CN107866560B - 一种分支网状金纳米材料的制备方法 - Google Patents
一种分支网状金纳米材料的制备方法 Download PDFInfo
- Publication number
- CN107866560B CN107866560B CN201711258431.8A CN201711258431A CN107866560B CN 107866560 B CN107866560 B CN 107866560B CN 201711258431 A CN201711258431 A CN 201711258431A CN 107866560 B CN107866560 B CN 107866560B
- Authority
- CN
- China
- Prior art keywords
- aqueous solution
- gold nano
- branch
- reticular
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000010931 gold Substances 0.000 title claims abstract description 50
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 50
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000007864 aqueous solution Substances 0.000 claims abstract description 31
- 239000002608 ionic liquid Substances 0.000 claims abstract description 17
- 239000001509 sodium citrate Substances 0.000 claims abstract description 13
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims abstract description 13
- 229940038773 trisodium citrate Drugs 0.000 claims abstract description 13
- 229910000033 sodium borohydride Inorganic materials 0.000 claims abstract description 11
- 239000012279 sodium borohydride Substances 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 11
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 2
- 150000002500 ions Chemical class 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241000218636 Thuja Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- SJUCACGNNJFHLB-UHFFFAOYSA-N O=C1N[ClH](=O)NC2=C1NC(=O)N2 Chemical compound O=C1N[ClH](=O)NC2=C1NC(=O)N2 SJUCACGNNJFHLB-UHFFFAOYSA-N 0.000 description 1
- 240000002924 Platycladus orientalis Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0553—Complex form nanoparticles, e.g. prism, pyramid, octahedron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F2009/245—Reduction reaction in an Ionic Liquid [IL]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
一种分支网状金纳米材料的制备方法:分别配制柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;在所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;本发明首次报道了利用离子液体诱导水相中的近球形金纳米快速形成分支网状的金纳米材料,工艺简单,产率高,离子液体用量少;由于分支网状金纳米材料在近红外有强烈的特征吸收,因此在医疗和光学领域等方面具有潜在的应用价值。
Description
(一)技术领域
本发明涉及一种分支网状金纳米材料的制备方法。
(二)背景技术
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100nm)或由它们作为基本单元构成的材料,按照维数纳米材料可以分为零位、一维和二维纳米材料(Nanotechnology,18(2007))。由于纳米材料晶粒尺寸很小,晶面原子的比例很大使其表现出量子尺寸效应、表面效应、宏观量子隧道效应以及介电限域效应等,从而使得纳米颗粒的热、磁、光、敏感特性和表面稳定性等不同于常规的材料。
贵金属纳米颗粒的物理化学性能与其形貌息息相关,在过去的十多年中,金纳米颗粒的形貌调控主要集中在近球形(J Nanopart Res,13(2011)4957-4968)、三角片(AdvFunct Mater,16(2006)1209-1214)、金纳米线(J Am Chem Soc,130(2008)8902-8903)、金纳米棒(J Am Chem Soc,124(2002)14316-14317)等。研究人员在合成粒度分度窄的球形金纳米颗粒,超细的金纳米线以及高产率的三角片和金纳米棒等方面做了大量的工作。因为它们的新颖特性在光学、医疗、催化等领域具有潜在的应用价值。因此,金纳米颗粒的形貌调控已经引起了很大的关注,它们为基础研究和技术应用提供了新的可能性。目前金纳米颗粒形貌调控方法有光化学法、晶种辅助法、水相化学还原法、电化学法、表面活性剂辅助法以及生物法等等,而探寻新的金纳米颗粒形貌调控方法也是研究者重要关注的方向之一。
(三)发明内容
本发明的目的是提供一种分支网状的金纳米材料的制备方法。本发明首先以硼氢化钠为还原试剂,柠檬酸三钠为保护剂制备近球形金溶胶,然后在所得近球形金溶胶中加入离子液体,即可快速合成分支网状的金纳米材料,所得分支网状金纳米材料产率高。
本发明的技术方案如下:
一种分支网状金纳米材料的制备方法,所述的制备方法为:
(1)分别配制0.1~1.0mmol/L(优选0.5mmol/L)柠檬酸三钠水溶液、0.1~1.0mmol/L(优选0.5mmol/L)氯金酸水溶液、1.0~10.0mol/L(优选4mmol/L)硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;
所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:0.5~2:0.1~1.5,优选1:1:0.5;
(2)在步骤(1)所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;
所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.05~1.0:50,优选0.1~0.2:50。
本发明所述室温为20~35℃。
本发明的有益效果在于:本发明首次报道了利用离子液体诱导水相中的近球形金纳米快速形成分支网状的金纳米材料,工艺简单,产率高,离子液体用量少。由于分支网状金纳米材料在近红外有强烈的特征吸收,因此在医疗和光学领域等方面具有潜在的应用价值。
(四)附图说明
图1:实施例1制备的分支网状金纳米材料的TEM图,图中的标尺为50nm;
图2:实施例1制备的分支网状金纳米材料的紫外-可见-近红外的光吸收光谱图,横坐标为Wavelength(nm),纵坐标为吸收强度Absorption(a.u.)。
(五)具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
实施例1
配制0.5mmol/L的柠檬酸三钠水溶液,0.5mmol/L的氯金酸水溶液,4mol/L的硼氢化钠水溶液。分别量取20mL柠檬酸三钠溶液和氯金酸溶液,加入100mL锥形瓶中混合,再向其中加入10mL 4mol/L的硼氢化钠溶液,室温搅拌反应30s后,静置2h,得到金溶胶。向金溶胶中加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,得到分支网状金纳米材料。
通过TEM进行形貌分析,从图1中可以看出有大量的分支网状金纳米材料的生成,从紫外-可见-近红外的光吸收光谱图(图2)中可以看出,在700-1000nm的近红外波段存在着一个明显的吸收峰,该峰为分支网状金纳米材料的吸收峰。
实施例2
按照实施例1制备金溶胶,并向其中加入0.2mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,得到分支网状金纳米材料,并利用TEM进行形貌分析,与实施例1相比,金纳米材料分支更多网状结构更密集。
对比例1
按照实施例1制备金溶胶。将侧柏植物树叶(生物质)晒干、研磨粉碎,取1g侧柏叶粉末加去离子水100mL,搅拌2h过滤后得到滤液。取10mL滤液加入金溶胶中,搅拌0.5h,后加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,并利用TEM进行形貌分析,未见分支网状金纳米材料形成。这一结果说明,通过植物生物质修饰后的金纳米材料,离子液体不能将其诱导形成分支网状金纳米材料。
对比例2
将侧柏植物树叶(生物质)晒干、研磨粉碎,取1g侧柏叶粉末加去离子水100mL,搅拌2h过滤后得到滤液,取30mL滤液置于100mL锥形瓶中,并加入20mL 0.5mmol/L氯金酸水溶液,搅拌1h后,可得近球形的金溶胶,向金溶胶中加入0.1mL离子液体[BMIM][BF4],搅拌1min后静置0.5h,并利用TEM进行形貌分析,未见分支网状金纳米材料形成。这一结果说明,通过植物生物质制备的金纳米材料,离子液体同样也不能将其诱导形成分支网状金纳米材料。这是因为植物生物质对金纳米颗粒的保护作用更加强,而柠檬酸三钠是一种较弱的保护剂,因此离子液体可以将其保护的球形金纳米颗粒诱导形成分支网状金纳米材料。
Claims (6)
1.一种分支网状金纳米材料的制备方法,其特征在于,所述的制备方法为:
(1)分别配制0.1~1.0mmol/L柠檬酸三钠水溶液、0.1~1.0mmol/L氯金酸水溶液、1.0~10.0mol/L硼氢化钠水溶液,将柠檬酸三钠水溶液和氯金酸水溶液混合,再加入硼氢化钠水溶液,室温搅拌反应10~60s,之后静置1~4h,得到近球形金溶胶;
所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:0.5~2:0.1~1.5;
(2)在步骤(1)所得近球形金溶胶中加入离子液体[BMIM][BF4],搅拌0.5~2min,之后静置0.2~1.0h,即得分支网状金纳米材料;
所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.05~1.0:50。
2.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述柠檬酸三钠水溶液的浓度配制为0.5mmol/L。
3.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述氯金酸水溶液的浓度配制为0.5mmol/L。
4.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述硼氢化钠水溶液的浓度配制为4mmol/L。
5.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(1)中,所述柠檬酸三钠水溶液、氯金酸水溶液、硼氢化钠水溶液的体积比为1:1:0.5。
6.如权利要求1所述的分支网状金纳米材料的制备方法,其特征在于,步骤(2)中,所述离子液体[BMIM][BF4]与所述近球形金溶胶的体积比为0.1~0.2:50。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711258431.8A CN107866560B (zh) | 2017-12-04 | 2017-12-04 | 一种分支网状金纳米材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711258431.8A CN107866560B (zh) | 2017-12-04 | 2017-12-04 | 一种分支网状金纳米材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107866560A CN107866560A (zh) | 2018-04-03 |
CN107866560B true CN107866560B (zh) | 2019-05-31 |
Family
ID=61755116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711258431.8A Active CN107866560B (zh) | 2017-12-04 | 2017-12-04 | 一种分支网状金纳米材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107866560B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111289450A (zh) * | 2020-02-14 | 2020-06-16 | 西北师范大学 | 一种新型的金纳米颗粒的制备方法及金纳米颗粒在检测三价铬离子中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384515A (zh) * | 2006-01-17 | 2009-03-11 | Ppg工业俄亥俄公司 | 通过物理气相沉积在离子液体中制备颗粒的方法 |
CN101940946A (zh) * | 2010-08-24 | 2011-01-12 | 厦门大学 | 一种丙烯环氧化催化剂的制备方法 |
CN101961663A (zh) * | 2010-09-10 | 2011-02-02 | 厦门大学 | 一种用于合成环氧丙烷的催化剂的生物原位还原制备方法 |
CN103940874A (zh) * | 2014-03-31 | 2014-07-23 | 西北师范大学 | 离子液体包裹金纳米粒子修饰玻碳电极的制备及其对胆固醇的检测 |
-
2017
- 2017-12-04 CN CN201711258431.8A patent/CN107866560B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384515A (zh) * | 2006-01-17 | 2009-03-11 | Ppg工业俄亥俄公司 | 通过物理气相沉积在离子液体中制备颗粒的方法 |
US8618013B2 (en) * | 2006-01-17 | 2013-12-31 | Ppg Industries Ohio, Inc. | Method of producing particles by physical vapor deposition in an ionic liquid |
CN101940946A (zh) * | 2010-08-24 | 2011-01-12 | 厦门大学 | 一种丙烯环氧化催化剂的制备方法 |
CN101961663A (zh) * | 2010-09-10 | 2011-02-02 | 厦门大学 | 一种用于合成环氧丙烷的催化剂的生物原位还原制备方法 |
CN103940874A (zh) * | 2014-03-31 | 2014-07-23 | 西北师范大学 | 离子液体包裹金纳米粒子修饰玻碳电极的制备及其对胆固醇的检测 |
Non-Patent Citations (1)
Title |
---|
[R1R3IM]+[BF4]-离子液体中链状纳米金的制备;李中春等;《稀有金属材料与工程》;20090831;第38卷(第8期);第1454-1457页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107866560A (zh) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy | |
Wei et al. | Seed-mediated synthesis of gold nanorods at low concentrations of CTAB | |
Li et al. | Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions | |
Yi et al. | Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution | |
Dimitrijevic et al. | Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane | |
CN105108171B (zh) | 一种强拉曼信号的纳米颗粒的制备方法 | |
Zheng et al. | Quantitative analysis of Gd@ C 82 (OH) 22 and cisplatin uptake in single cells by inductively coupled plasma mass spectrometry | |
CN104308179A (zh) | 一种高产率金纳米三角片的快速制备方法 | |
Rakhi et al. | Terminalia arjunabark extract mediated size controlled synthesis of polyshaped gold nanoparticles and its application in catalysis | |
CN104475132B (zh) | 一种花状BiOBr的制备方法及在降解罗丹明反应中的应用 | |
CN102837005A (zh) | 一种具有表面拉曼增强活性的尺寸可控金纳米星的制备方法 | |
Suresh et al. | Green synthesis and characterization of tea decoction stabilized copper nanoparticles | |
Huang et al. | The controlled synthesis of stable gold nanoparticles in quaternary ammonium ionic liquids by simple heating | |
Balasubramanian et al. | Green, selective, seedless and one-pot synthesis of triangular Au nanoplates of controlled size using bael gum and mechanistic study | |
Li et al. | Preparation of monodispersed copper nanoparticles by an environmentally friendly chemical reduction | |
CN107866560B (zh) | 一种分支网状金纳米材料的制备方法 | |
Amici et al. | Photochemical synthesis of gold–polyethylenglycol core–shell nanoparticles | |
Liu et al. | Synthesis of gold nanoflowers assisted by a CH-CF hybrid surfactant and their applications in SERS and catalytic reduction of 4-nitroaniline | |
Dinda et al. | Amino acid-based redox active amphiphiles to in situ synthesize gold nanostructures: from sphere to multipod | |
Mandal | Synthesis of radioactive gold nanoparticle in surfactant medium | |
Ba et al. | 3-Aminopropyltriethoxysilane-directed formation of Au popcorns for colorimetric and SERS dual detection of cysteine | |
Zhao et al. | Formation of hollow Ag/Au nanostructures in seeding approach: The competition of hydroxyl groups with chloride ions to Ag+ | |
Obliosca et al. | Synthesis and optical properties of gold/silver nanocomposites prepared on multi-walled carbon nanotubes via galvanic replacement of silver nanoparticles | |
Wang et al. | Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals | |
Ghorbani | Green synthesis of gold nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |