换器的测量精度受到电压的影响,在图2中在[V1,V2]这个电压区间,模数转换器的测量精度最高,且在 V0这个电压点模数转换器的测量精度最佳。因此,为了保证输入至模数转换器的电压靠近V0这个电压点,设计了分压切换电路200,通过设置第一电阻R1、第二电阻R2和第三电阻R3的大小,保证温度传感器在任何温度下都可以保证输入至模数转换器的电压靠近V0这个电压点,使得模数转换器的测量精度提高,减少误差。
请参阅图3和图4,设置第一电阻R1、第二电阻R2和第三电阻R3的阻值大小的具体原理如下:
作为优选实施方式,所述温度传感器为热敏电阻。
图4所示为热敏电阻的温度与电阻的关系变化表,从图4可以看出,在热敏电阻[1℃,10℃]这个温度区间,热敏电阻的阻值随着温度的升高而降低。根据分压原理,输入至模数转换器的电压就会随之发生变化。若要维持输入至模数转换器的电压靠近V0这个最佳电压点,就需要在不同的温度区间选取不同的分压电阻,保证输入至模数转换器的电压靠近V0。
假设在本实施例中,模数转换器的最佳电压点V0=2.5V,电压Vcc_NTC=5V,取温度传感器在温度区间[1℃,10℃]的阻值平均值21.771k欧姆。需要特别强调的是,平均值代表的是热敏电阻在[1℃,10℃]这个温度区间均适用。当然也可以采用一个温度点对应一个分压电阻阻值,但无疑要增加多条分压支路,增加了电路的复杂性的同时也增加了相应的电路制作成本。作为优选实施方式,采用一个温度区间对应一个分压电阻阻值,在保证模数转换器测量精度的同时又不会相应增加电路的复杂性和制作成本。当计算出温度区间[1℃,10℃]这个温度区间热敏电阻对应的阻值平均值后,根据欧姆定律,得出流过热敏电阻的电流I=2.5V/21.771kΩ=0.1148A。又因为Vcc_NTC=5V,则第二电阻 R2=5V/0.1148A=21.78KΩ,同理可得第一电阻R1和第三电阻R3在其余温度区间对应的阻值大小。
在设置第一电阻R1、第二电阻R2和第三电阻R3在不同温度区间对应的阻值大小后,在热敏电阻处于不同的温度区间通过控制单元输出控制信号导通对应第一开关管Q1、第二开关管Q2和第三开关管Q3,导通对应支路,将输入至模数转换器的电压靠近最佳电压点V0,提高模数转换器的测量精度。
请参阅图1和图3,还需要说明的是,在公式VAD=Vcc_NTC/(R1+Rntc)={[AD 数字值]/2a}*Vref,我们已经知道,影响模数转换器测量精度的4个影响因子分别是Vcc_NTC、R8、Rntc和Vref。作为优选实施方式,输入至分压切换单元的输入电压和模数转换器的参考电压大小相同,即Vcc_NTC=Vref。这就使得公式左右两边的刚好抵消,这样不管Vcc_NTC和Vref的大小如何变化,都不会影响输入至模数转换器的测量精度,影响因子由4个变成2个,即影响模数转换器测量精度的影响因子剩下R8和Rntc的大小,进一步提高了模数转换器的测量精度。再结合上述所述的分压切换单元200的工作原理,使得模数转换器的测量精度大大提高。
具体地,所述温度检测单元100包括第一瞬态抑制二极管Z1、第一电容C1、第二电容C2和第四电阻R4;
所述第一瞬态抑制二极管Z1的一端作为所述温度检测单元100的温度检测输入端分别与所述第一电容C1的一端和所述第四电阻R4的一端连接,另一端接地;
所述第四电阻R4的另一端作为所述温度检测单元100的输出端与所述第二电容C2的一端连接;
所述第一电容C1的另一端与所述第二电容C2的另一端连接后接于地。
具体地,还包括隔离单元300,所述隔离单元300的第一输入端与所述温度检测单元100的输出端连接,输出端分别与所述隔离单元300的第二输入端和所述模数转换器的输入端连接,电源输入端与外部电源连接,接地端接于地。
具体地,所述隔离单元300包括电压跟随器U1,所述电压跟随器U1的正相输入端作为所述隔离单元300的第一输入端,反相输入端作为所述隔离单元 300的第二输入端,输出端作为所述隔离单元300的输出端,电源输入端作为所述隔离单元300的电源输入端,接地端作为所述隔离单元300的接地端。
需要说明的是,作为优选实施方式,电池管理系统的高精度温度检测电路还设置有隔离单元300。隔离单元300可以防止外部干扰进入到控制单元,同时也可以防止外部高电压损坏元器件的引脚,提高电路的安全性和可靠性。
进一步地,所述第一开关管Q1为MOS管。
进一步地,所述第二开关管Q2为MOS管。
进一步地,所述第三开关管Q3为MOS管。
进一步地,所述第一瞬态抑制二极管Z1为TVS二极管。
需要说明的是,作为优选实施方式,第一瞬态抑制二极管Z1为TVS二极管,有效地保护电路中的精密元器件,免受各种浪涌脉冲的损坏。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种电池管理系统的高精度温度检测电路,其特征在于,包括:控制单元、温度检测单元(100)、分压切换单元(200)、模数转换器和温度传感器;
所述分压切换单元(200)的输入端与外部电源连接,输出端与所述温度检测单元(100)的输入端连接,第一控制输入端与所述控制单元的第一控制输出端连接,第二控制输入端与所述控制单元的第二控制输出端连接,第三控制输入端与所述控制单元的第三控制输出端连接;
所述温度检测单元(100)的温度检测输入端与所述温度传感器的温度信号输出端连接,输出端与所述模数转换器的输入端连接;
所述模数转换器的电源输入端与外部电源连接。
2.根据权利要求1所述的电池管理系统的高精度温度检测电路,其特征在于,所述分压切换单元(200)包括第一电阻R1、第二电阻R2、第三电阻R3、第一开关管(Q1)、第二开关管Q2和第三开关管Q3;
所述第二电阻R2的一端作为所述分压切换单元(200)的输入端分别与所述第一电阻R1的一端和第三电阻R3的一端连接,另一端与所述第二开关管Q2的漏极连接;
所述第二开关管Q2的源极作为所述分压切换单元(200)的输出端分别与所述第一开关管Q1的源极和第三开关管Q3的源极连接,栅极作为所述分压切换单元(200)的第二控制输入端;
所述第一开关管Q1的漏极与所述第一电阻R1的另一端连接,栅极作为所述分压切换单元(200)的第一控制输入端;
所述第三开关管Q3的漏极与所述第三电阻R3的另一端连接,栅极作为所述分压切换单元(200)的第三控制输入端。
3.根据权利要求1所述的电池管理系统的高精度温度检测电路,其特征在于,所述温度检测单元(100)包括第一瞬态抑制二极管Z1、第一电容C1、第二电容C2和第四电阻R4;
所述第一瞬态抑制二极管Z1的一端作为所述温度检测单元(100)的温度检测输入端分别与所述第一电容C1的一端和所述第四电阻R4的一端连接,另一端接地;
所述第四电阻R4的另一端作为所述温度检测单元100的输出端与所述第二电容C2的一端连接;
所述第一电容C1的另一端与所述第二电容C2的另一端连接后接于地。
4.根据权利要求1所述的电池管理系统的高精度温度检测电路,其特征在于,还包括隔离单元(300),所述隔离单元(300)的第一输入端与所述温度检测单元(100)的输出端连接,输出端分别与所述隔离单元(300)的第二输入端和所述模数转换器的输入端连接,电源输入端与外部电源连接,接地端接于地。
5.根据权利要求4所述的电池管理系统的高精度温度检测电路,其特征在于,所述隔离单元(300)包括电压跟随器U1,所述电压跟随器U1的正相输入端作为所述隔离单元(300)的第一输入端,反相输入端作为所述隔离单元(300)的第二输入端,输出端作为所述隔离单元(300)的输出端,电源输入端作为所述隔离单元(300)的电源输入端,接地端作为所述隔离单元(300)的接地端。
6.根据权利要求2所述的电池管理系统的高精度温度检测电路,其特征在于,所述第一开关管Q1为MOS管。
7.根据权利要求2所述的电池管理系统的高精度温度检测电路,其特征在于,所述第二开关管Q2为MOS管。
8.根据权利要求2所述的电池管理系统的高精度温度检测电路,其特征在于,所述第三开关管Q3为MOS管。
9.根据权利要求3所述的电池管理系统的高精度温度检测电路,其特征在于,所述第一瞬态抑制二极管Z1为TVS二极管。
10.根据权利要求1所述的电池管理系统的高精度温度检测电路,其特征在于,所述温度传感器为热敏电阻。
CN201711215246.0A 2017-11-28 2017-11-28 一种电池管理系统的高精度温度检测电路 Pending CN107907236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711215246.0A CN107907236A (zh) 2017-11-28 2017-11-28 一种电池管理系统的高精度温度检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711215246.0A CN107907236A (zh) 2017-11-28 2017-11-28 一种电池管理系统的高精度温度检测电路

Publications (1)

Publication Number Publication Date
CN107907236A true CN107907236A (zh) 2018-04-13

Family

ID=61848932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711215246.0A Pending CN107907236A (zh) 2017-11-28 2017-11-28 一种电池管理系统的高精度温度检测电路

Country Status (1)

Country Link
CN (1) CN107907236A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387296A (zh) * 2018-10-29 2019-02-26 许继集团有限公司 一种温度检测电路
CN109917290A (zh) * 2019-02-13 2019-06-21 北京长城华冠汽车科技股份有限公司 一种车用动力电池组的温度确定方法和装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249811A (zh) * 1997-03-07 2000-04-05 艾利森公司 提供可切换分辨率的分压器
TW527738B (en) * 1998-02-12 2003-04-11 Winbond Electronics Corp Voltage-temperature conversion device using a thermistor
JP2007121074A (ja) * 2005-10-27 2007-05-17 Yaskawa Electric Corp 温度検出回路および温度検出方法
US20110291869A1 (en) * 2010-05-27 2011-12-01 Oki Semiconductor Co., Ltd. Detecting device
CN102507034A (zh) * 2011-10-18 2012-06-20 广东美的电器股份有限公司 空调器的温度采样电路和采样方法
CN202998317U (zh) * 2012-12-19 2013-06-12 上海安防电子股份有限公司 一种视频矩阵自适应视频环通电路
CN203629713U (zh) * 2013-12-30 2014-06-04 广东瑞德智能科技股份有限公司 一种温度采集电路
CN203894319U (zh) * 2014-04-14 2014-10-22 苏州汇川技术有限公司 一种隔离采样系统
CN204119414U (zh) * 2014-08-25 2015-01-21 成都三零凯天通信实业有限公司 一种低功耗超低成本的视频业务交互系统dongle设备
CN104390715A (zh) * 2014-10-15 2015-03-04 南通大学 一种温度转换方法以及低功耗高精度集成温度传感器
CN205142184U (zh) * 2015-09-17 2016-04-06 广东美的制冷设备有限公司 模数转换校正电路、模数转换装置及空调器
CN206208410U (zh) * 2016-09-30 2017-05-31 比亚迪股份有限公司 电机温度采样电路和具有其的电动汽车

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249811A (zh) * 1997-03-07 2000-04-05 艾利森公司 提供可切换分辨率的分压器
TW527738B (en) * 1998-02-12 2003-04-11 Winbond Electronics Corp Voltage-temperature conversion device using a thermistor
JP2007121074A (ja) * 2005-10-27 2007-05-17 Yaskawa Electric Corp 温度検出回路および温度検出方法
US20110291869A1 (en) * 2010-05-27 2011-12-01 Oki Semiconductor Co., Ltd. Detecting device
CN102507034A (zh) * 2011-10-18 2012-06-20 广东美的电器股份有限公司 空调器的温度采样电路和采样方法
CN202998317U (zh) * 2012-12-19 2013-06-12 上海安防电子股份有限公司 一种视频矩阵自适应视频环通电路
CN203629713U (zh) * 2013-12-30 2014-06-04 广东瑞德智能科技股份有限公司 一种温度采集电路
CN203894319U (zh) * 2014-04-14 2014-10-22 苏州汇川技术有限公司 一种隔离采样系统
CN204119414U (zh) * 2014-08-25 2015-01-21 成都三零凯天通信实业有限公司 一种低功耗超低成本的视频业务交互系统dongle设备
CN104390715A (zh) * 2014-10-15 2015-03-04 南通大学 一种温度转换方法以及低功耗高精度集成温度传感器
CN205142184U (zh) * 2015-09-17 2016-04-06 广东美的制冷设备有限公司 模数转换校正电路、模数转换装置及空调器
CN206208410U (zh) * 2016-09-30 2017-05-31 比亚迪股份有限公司 电机温度采样电路和具有其的电动汽车

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
佚名: "AD芯片的输入电压范围与测试电压范围不一致", 《作业帮》 *
佚名: "基于IEEEl451标准接口的智能传感器硬件设计", 《电子工程世界》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387296A (zh) * 2018-10-29 2019-02-26 许继集团有限公司 一种温度检测电路
CN109917290A (zh) * 2019-02-13 2019-06-21 北京长城华冠汽车科技股份有限公司 一种车用动力电池组的温度确定方法和装置

Similar Documents

Publication Publication Date Title
CN101995301B (zh) 集成电路温度检测电路及其校准方法
CN204349432U (zh) 一种开关电源过温保护电路
CN107238743B (zh) 负电压检测电路
CN103383404A (zh) 电流测量电路
BR102015019233B1 (pt) Circuito de interface de sensor, e, método para detectar vazamento de corrente dentro de um circuito de interface de sensor
CN107907236A (zh) 一种电池管理系统的高精度温度检测电路
CN114167252A (zh) 半导体器件的导通压降测量电路
CN107389994B (zh) 一种应用于电流传感器芯片的可配置管脚复用方法和系统
CN104168011A (zh) 一种模拟信号输入电路
CN207816483U (zh) 芯片内核温度检测电路
TW202030487A (zh) 電阻補償量測輸出電流的方法及其轉換電路
US20130328405A1 (en) Ground test circuit
CN105553453B (zh) 一种电控温控开关电路
CN104483033B (zh) 一种宽温范围的cmos温度传感器电路
CN104390718A (zh) 一种温度检测方法
CN203870149U (zh) 非接触式线性电网检测器
CN105277774A (zh) 一种用于动力电池管理的高精度电流监测电路
CN105277292A (zh) 一种温度测量装置
CN206657052U (zh) 一种低功耗锂电池电压检测电路
CN102510056B (zh) 一种高精度信号源输出过压保护电路
CN103823116A (zh) 自校验式精密电池内阻仪
CN108955930A (zh) 温度测量电路
CN110411601A (zh) 温度检测方法及检测电路
CN106370319A (zh) 一种温度检测电路
CN205490462U (zh) 一种电控温控开关电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180413

RJ01 Rejection of invention patent application after publication