CN107879755B - 用碳纳米管和石墨烯制造陶瓷基质复合物 - Google Patents
用碳纳米管和石墨烯制造陶瓷基质复合物 Download PDFInfo
- Publication number
- CN107879755B CN107879755B CN201710854569.8A CN201710854569A CN107879755B CN 107879755 B CN107879755 B CN 107879755B CN 201710854569 A CN201710854569 A CN 201710854569A CN 107879755 B CN107879755 B CN 107879755B
- Authority
- CN
- China
- Prior art keywords
- graphene
- mixture
- carbon nanotubes
- weight
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C04B35/806—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/575—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
- C04B35/5935—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3856—Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Textile Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了用于用碳纳米管和石墨烯制造陶瓷基质复合(CMC)材料的系统和方法。一个实施例是用于形成陶瓷基质复合结构的方法。该方法包括提供碳纳米管、石墨烯和氮化硅碳的混合物,加热该混合物以使碳纳米管和石墨烯键合,以及烧结所述混合物中的氮化硅碳。
Description
技术领域
本公开涉及材料科学领域,并且特别涉及陶瓷基质复合物的制造。
背景技术
定向能量冲击(例如,电磁脉冲、激光等)能够穿透飞行器,并干扰其内部的电子器件,并危害安全和通信。在低频(<100Mhz)、中频(100Mhz-1GHz)和高频(>1GHz)范围中的每个范围内的电磁干扰(EMI)的频率可能是有害的。一些飞行器因此使用由多达2英寸厚的钢铁制成的蒙皮来防御所有频率范围内的EMI和定向能量。然而,这种类型的宽频带防护由于飞行器的显著重量而极大地降低了飞行器的飞行性能和任务能力。
很多飞行器使用陶瓷基质复合(CMC)蒙皮,这是因为CMC相对轻的重量和抵抗高温、膨胀、氧化和磨损的能力。然而,该材料是相对易碎和不可弯曲的,其具有降低的屏蔽和微波定向能量防护能力。因此,仍需要也可以防御宽范围的定向能量威胁的柔性轻质的飞行器材料。
发明内容
本文描述的实施例包括用碳纳米管和石墨烯制造陶瓷基质复合(CMC)材料。在陶瓷构架(backbone)内的碳纳米管与石墨烯之间形成的导电路径导致轻质的材料(例如,2g/cm3),其具有高导热性和高导电性(例如,>3×106S/m),用于改善的耐热性(例如,高达1000℃)和抵御定向能量威胁。陶瓷、碳纳米管和石墨烯的组合还使得能够制造可弯曲片材,该可弯曲片材可塑造成飞行器主体的弯曲部,能抵抗冲撞和定向能量威胁而没有机械强度的劣化。
一个实施例是用于形成陶瓷基质复合结构的方法。该方法包括提供碳纳米管、石墨烯和氮化硅碳的混合物。该方法进一步包括加热该混合物以使碳纳米管和石墨烯键合,以及烧结所述混合物中的氮化硅碳。
另一实施例是陶瓷基质复合材料,其包含碳纳米管、与碳纳米管化学键合的石墨烯以及在混合物中与碳纳米管和石墨烯烧结的氮化硅碳。
其他示例性实施例可以在下文被描述。已经讨论的特征、功能和优势可以在各种实施例中被单独实现,或者可以在其它实施例中被结合,其进一步细节可以参考以下说明书和附图获知。
附图说明
现在仅以示例的方式并参考附图来描述本公开的一些实施例。所有附图中的相同附图标记代表相同元件或相同类型的元件。
图1说明示例性实施例中的飞行器。
图2说明示例性实施例中的陶瓷基质复合材料。
图3是说明在示例性实施例中用于制造CMC材料的方法的流程图。
图4说明在示例性实施例中用于制造CMC材料102的加工系统和方法。
图5是示例性实施例中的飞行器生产和服役方法的流程图。
图6是示例性实施例中的飞行器的框图。
具体实施方式
附图和以下说明书示出本公开的具体示例性实施例。因此应认识到,本领域技术人员将能够设想各种布置,尽管未在本文中明确地描述或显示,但这些布置符合本公开的原理并且包含在本公开范围内。此外,本文所描述的任何示例旨在帮助理解本发明的原理,并应被解释为不限于这些具体陈述的示例和条件。因此,本公开不受限于下文描述的具体实施例或示例,而应由权利要求及其等价物来限制。
图1说明示例性实施例中的飞行器100。飞行器100可以包括能够飞行的任何物体,包含飞机、无人机、导弹、交通工具、卫星等,并且根据需要可以是有人驾驶或无人驾驶的。飞行器100包括一个或多个片材形式的陶瓷基质复合(CMC)材料102,CMC材料102覆盖飞行器100或至少其一部分或其部件。CMC材料102提供将飞行器的内部与外部环境的要素进行屏蔽的结构,所述外部环境的要素包括高功率微波能量、电磁脉冲、高功率激光、核攻击等形式的定向能量104威胁。定向能量104可以包括在低频(<100Mhz)、中频(100Mhz-1GHz)和/或高频(>1GHz)范围内的射频(RF)。
术语“陶瓷基质复合物”通常指的是由在陶瓷基质中结合的交叉纤维所生成的复合物。CMC材料以其轻重量和对高温、膨胀、氧化和磨损的抵抗性而驰名,这使其成为在航空航天应用中有用的复合蒙皮材料。然而,常规的CMC材料也是相对易碎和不可弯曲的,具有不良的屏蔽效果。更近期的研究工作描述了用于以改善磨损和耐热性的方式用多壁碳纳米管强化陶瓷的技术,但是该材料在提升强度、可挠性和对中频至高频的抵御方面仍然有限,并且对高功率微波能量(例如,大致300Mhz到300GHz)提供少量防护或无防护。
因此,CMC材料102被强化以便包括提供改善的可挠性、韧性、抗冲击性和在中频和高频范围处的屏蔽有效性,以充分抵御定向能量104威胁并防止对飞行器100的电子干扰。图2说明示例性实施例中的CMC材料102。CMC材料102包括陶瓷基质210、碳纳米管220和石墨烯230的组合。碳纳米管220和石墨烯230都是表现出高导电性和和大比表面积(specificsurface area)的碳材料。在CMC材料102中,由陶瓷基质210提供的陶瓷架构(backbone)通过在碳纳米管220与石墨烯230之间形成化学键240而被强化,以增加CMC材料102的传导横截面并改善其能量吸收和散热。此外,石墨烯230的存在和分散向CMC材料102添加微波(例如,300MHz–300GHz)吸收能力和可挠性,并且进一步强化已经由陶瓷基质210和碳纳米管220提供的其他特性(包括在中频到高频下的能量吸收)。
陶瓷基质210可以包括由任何合适的陶瓷形成的基质,所述陶瓷包括但不限于碳化物基陶瓷、氮化物基陶瓷、氧化物基陶瓷和硼化物基陶瓷,诸如氮化硅碳(SiCN)、氮化硅、碳化硅、氧化铝等。陶瓷基质210可以包含通过烧结和固结细粉末形成的微观结构。在一个实施例中,CMC材料102的陶瓷基质210组分由颗粒尺寸直径在0.1微米(μm)至1.0μm范围内的SiCN细粉末形成。因此,CMC材料102可以使用粉末化的SiCN制造,而不是通过对前体化学品的高温分解来制造。用粉末化的SiCN制造有利地支持分散体达到均质化状态并且帮助避免颗粒结块,使得铸造/冲压操作可以形成准备好被烧结以用于生产CMC材料102的片材的均匀生坯。
碳纳米管220通常包含纯碳基聚合物的中空柱形结构,这些结构根据其特定形状和尺度而给予CMC材料102独特的机械属性、电属性和化学属性。本文使用的前缀“纳米”通常指的是小于100纳米(nm)的尺度。碳纳米管220可以包含沿着其长度被范德华力保持在一起的“绳状物(rope)”或纳米管束,其中范德华力使相邻的纳米管分叉和连结。可替代地或附加地,碳纳米管220可以包含单壁碳纳米管、多层碳纳米管、富勒烯管或其他纳米结构或其组合。在一个实施例中,CMC材料102中的碳纳米管220包含具有0.5毫米(mm)至4mm范围内的长度和1nm至50nm之间的直径的单壁碳纳米管。在另一实施例中,碳纳米管220可以包含单壁碳纳米管(例如,用以提供导电/导热性)和多壁碳纳米管(例如,用以提供大块碳以用于连接生长过程)的混合物。
石墨烯230通常包含碳的同素异形体,其呈现出蜂巢晶格中的sp2键合的碳原子的薄平面片材的形式。在一个实施例中,石墨烯230包含石墨烯片晶,这些石墨烯片晶形成纳米级厚度的多个石墨烯片材的堆叠。可替代地或附加地,石墨烯230可以包含片晶尺寸在厚为6nm与8nm之间和宽为5μm与25μm之间的范围内的纳米石墨烯片晶。
用于制造具有上述材料和属性的CMC材料102的说明性细节在下文中描述。图3是说明示例性实施例中用于制造CMC材料102的方法300的流程图。在此描述的流程图的步骤不是包括一切的,其可以包括未显示的其他步骤,并且可以按可替换的顺序执行。
在步骤302中,提供碳纳米管220、石墨烯230和SiCN的混合物。每种材料都可以从商业来源获得,或者根据任意数量的适当技术来研制/制备。例如,可以通过惰性气体氛围中碳电极之间的电弧放电来制备碳纳米管220,和/或可以通过将石墨烯薄膜与衬底和所应用的催化剂关联来制备石墨烯230。在一个实施例中,碳纳米管220可以通过留下杂质(例如,Fe2O3)的催化剂来生产,并且这些催化剂和/或附加的催化剂可以用于强化碳纳米管220的生长以及碳纳米管220到石墨烯230的连接。
在步骤304中,该混合物被加热以便键合碳纳米管220与石墨烯230。这样做时,可以使用热压机、高压釜、火炉、真空装置等来压紧和固化混合物。在预定温度加热成分材料的混合物预定时间段确保了在碳纳米管220与石墨烯230之间的结合处形成共价键。
在步骤306中,烧结所述混合物中的SiCN。这样做时,可以使用上述技术中的一个或更多个来进一步加热混合物,以便引起为混合物提供的陶瓷的烧结。结果是CMC材料102具有混合陶瓷复合结构,其是可挠的和轻质的(例如,2g/cm3)并具有高导热性和高导电性(例如,>3×106S/m),用于改善耐热性(例如,高达1000℃)和抵御定向能量104威胁。
图4说明示例性实施例中用于制造CMC材料102的加工系统和方法400。本文描述的步骤不是包括一切的,其可以包括未显示的其他步骤,并且可以按可替换的顺序执行。此外,本文描述的制造系统的部件是示例性的以用于说明目的,并且可以可替代地或附加地包括加工工具或技术。
针对该实施例,假设用于制造CMC材料102的起始材料包括单壁碳纳米管、石墨烯片晶(platelet)和SiCN粉末。针对该实施例,进一步假设制造系统包括给料滑块(ram)422、模具(die)430、挤压冲头440和真空炉460。如步骤402所示,单壁碳纳米管、石墨烯片晶和SiCN粉末被混合。得到的混合物420可以被提供到给料滑块422中。
陶瓷材料、单壁碳纳米管和石墨烯片晶的相对比例和/或量可以根据最终的CMC材料102中的期望性能特性而变化。在一个实施例中,用于形成CMC材料102的混合物包含按重量计约为20%的单壁碳纳米管、按重量计约为20%的石墨烯片晶和按重量计约为60%的SiCN粉末。因此,混合物可以是约2.1g/cm3,并且包含约为0.42g/cm3的单壁碳纳米管、约为0.42g/cm3的石墨烯和约为1.26g/cm3的SiCN。在另一实施例中,混合物可以包含按重量计在10-30%范围内的单壁碳纳米管、按重量计在10-30%范围内的石墨烯片晶和按重量计在60-80%范围内的SiCN粉末,且单壁碳纳米管和石墨烯片晶的组合重量按重量计小于40%。因此,混合物可以包含在0.21g/cm3至0.63g/cm3的范围内的单壁碳纳米管、在0.21g/cm3至0.63g/cm3的范围内的石墨烯片晶和在1.26g/cm3至1.68g/cm3的范围内的SiCN。在另一实施例中,粉末状SiCN的颗粒尺寸可以在0.1μm至1.0μm的范围内,其具有由烧结热力学确立的上限和为避免颗粒絮凝而选择的下限。在另一实施例中,粉末状SiCN的颗粒尺寸可以在1μm至100μm的范围内,以适应较大块和/或较低质量的原始陶瓷材料的可用性。在又一实施例中,石墨烯片晶包含在0.03克每立方厘米(g/cm3)与0.1g/cm3之间的体密度(bulkdensity)、小于1%的氧含量、按重量计大于99.5%的碳含量和按重量计小于0.5%的残留酸含量。
单壁碳纳米管、石墨烯片晶和SiCN粉末的混合可以包括机械混合(例如,球磨)和/或涉及使用一种或多种材料在液体悬浮介质中的悬浮物。因此,可替代地或附加地,步骤402可以包括提供混合物的悬浮物以形成分散体,和/或混合该分散体。在一个特定实施例中,悬浮物是按重量计大约10%的PS4(可溶于酮的酸基表面活性剂)和乙醇。该悬浮物导致减少的沉淀高度和增加的SiCN颗粒分散以帮助陶瓷的烧结。该悬浮物还避免SiCN颗粒的再团聚并且帮助稳定所述悬浮物。因此,可以使用Turbula振动混合器(Turbula Shaker-Mixer)和超声探头来混合所得到的分散体,直到该分散体达到均质(基本不多于30分钟但是可能取决于批量体积)。
在步骤404中,带有混合物420的给料滑块422被放置在模具430上方。因此,该分散体可以被倾倒在石膏模塑件(mold)上以通过毛细作用消除液体。通过毛细作用移除液体的过程可能花费约48小时。其结果是准备用于铸造/冲压的不团聚的模塑件(mold)450。
在步骤406中,给料滑块422从被模塑件450填充的模具430处移开,并且挤压冲头440挤压模塑件450。挤压冲头440可以以预定的温度、压力和时间热压模塑件450以形成准备用于烧结的生坯。在该阶段期间,在低至250华氏度的温度和大约100磅每平方英寸(psi)的压力下,单壁碳纳米管与石墨烯片晶之间的范德华力可能变得明显。在一个实施例中,挤压冲头440在约5000psi和250摄氏度以及约1个标准大气压的施加氮气的条件下热压模塑件以形成生坯。
在步骤408中,真空炉460加热、加压并烧结模塑件450。另外,真空炉460可以在氮气、氮气/氩气、NaCl或其某种组合的氛围中处理模塑件450,以支持单壁碳纳米管与石墨烯片晶之间的化学键合。单壁碳纳米管与石墨烯片晶之间的化学键合可以在750摄氏度与950摄氏度之间发生。因此,真空炉460可以将模塑件450加热到在750摄氏度与950度之间的第一温度,以引发碳纳米管与石墨烯之间的化学键合。
用于烧结SiCN的常规技术施加约1300摄氏度的热度和约217psi的压力。然而,石墨烯的氧化(和由此带来的石墨的形成)可以在高于1000摄氏度的温度下发生,并导致属性劣化。因此,对于包含混合物420的模塑件450,真空炉460可以对模塑件350施加增加的压力,以引起SiCN在750摄氏度与950摄氏度之间的温度下烧结。这允许形成单壁碳纳米管与石墨烯片晶之间的sp-2碳键的共价转化,同时阻止否则在1000摄氏度或更高温度下发生的石墨烯的氧化。因此,当在750摄氏度与950度之间的第一温度下引发碳纳米管与石墨烯之间的化学键合之后,真空炉460可以在高于第一温度的第二温度下对模塑件350加压以引起SiCN在低于1000摄氏度的温度下烧结。为此,真空炉460可以例如在297psi至376psi的范围中对模塑件350加压以引起SiCN分别在750摄氏度与950摄氏度之间烧结。这使得能够实现经烧结的SiCN内的石墨烯片晶与单壁碳纳米管之间的sp-2碳的共价转化(例如,在陶瓷基质210内的石墨烯230层与碳纳米管220之间的共价C-C键合)。结果是一种CMC材料102,其包含粉末状SiCN的陶瓷基质210、碳纳米管220和抗氧化的石墨烯230,并且其具有上文已描述的改善的机械属性、电属性和电磁属性。
在一个实施例中,真空炉460以1-14摄氏度的线性升温速率加热生坯达一定时间,该时间基于用于烧结SiCN以形成CMC材料102的陶瓷基质210的温度。例如,如果烧结温度被设定在800摄氏度,则单壁碳纳米管可以在750摄氏度附近开始键合到石墨烯片晶,并且随着热度增加至800摄氏度,真正的烧结可以开始发生。因此,真空炉460可以线性升温1-13个小时而施加750摄氏度和376psi,或者可替代地,线性升温1-16个小时而施加950摄氏度和297psi。在达到最大温度之后,真空炉460可以将生坯的恒定最大温度保持3-8个小时。
在步骤410中,模塑件450被从模具430中移出并为安装做准备。例如,成品混合陶瓷的边缘可以被喷砂以便为涂料应用做准备和/或被从板材上加工去除以使其可被合适地安装。结果是412中示出的CMC材料102的可弯曲片材,其可以被用在期望陶瓷材料具有强化的强度、可挠性、耐热性和/或能量屏障属性的任何应用中。
高性能CMC材料102的具体应用是在飞行器生产中。更特别地参考附图,本公开的实施例可以在图5所示的飞行器制造和服役方法500和图6所示的飞行器502的背景中被描述。在预生产期间,示例性方法500可以包括飞行器502的规格和设计504以及材料采购506。在生产期间,进行飞行器502的部件与子组件制造508和系统集成510。此后,飞行器502可以经历认证和交付512以便投入使用514。在由客户投入使用中时,飞行器502被安排进行例行的维护和检修516(这还可以包含修改、重新配置、翻新等等)。
方法500的每个过程可以由系统集成商、第三方和/或操作者(例如,客户)来执行或实施。为了本说明书的目的,系统集成商可以包括但不限于任何数量的飞行器制造商和主系统分包商;第三方可以包括但不限于任何数量的卖主、分包商和供应商;并且操作者可以是航空公司、租赁公司、军事实体、服务机构等。
如图6所示,由示例性方法500所生产的飞行器502可以包含机身518以及多个系统520和内部522。高层级系统520的示例包括推进系统524、电气系统526、液压系统528和环境系统530中的一个或更多个。可以包括任意数量的其他系统。虽然显示了航空航天示例,但本发明的原理可被应用于其他产业,诸如汽车工业。
可以在生产与服役方法500的任何一个或更多个阶段中采用本文呈现的装置和方法。可以在生产阶段508和510期间使用一个或更多个装置实施例、方法实施例或其组合。类似地,可以在飞行器502服役时(例如但不限于维护及检修516)使用一个或更多个装置实施例、方法实施例或其组合。例如,本文描述的技术和系统可被用于步骤506、508、510、514和/或516,和/或可被用于机身518和/或内部522,或者甚至推进系统524、电气系统526、环境系统530、液压系统528或整体系统520中的任一个。
在一个实施例中,CMC材料102包含机身118的一部分(例如,用于飞行器机翼的复合零件的一部分),并且在部件与子组件制造508期间制造该部分。在系统集成510中,CMC材料102可以与其他层组装在一起成为飞行器的复合零件,然后在投入使用514中被应用直到磨损造成该零件不可用。然后,在维护及检修516中,该零件可以被丢弃并且被包括新CMC材料102的新制造的零件替换。
附图所示或本文描述的各种控制元件中的任何控制元件可以被实现为硬件、软件、固件或其某种组合。例如,元件可以被实现为专用硬件。专用硬件元件可以被称为“处理器”、“控制器”或一些相似的术语。当由处理器提供时,这些功能可以由单个专用处理器、由单个共享处理器或者由多个独立处理器(其中一些可以被共享)来提供。此外,术语“处理器”或“控制器”的明确使用不应被解释为特指能够执行软件的硬件,并且可以隐含地包括但不限于数字信号处理器(DSP)硬件、网络处理器、专用集成电路(ASIC)或其他电路系统、现场可编程门阵列(FPGA)、用于存储软件的只读存储器(ROM)、随机存取存储器(RAM)、非易失性存储装置、逻辑电路、或者一些其他物理硬件部件或模块。
此外,元件可以被实现为可由处理器或计算机执行以实行该元件的功能的指令。指令的一些示例是软件、程序代码和固件。这些指令在被处理器执行时可操作以引导处理器实行该元件的功能。这些指令可以被存储在处理器可读取的存储设备中。存储设备的一些示例是数字或固态存储器、诸如磁盘和磁带的磁性存储介质、硬盘驱动器或者光学可读数字数据存储介质。
进一步地,本发明包括依据以下条款的实施例:
条款1.一种用于形成陶瓷基质复合结构的方法,该方法包括:
提供碳纳米管、石墨烯和氮化硅碳的混合物;
加热混合物以使碳纳米管与石墨烯键合;以及
烧结混合物中的氮化硅碳。
条款2.根据条款1所述的方法,其进一步包括:
将混合物加热到第一温度以引发碳纳米管与石墨烯之间的化学键合;以及
在加热混合物期间在第二温度下对混合物加压,以引发氮化硅碳在混合物中以低于1000摄氏度的温度烧结。
条款3.根据条款2所述的方法,其中:
第一温度在750摄氏度至950摄氏度之间;
第二温度高于第一温度;
混合物中的氮化硅碳的烧结发生在加热到第一温度以引发碳纳米管与石墨烯之间的化学键合之后;并且
对混合物的加压发生在297psi至376psi之间的压力范围内,以防止否则在1000摄氏度或更高温度下发生的石墨烯的氧化和石墨的形成。
条款4.根据条款2所述的方法,其进一步包括:
在高压釜中对混合物加压,该高压釜将氮气、氮气/氩气或NaCl中的至少一种施加到混合物中以支持碳纳米管与石墨烯之间的化学键合。
条款5.根据条款2所述的方法,其进一步包括:
提供用于混合物的悬浮物以形成分散体;
混合该分散体;
将分散体倾倒在模塑件中;以及
热压模塑件以形成生坯。
条款6.根据条款5所述的方法,其进一步包括:
用Turbula振动混合器和超声探头混合分散体;以及
在大约5000psi和250摄氏度以及大约1个标准大气压的施加氮气的条件下热压模塑件以形成生坯;
其中悬浮物是按重量计大约10%的PS4和乙醇。
条款7.根据条款5所述的方法,其进一步包括:
加热生坯1-16个小时;以及
保持生坯的恒定最大温度3-8个小时以形成陶瓷基质复合结构。
条款8.根据条款7所述的方法,其进一步包括:
安装陶瓷基质复合结构作为飞行器的复合蒙皮。
条款9.根据条款1所述的方法,其中:
碳纳米管包含具有在0.5毫米至4毫米之间的长度和在1纳米至50纳米之间的直径的单壁碳纳米管,该碳纳米管在混合物中按重量计在10-30%范围内;
石墨烯包含具有片晶尺寸为厚6-8nm和宽5-25μm的纳米石墨烯片晶;
氮化硅碳包括具有在直径0.1微米至1微米之间的颗粒尺寸的粉末,氮化硅碳按重量计在60-80%范围内;并且
碳纳米管和石墨烯的组合重量在混合物中按重量计小于40%。
条款10.一种陶瓷基质复合材料,其包括:
碳纳米管;
与碳纳米管化学键合的石墨烯;以及
在混合物中与碳纳米管和石墨烯烧结的氮化硅碳。
条款11.根据条款10所述的陶瓷基质复合材料,其包括:
按重量计为大约20%的碳纳米管;
按重量计为大约20%的石墨烯;以及
按重量计为大约60%的粉末状的氮化硅碳。
条款12.根据条款10所述的陶瓷基质复合材料,其包括:
按重量计在10-30%范围内的碳纳米管;
按重量计在10-30%范围内的石墨烯;以及
按重量计在60-80%范围内的粉末状的氮化硅碳;
其中碳纳米管和石墨烯的组合重量在混合物中按重量计小于40%。
条款13.根据条款10所述的陶瓷基质复合材料,其中:
陶瓷基质复合材料为大约2.1g/cm3;
碳纳米管为大约0.42g/cm3;
石墨烯为大约0.42g/cm3;以及
氮化硅碳为大约1.26g/cm3。
条款14.根据条款10所述的陶瓷基质复合材料,其包括:
在0.21g/cm3至0.63g/cm3范围内的碳纳米管;
在0.21g/cm3至0.63g/cm3范围内的石墨烯;以及
在1.26g/cm3至1.68g/cm3范围内的氮化硅碳;
其中碳纳米管和石墨烯的组合重量按重量计小于40%。
条款15.根据条款10所述的陶瓷基质复合材料,其中:
碳纳米管包括具有在0.5毫米至4毫米之间的长度和在1纳米至50纳米之间的直径的单壁碳纳米管。
条款16.根据条款10所述的陶瓷基质复合材料,其中:
石墨烯包括具有片晶尺寸为厚6-8nm和宽5-25μm的纳米石墨烯片晶。
条款17.根据条款10所述的陶瓷基质复合材料,其中:
在烧结之前,氮化硅碳包括具有颗粒尺寸在直径0.1微米至1微米之间的粉末。
条款18.根据条款10所述的陶瓷基质复合材料,其中:
碳纳米管和石墨烯在750摄氏度与950摄氏度之间的第一温度下被化学键合。
条款19.根据条款18所述的陶瓷基质复合材料,其中:
氮化硅碳在高于第一温度的第二温度下被烧结。
条款20.根据条款19所述的陶瓷基质复合材料,其中:
氮化硅碳在297psi至376psi之间的压力下被烧结。
尽管在此描述了具体实施例,但本公开的范围不受限于这些具体实施例。本公开的范围由随附的权利要求及其任何等价物限定。
Claims (8)
1.一种用于形成陶瓷基质复合结构的方法,所述方法包括:
提供碳纳米管、石墨烯和氮化硅碳的混合物;
将所述混合物加热到第一温度以引发所述碳纳米管与所述石墨烯之间的化学键合;以及
在第二温度下加热所述混合物期间对所述混合物加压,以引发在低于1000摄氏度的温度下烧结所述混合物中的所述氮化硅碳;
其中:
所述第一温度在750摄氏度和950摄氏度之间;
所述第二温度高于所述第一温度;
所述混合物中的所述氮化硅碳的烧结发生在加热到所述第一温度以引发所述碳纳米管与所述石墨烯之间的化学键合之后;以及
对所述混合物的加压发生在297psi至376psi的压力范围内,以防止在1000摄氏度或更高温度下发生的石墨烯的氧化和石墨的形成。
2.根据权利要求1所述的方法,其进一步包括:
在高压釜中对所述混合物加压,所述高压釜将氮气、氮气/氩气或NaCl中的至少一种施加到所述混合物中以支持所述碳纳米管与所述石墨烯之间的化学键合。
3.根据权利要求1所述的方法,其进一步包括:
提供用于所述混合物的悬浮物以形成分散体;
混合所述分散体;
将所述分散体倾倒在模塑件中;以及
热压所述模塑件以形成生坯。
4.根据权利要求3所述的方法,其进一步包括:
用Turbula振动混合器和超声探头混合所述分散体;以及
在5000psi和250摄氏度以及1个标准大气压的施加氮气的条件下热压所述模塑件以形成所述生坯;
其中所述悬浮物是按重量计10%的PS4和乙醇。
5.根据权利要求3所述的方法,其进一步包括:
使所述生坯保持恒定最高温度3-8个小时以形成所述陶瓷基质复合结构。
6.根据权利要求5所述的方法,其进一步包括:
安装所述陶瓷基质复合结构作为飞行器的复合蒙皮。
7.根据权利要求1所述的方法,其中:
所述碳纳米管包含长度在0.5毫米至4毫米之间且直径在1纳米至50纳米之间的单壁碳纳米管,所述碳纳米管在按所述混合物的重量计10-30%的范围内;
所述石墨烯包括具有片晶尺寸的纳米石墨烯片晶,所述片晶尺寸为6-8nm厚和5-25μm宽,所述石墨烯在按所述混合物的重量计10-30%的范围内;
所述氮化硅碳包括具有在直径0.1毫米至1毫米之间的颗粒尺寸的粉末,所述氮化硅碳在按重量计60-80%的范围内;并且
所述碳纳米管和所述石墨烯的组合重量在所述混合物中按重量计小于40%。
8.一种陶瓷基质复合材料,其包括:
碳纳米管;
化学键合到所述碳纳米管的石墨烯;以及
在混合物中与所述碳纳米管和所述石墨烯烧结的氮化硅碳;
其中所述碳纳米管在按所述混合物的重量计10-30%的范围内;所述石墨烯在按所述混合物的重量计10-30%的范围内;所述氮化硅碳在按所述混合物的重量计60-80%的范围内;并且所述碳纳米管和所述石墨烯的组合重量在所述混合物中按重量计小于40%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/279,825 | 2016-09-29 | ||
US15/279,825 US10091916B2 (en) | 2016-09-29 | 2016-09-29 | Fabrication of ceramic matrix composites with carbon nanotubes and graphene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107879755A CN107879755A (zh) | 2018-04-06 |
CN107879755B true CN107879755B (zh) | 2022-03-11 |
Family
ID=59631568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710854569.8A Active CN107879755B (zh) | 2016-09-29 | 2017-09-20 | 用碳纳米管和石墨烯制造陶瓷基质复合物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10091916B2 (zh) |
EP (1) | EP3301081B1 (zh) |
JP (1) | JP7046548B2 (zh) |
CN (1) | CN107879755B (zh) |
RU (1) | RU2744611C2 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201600130609A1 (it) * | 2016-12-23 | 2018-06-23 | Directa Plus Spa | Pallina da golf comprendente grafene |
KR20240059625A (ko) * | 2021-09-14 | 2024-05-07 | 노스이스턴 유니버시티 | 열성형성 붕소계 세라믹 재료 및 열 관리에서의 사용 |
KR102526498B1 (ko) * | 2021-11-30 | 2023-04-28 | 우리랩스 주식회사 | 전투용 미사일 드론 |
CN115353400B (zh) * | 2022-09-29 | 2023-06-06 | 四川交蓉思源科技有限公司 | 一种增韧氮化硅陶瓷材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004077521A2 (en) * | 2003-02-26 | 2004-09-10 | The Regents Of The University Of California | Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors |
CN102942369A (zh) * | 2012-11-12 | 2013-02-27 | 东华大学 | 在玻璃基片上制备稀土修饰碳纳米管-石墨烯的陶瓷复合薄膜的方法 |
CN103145411A (zh) * | 2013-03-08 | 2013-06-12 | 山东大学 | 石墨烯和碳纳米管协同强韧的双相磷酸钙复合材料及其制备方法 |
WO2013119806A1 (en) * | 2012-02-07 | 2013-08-15 | Kansas State University Research Foundation | Boron-modified silazanes for synthesis of sibnc ceramics |
CN103571215A (zh) * | 2012-07-18 | 2014-02-12 | 天瑞企业股份有限公司 | 高导热及emi遮蔽的高分子复合材 |
CN104609865A (zh) * | 2015-02-09 | 2015-05-13 | 广东工业大学 | 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法 |
CN105753492A (zh) * | 2016-01-27 | 2016-07-13 | 天津大学 | 氮化硅和碳纳米管纤维的复合材料及其制备方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006524631A (ja) * | 2003-04-28 | 2006-11-02 | リーンドロ バルザーノ, | 単一壁のカーボンナノチューブ−セラミック複合体および使用方法 |
WO2007029588A1 (ja) * | 2005-09-07 | 2007-03-15 | National University Corporation Tohoku University | 高機能複合材料及びその製造方法 |
US8715439B2 (en) | 2008-03-07 | 2014-05-06 | The Boeing Company | Method for making hybrid metal-ceramic matrix composite structures and structures made thereby |
US7897876B2 (en) | 2009-01-05 | 2011-03-01 | The Boeing Company | Carbon-nanotube/graphene-platelet-enhanced, high-conductivity wire |
JP2010189214A (ja) * | 2009-02-17 | 2010-09-02 | Hokkaido Univ | セラミックス焼結体およびその製造方法 |
CN101964292B (zh) * | 2009-07-24 | 2012-03-28 | 清华大学 | 石墨烯片-碳纳米管膜复合结构及其制备方法 |
BR112012010907A2 (pt) | 2009-11-23 | 2019-09-24 | Applied Nanostructured Sols | "materiais compósitos de cerâmica contendo materiais de fibra infundidos em nanotubo de carbono e métodos para a produção dos mesmos" |
WO2012073998A1 (ja) * | 2010-12-02 | 2012-06-07 | 独立行政法人物質・材料研究機構 | カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター |
US8962504B2 (en) * | 2011-07-29 | 2015-02-24 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Graphene-reinforced ceramic composites and uses therefor |
US9455094B2 (en) | 2011-11-18 | 2016-09-27 | William Marsh Rice University | Graphene-carbon nanotube hybrid materials and use as electrodes |
KR101355996B1 (ko) * | 2012-05-15 | 2014-01-29 | 한국과학기술원 | 금속-코팅된 탄소나노튜브로 강화된 세라믹 나노복합 분말 및 그의 제조 방법 |
WO2013190398A1 (en) | 2012-06-21 | 2013-12-27 | Indian Institute Of Technology Madras | Graphene functionalized carbon nanotube polymer composites and methods for their preparation and use |
JP6164695B2 (ja) * | 2012-07-30 | 2017-07-19 | 国立大学法人信州大学 | 複合フィルムの製造方法 |
WO2014047283A1 (en) * | 2012-09-20 | 2014-03-27 | The Penn State Research Foundation | Process for production of graphene/silicon carbide ceramic composites |
CN103288466B (zh) | 2013-03-08 | 2014-08-20 | 西北工业大学 | 原位自生碳纳米管改性硅碳氮陶瓷基复合材料的制备方法 |
SK292013A3 (sk) * | 2013-03-18 | 2014-10-03 | Ústav Anorganickej Chémie, Sav | Kompozitný materiál s homogénnou distribúciou uhlíkových nanorúrok a spôsob jeho výroby |
CN104393233B (zh) * | 2014-10-10 | 2017-05-24 | 南京中储新能源有限公司 | 一种基于石墨烯阵列的碳硫复合电极及二次电池 |
US10836135B2 (en) | 2014-10-24 | 2020-11-17 | Florida State University Research Foundation, Inc. | Three-dimensional multi-reinforced composites and methods of manufacture and use thereof |
RU2570691C1 (ru) * | 2014-11-18 | 2015-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") | Способ получения нанокомпозита графена и карбида вольфрама |
CN105542447B (zh) * | 2015-12-04 | 2018-01-02 | 广东工业大学 | 一种低黏度高热导率的导热绝缘塑料及其制备方法 |
CN105908041A (zh) * | 2016-04-27 | 2016-08-31 | 富耐克超硬材料股份有限公司 | 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法 |
-
2016
- 2016-09-29 US US15/279,825 patent/US10091916B2/en active Active
-
2017
- 2017-08-03 EP EP17184786.6A patent/EP3301081B1/en active Active
- 2017-08-04 RU RU2017127988A patent/RU2744611C2/ru active
- 2017-09-20 CN CN201710854569.8A patent/CN107879755B/zh active Active
- 2017-09-28 JP JP2017187862A patent/JP7046548B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004077521A2 (en) * | 2003-02-26 | 2004-09-10 | The Regents Of The University Of California | Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors |
WO2013119806A1 (en) * | 2012-02-07 | 2013-08-15 | Kansas State University Research Foundation | Boron-modified silazanes for synthesis of sibnc ceramics |
CN103571215A (zh) * | 2012-07-18 | 2014-02-12 | 天瑞企业股份有限公司 | 高导热及emi遮蔽的高分子复合材 |
CN102942369A (zh) * | 2012-11-12 | 2013-02-27 | 东华大学 | 在玻璃基片上制备稀土修饰碳纳米管-石墨烯的陶瓷复合薄膜的方法 |
CN103145411A (zh) * | 2013-03-08 | 2013-06-12 | 山东大学 | 石墨烯和碳纳米管协同强韧的双相磷酸钙复合材料及其制备方法 |
CN104609865A (zh) * | 2015-02-09 | 2015-05-13 | 广东工业大学 | 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法 |
CN105753492A (zh) * | 2016-01-27 | 2016-07-13 | 天津大学 | 氮化硅和碳纳米管纤维的复合材料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
Carbon nanotube buckypaper-reinforced SiCN ceramic matrix composites of superior electrical conductivity;Mei Hui等;《Journal of the European Ceramic Society》;20160731;第36卷(第8期);全文 * |
Covalently Bonded Graphene–Carbon Nanotube Hybrid;Chen Jie;《Advanced Functional Materials>;20151117;第25卷(第48期);全文 * |
Preparation and improved electrochemical performance of SiCN–graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode;Feng Yan等;《Journal of Materials Chemistry A》;20140104;第2卷(第12期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
US20180092256A1 (en) | 2018-03-29 |
US10091916B2 (en) | 2018-10-02 |
RU2744611C2 (ru) | 2021-03-11 |
JP7046548B2 (ja) | 2022-04-04 |
EP3301081A1 (en) | 2018-04-04 |
EP3301081B1 (en) | 2021-10-27 |
RU2017127988A3 (zh) | 2020-10-16 |
RU2017127988A (ru) | 2019-02-04 |
JP2018108918A (ja) | 2018-07-12 |
CN107879755A (zh) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107879755B (zh) | 用碳纳米管和石墨烯制造陶瓷基质复合物 | |
Pelz et al. | Additive manufacturing of structural ceramics: a historical perspective | |
US20190322056A1 (en) | Solid carbon products comprising carbon nanotubes and methods of forming same | |
Ramachandran et al. | Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review | |
US10384393B2 (en) | Polymeric ceramic precursors, apparatuses, systems, and methods | |
Colombo et al. | Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers | |
EP2287237B1 (en) | Carbon fiber composite material and method of producing the same, carbon fiber-metal composite material and method of producing the same, and carbon fiber-nonmetal composite material and method of producing the same | |
EP1600231B1 (en) | Metal material and method of producing the same, and carbon fiber-metal composite material and method of producing the same | |
US20210053831A1 (en) | Additively manufacturing structures comprising carbon | |
US20120280430A1 (en) | Composite tooling containing carbon nanotubes and production of parts therefrom | |
US8911859B1 (en) | Carbon nanotube material and method of making the same | |
Carrola et al. | Best of both worlds: Synergistically derived material properties via additive manufacturing of nanocomposites | |
Walton et al. | Additive manufacturing of textured ceramics: A review | |
Jimbo et al. | Shape contraction in sintering of 3D objects fabricated via metal material extrusion in additive manufacturing | |
Srivastava et al. | Smart manufacturing process of carbon-based low-dimensional structures and fiber-reinforced polymer composites for engineering applications | |
JP5829695B2 (ja) | ヒートシンクおよびこのヒートシンクを備えた電子部品装置 | |
Dassios et al. | Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering | |
EP2690068A1 (en) | Alumina composite, process for producing alumina composite, and polymer composition containing alumina composite | |
Kachaev et al. | Use of Additive Technologies for Making Silicon Carbide Ceramic Materials: A Review | |
WO2022081913A1 (en) | Systems and methods for production of materials useful in additive manufacturing | |
US11274066B1 (en) | Ceramic armor and other structures manufactured using ceramic nano-pastes | |
WO2019023455A1 (en) | SOLID CARBON PRODUCTS COMPRISING CARBON NANOTUBES AND METHODS OF MAKING | |
CN117776736A (zh) | 氮化硼全陶瓷颗粒、其制备方法及应用 | |
KR20240059625A (ko) | 열성형성 붕소계 세라믹 재료 및 열 관리에서의 사용 | |
WO2023215655A1 (en) | Bulk nanocomposite materials and methods for making these |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |