CN107866560B - 一种分支网状金纳米材料的制备方法 - Google Patents

一种分支网状金纳米材料的制备方法 Download PDF

Info

Publication number
CN107866560B
CN107866560B CN201711258431.8A CN201711258431A CN107866560B CN 107866560 B CN107866560 B CN 107866560B CN 201711258431 A CN201711258431 A CN 201711258431A CN 107866560 B CN107866560 B CN 107866560B
Authority
CN
China
Prior art keywords
aqueous solution
gold nano
branch
reticular
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711258431.8A
Other languages
English (en)
Other versions
CN107866560A (zh
Inventor
杜明明
李银晓
曾淦宁
王杰
盛加楠
王国梁
斯鹏松
李清彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201711258431.8A priority Critical patent/CN107866560B/zh
Publication of CN107866560A publication Critical patent/CN107866560A/zh
Application granted granted Critical
Publication of CN107866560B publication Critical patent/CN107866560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种分支网状金纳米材料的制备方法:分别配制柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;在所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;本发明首次报道了利用离子液体诱导水相中的近球形金纳米快速形成分支网状的金纳米材料,工艺简单,产率高,离子液体用量少;由于分支网状金纳米材料在近红外有强烈的特征吸收,因此在医疗和光学领域等方面具有潜在的应用价值。

Description

一种分支网状金纳米材料的制备方法
(一)技术领域
本发明涉及一种分支网状金纳米材料的制备方法。
(二)背景技术
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100nm)或由它们作为基本单元构成的材料,按照维数纳米材料可以分为零位、一维和二维纳米材料(Nanotechnology,18(2007))。由于纳米材料晶粒尺寸很小,晶面原子的比例很大使其表现出量子尺寸效应、表面效应、宏观量子隧道效应以及介电限域效应等,从而使得纳米颗粒的热、磁、光、敏感特性和表面稳定性等不同于常规的材料。
贵金属纳米颗粒的物理化学性能与其形貌息息相关,在过去的十多年中,金纳米颗粒的形貌调控主要集中在近球形(J Nanopart Res,13(2011)4957-4968)、三角片(AdvFunct Mater,16(2006)1209-1214)、金纳米线(J Am Chem Soc,130(2008)8902-8903)、金纳米棒(J Am Chem Soc,124(2002)14316-14317)等。研究人员在合成粒度分度窄的球形金纳米颗粒,超细的金纳米线以及高产率的三角片和金纳米棒等方面做了大量的工作。因为它们的新颖特性在光学、医疗、催化等领域具有潜在的应用价值。因此,金纳米颗粒的形貌调控已经引起了很大的关注,它们为基础研究和技术应用提供了新的可能性。目前金纳米颗粒形貌调控方法有光化学法、晶种辅助法、水相化学还原法、电化学法、表面活性剂辅助法以及生物法等等,而探寻新的金纳米颗粒形貌调控方法也是研究者重要关注的方向之一。
(三)发明内容
本发明的目的是提供一种分支网状的金纳米材料的制备方法。本发明首先以硼氢化钠为还原试剂,柠檬酸三钠为保护剂制备近球形金溶胶,然后在所得近球形金溶胶中加入离子液体,即可快速合成分支网状的金纳米材料,所得分支网状金纳米材料产率高。
本发明的技术方案如下:
一种分支网状金纳米材料的制备方法,所述的制备方法为:
(1)分别配制0.1~1.0mmol/L(优选0.5mmol/L)柠檬酸三钠水溶液、0.1~1.0mmol/L(优选0.5mmol/L)氯金酸水溶液、1.0~10.0mol/L(优选4mmol/L)硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;
所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:0.5~2:0.1~1.5,优选1:1:0.5;
(2)在步骤(1)所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;
所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.05~1.0:50,优选0.1~0.2:50。
本发明所述室温为20~35℃。
本发明的有益效果在于:本发明首次报道了利用离子液体诱导水相中的近球形金纳米快速形成分支网状的金纳米材料,工艺简单,产率高,离子液体用量少。由于分支网状金纳米材料在近红外有强烈的特征吸收,因此在医疗和光学领域等方面具有潜在的应用价值。
(四)附图说明
图1:实施例1制备的分支网状金纳米材料的TEM图,图中的标尺为50nm;
图2:实施例1制备的分支网状金纳米材料的紫外-可见-近红外的光吸收光谱图,横坐标为Wavelength(nm),纵坐标为吸收强度Absorption(a.u.)。
(五)具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
实施例1
配制0.5mmol/L的柠檬酸三钠水溶液,0.5mmol/L的氯金酸水溶液,4mol/L的硼氢化钠水溶液。分别量取20mL柠檬酸三钠溶液和氯金酸溶液,加入100mL锥形瓶中混合,再向其中加入10mL 4mol/L的硼氢化钠溶液,室温搅拌反应30s后,静置2h,得到金溶胶。向金溶胶中加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,得到分支网状金纳米材料。
通过TEM进行形貌分析,从图1中可以看出有大量的分支网状金纳米材料的生成,从紫外-可见-近红外的光吸收光谱图(图2)中可以看出,在700-1000nm的近红外波段存在着一个明显的吸收峰,该峰为分支网状金纳米材料的吸收峰。
实施例2
按照实施例1制备金溶胶,并向其中加入0.2mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,得到分支网状金纳米材料,并利用TEM进行形貌分析,与实施例1相比,金纳米材料分支更多网状结构更密集。
对比例1
按照实施例1制备金溶胶。将侧柏植物树叶(生物质)晒干、研磨粉碎,取1g侧柏叶粉末加去离子水100mL,搅拌2h过滤后得到滤液。取10mL滤液加入金溶胶中,搅拌0.5h,后加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,并利用TEM进行形貌分析,未见分支网状金纳米材料形成。这一结果说明,通过植物生物质修饰后的金纳米材料,离子液体不能将其诱导形成分支网状金纳米材料。
对比例2
将侧柏植物树叶(生物质)晒干、研磨粉碎,取1g侧柏叶粉末加去离子水100mL,搅拌2h过滤后得到滤液,取30mL滤液置于100mL锥形瓶中,并加入20mL 0.5mmol/L氯金酸水溶液,搅拌1h后,可得近球形的金溶胶,向金溶胶中加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,并利用TEM进行形貌分析,未见分支网状金纳米材料形成。这一结果说明,通过植物生物质制备的金纳米材料,离子液体同样也不能将其诱导形成分支网状金纳米材料。这是因为植物生物质对金纳米颗粒的保护作用更加强,而柠檬酸三钠是一种较弱的保护剂,因此离子液体可以将其保护的球形金纳米颗粒诱导形成分支网状金纳米材料。

Claims (6)

1.一种分支网状金纳米材料的制备方法,其特征在于,所述的制备方法为:
(1)分别配制0.1~1.0mmol/L柠檬酸三钠水溶液、0.1~1.0mmol/L氯金酸水溶液、1.0~10.0mol/L硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;
所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:0.5~2:0.1~1.5;
(2)在步骤(1)所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;
所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.05~1.0:50。
2.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述柠檬酸三钠水溶液的浓度配制为0.5mmol/L。
3.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述氯金酸水溶液的浓度配制为0.5mmol/L。
4.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述硼氢化钠水溶液的浓度配制为4mmol/L。
5.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:1:0.5。
6.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(2)中,所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.1~0.2:50。
CN201711258431.8A 2017-12-04 2017-12-04 一种分支网状金纳米材料的制备方法 Active CN107866560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711258431.8A CN107866560B (zh) 2017-12-04 2017-12-04 一种分支网状金纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711258431.8A CN107866560B (zh) 2017-12-04 2017-12-04 一种分支网状金纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN107866560A CN107866560A (zh) 2018-04-03
CN107866560B true CN107866560B (zh) 2019-05-31

Family

ID=61755116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711258431.8A Active CN107866560B (zh) 2017-12-04 2017-12-04 一种分支网状金纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN107866560B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289450A (zh) * 2020-02-14 2020-06-16 西北师范大学 一种新型的金纳米颗粒的制备方法及金纳米颗粒在检测三价铬离子中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384515A (zh) * 2006-01-17 2009-03-11 Ppg工业俄亥俄公司 通过物理气相沉积在离子液体中制备颗粒的方法
CN101940946A (zh) * 2010-08-24 2011-01-12 厦门大学 一种丙烯环氧化催化剂的制备方法
CN101961663A (zh) * 2010-09-10 2011-02-02 厦门大学 一种用于合成环氧丙烷的催化剂的生物原位还原制备方法
CN103940874A (zh) * 2014-03-31 2014-07-23 西北师范大学 离子液体包裹金纳米粒子修饰玻碳电极的制备及其对胆固醇的检测

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384515A (zh) * 2006-01-17 2009-03-11 Ppg工业俄亥俄公司 通过物理气相沉积在离子液体中制备颗粒的方法
US8618013B2 (en) * 2006-01-17 2013-12-31 Ppg Industries Ohio, Inc. Method of producing particles by physical vapor deposition in an ionic liquid
CN101940946A (zh) * 2010-08-24 2011-01-12 厦门大学 一种丙烯环氧化催化剂的制备方法
CN101961663A (zh) * 2010-09-10 2011-02-02 厦门大学 一种用于合成环氧丙烷的催化剂的生物原位还原制备方法
CN103940874A (zh) * 2014-03-31 2014-07-23 西北师范大学 离子液体包裹金纳米粒子修饰玻碳电极的制备及其对胆固醇的检测

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
[R1R3IM]+[BF4]-离子液体中链状纳米金的制备;李中春等;《稀有金属材料与工程》;20090831;第38卷(第8期);第1454-1457页 *

Also Published As

Publication number Publication date
CN107866560A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
Wu et al. An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy
Wei et al. Seed-mediated synthesis of gold nanorods at low concentrations of CTAB
Li et al. Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions
Yi et al. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution
Dimitrijevic et al. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane
CN105108171B (zh) 一种强拉曼信号的纳米颗粒的制备方法
Zheng et al. Quantitative analysis of Gd@ C 82 (OH) 22 and cisplatin uptake in single cells by inductively coupled plasma mass spectrometry
CN104308179A (zh) 一种高产率金纳米三角片的快速制备方法
Rakhi et al. Terminalia arjunabark extract mediated size controlled synthesis of polyshaped gold nanoparticles and its application in catalysis
CN104475132B (zh) 一种花状BiOBr的制备方法及在降解罗丹明反应中的应用
CN102837005A (zh) 一种具有表面拉曼增强活性的尺寸可控金纳米星的制备方法
Suresh et al. Green synthesis and characterization of tea decoction stabilized copper nanoparticles
Huang et al. The controlled synthesis of stable gold nanoparticles in quaternary ammonium ionic liquids by simple heating
Balasubramanian et al. Green, selective, seedless and one-pot synthesis of triangular Au nanoplates of controlled size using bael gum and mechanistic study
Li et al. Preparation of monodispersed copper nanoparticles by an environmentally friendly chemical reduction
CN107866560B (zh) 一种分支网状金纳米材料的制备方法
Amici et al. Photochemical synthesis of gold–polyethylenglycol core–shell nanoparticles
Liu et al. Synthesis of gold nanoflowers assisted by a CH-CF hybrid surfactant and their applications in SERS and catalytic reduction of 4-nitroaniline
Dinda et al. Amino acid-based redox active amphiphiles to in situ synthesize gold nanostructures: from sphere to multipod
Mandal Synthesis of radioactive gold nanoparticle in surfactant medium
Ba et al. 3-Aminopropyltriethoxysilane-directed formation of Au popcorns for colorimetric and SERS dual detection of cysteine
Zhao et al. Formation of hollow Ag/Au nanostructures in seeding approach: The competition of hydroxyl groups with chloride ions to Ag+
Obliosca et al. Synthesis and optical properties of gold/silver nanocomposites prepared on multi-walled carbon nanotubes via galvanic replacement of silver nanoparticles
Wang et al. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals
Ghorbani Green synthesis of gold nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant