CN107863771A - 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法 - Google Patents

基于序优化和蒙特卡洛的多状态电力系统冗余优化方法 Download PDF

Info

Publication number
CN107863771A
CN107863771A CN201710944297.0A CN201710944297A CN107863771A CN 107863771 A CN107863771 A CN 107863771A CN 201710944297 A CN201710944297 A CN 201710944297A CN 107863771 A CN107863771 A CN 107863771A
Authority
CN
China
Prior art keywords
reliability
parallel
fundamental
current
multimode power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710944297.0A
Other languages
English (en)
Other versions
CN107863771B (zh
Inventor
胡怡霜
丁一
加鹤萍
叶承晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710944297.0A priority Critical patent/CN107863771B/zh
Publication of CN107863771A publication Critical patent/CN107863771A/zh
Application granted granted Critical
Publication of CN107863771B publication Critical patent/CN107863771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法。对所有系统进行分类找出基本系统,利用蒙特卡洛算法计算求出基本系统的可靠度;通过第一修正方法计算获得剩余系统的粗略可靠度,利用序优化算法BP针对所有多状态电力系统的粗略可靠度进行处理进行第一次筛选;基于基本系统的可靠度,通过第二修正方法计算获得剩余系统的精确可靠度,利用序优化算法BP进行第二次筛选;最后采用冗余优化算法求得最优的多状态电力系统。本发明求取所用的时间是大大的缩减,筛选过程具有准确的精确度,适用于多状态系统的冗余优化算法,更加适用于现实情况。

Description

基于序优化和蒙特卡洛的多状态电力系统冗余优化方法
技术领域
本发明涉及了一种电力系统优化处理方法,涉及在多状态电力系统可靠性分析中的基于序优化和蒙特卡洛的多状态电力系统冗余优化方法。
背景技术
可靠性技术是在第二次世界大战后首先从航天工业和电子工业发展起来的,目前已渗透到宇航,电子,化工,机械等许多工业部门。可靠性技术渗透到电力工业和电工设备制造业始于20世纪60年代中期,以后发展的非常迅速。电力系统的功能是向用户尽可能可靠地经济地提供合格的电能,它的可靠性可定义为向用户提供质量合格,连续的电能的能力,这种能力通常用概率表示。所谓质量合格,就是指电能的频率和电压必须保持在规定范围以内。
电力系统可靠性评估是计算分析可能故障状态的概率与后果,得出反映系统可靠性水平的一系列指标。然而,在一个具有几百乃至上千个元件的实际系统中,可能发生的故障状态的数量巨大。由于计算时间与计算资源的限制,在实际评估中不可能对所有可能的故障状态进行评估。因此,状态枚举法仅筛选对系统可靠性贡献大的故障状态进行评估。最常用的选择方法是截止故障重数,即选择2重或3重以下故障状态,忽略更高重的故障状态。该方法的优点是所选状态的概率之和接近于1,且数量较少。但是,在实际系统中,由于元件的停运概率不同,一些高重故障会比低重故障的发生概率大。以具有71个元件的IEEE-RTS系统为例,当元件采用2状态模型时,考虑N-3的系统状态数量是57226,概率之和为0.95110503。实际上,概率较大的前57226个状态包括16786个0~3重故障状态和40440个4重~6重故障状态,概率之和为0.98976138。这些高重故障状态的概率大且后果严重,对系统的可靠性影响很大,而通过截止故障重数进行状态筛选会忽略掉这些大概率高重故障。
由上可知,在电力系统可靠性分析中,状态选择的数量多上,保留或者删除,都会对最终结果造成很大的影响,这就意味着在多状态模型中的电力系统可靠性分析是一个很有必要的研究方向。
现有的多状态电力系统可靠性冗余优化计算方法中,最常见的就是GA算法,如果希望在一系列的多状态电力系统中求取具有最优结构的系统即可靠度满足要求,经济性最优的系统,往往采用穷举的方法,即计算所有系统的可靠性,这种方法会消耗很长的计算时间,几小时甚至几天。
发明内容
为了解决背景技术中存在的问题,本发明提出了一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法。本发明方法从时间以及精度上改进传统方法,运用于在一系列多状态电力系统中,能求取获得满足可靠度要求下的成本最低经济性最好的多状态系统,并且用时远远小于以前的传统算法。
如图1所示,本发明的技术方案如下:
第一步:对所有的多状态电力系统进行分类,每一类中找出一个最具有代表性的基本系统,并且利用蒙特卡洛算法计算求出基本系统的可靠度;
第二步:考虑多状态电力系统中元件串并联元件的不同点,基于基本系统的可靠度,通过第一修正方法计算获得除基本系统以外的每个多状态电力系统的粗略可靠度,利用序优化算法BP针对所有多状态电力系统的粗略可靠度进行处理进行第一次筛选,通过筛选再次减少了计算量;
第三步:考虑多状态电力系统中内外部元件串并联元件的区别,基于基本系统的可靠度,通过第二修正方法计算获得除基本系统以外的每个多状态电力系统的精确可靠度,利用序优化算法BP进行第二次筛选;
第四步:针对第三步筛选得到的所有多状态电力系统,采用冗余优化算法求得最优的多状态电力系统。
本发明多状态系统的定义为:系统及其元件都可能表现出多个性能水平,这种系统称为多状态系统。
所述第一步具体为:
1.1)将所有多状态电力系统进行分类,以多状态电力系统中并联有附加元件且相串联的主元件的总数作为分类依据,将并联有附加元件且相串联的主元件的总数相同的多状态电力系统归为一分类;
1.2)归为同一分类的从依次提取基本系统,基本系统是指在同一分类中元件(包括附加元件和主元件)总数最少的系统;
后续再针对同一分类中除基本系统以外的其他系统进行处理,除基本系统以外的其他系统的串并联元件与基本系统的区别都是在基本系统的基础上进行了并联或者共因失效结构的改变。
1.3)用蒙特卡洛算法计算求出每一分类中基本系统的可靠度。
所述第二步具体为:
在前面第一步所属类的基本系统以及可靠度的基础上,针对同一分类中的剩余系统,剩余系统是指除基本系统以外的其他多状态电力系统,依次采用以下方式进行可靠度计算:
2.1)首先,进行附加并联元件的可靠度更新计算:
2.1.a)若剩余系统与基本系统相比,增加有一个并联元件,则更新后可靠度计算公式为:
A’=1-(1-A)(1-R)
其中,A为当前可靠度,R为并联元件的可靠度,A’为更新后可靠度;
2.1.b)若剩余系统与基本系统相比,增加有多个并联的附加元件,重复步骤2.1.a)依次对所有增加的并联元件以相同方式迭代计算,初始计算时当前可靠度A为基本系统的可靠度,之后以当前增加的并联元件对应处理获得的更新后可靠度作为下一增加的并联元件对应处理时的当前可靠度A,从而获得剩余系统的第一中间可靠度;
2.2)接着,进行共因失效结构的可靠度更新计算(本发明中基本系统认为不含有共因失效结构):
2.2.a)若剩余系统与基本系统相比,其中多存在一组共因失效结构,则更新后可靠度为当前可靠度B乘以所存在的共因失效结构的所有元件可靠度的乘积;
2.2.b)若剩余系统与基本系统相比,存在多组共因失效结构,重复步骤2.2.a)依次对所有共因失效结构以相同方式迭代计算,
初始计算时当前可靠度B为步骤2.1)获得的第一中间可靠度,之后以当前共因失效结构对应处理获得的更新后可靠度作为下一共因失效结构对应处理时的当前可靠度B,从而获得剩余系统的粗略可靠度;
共因失效结构是指在一个系统中由于共同故障原因而引起两个或两个以上单元的同时失效。
2.3)将所有分类的基本系统的可靠度和所有分类的剩余系统的粗略可靠度按照降序进行排列,获得第一排序序列,并绘制出序优化算法所需的降序排列曲线;
2.4)采用序优化算法中的盲选方法BP对第一排序序列进行处理,具体是从第一排序序列中选择前g个系统作为盲选方法BP中的“足够好子集G”,用盲选方法BP求出“选择子集S”的个数s。
为了提高最终结果的精确性,本发明以第三步来进行另一可靠性计算并重新排序以求取“选择子集S”的个数s的具体是哪几个系统。
所述第三步具体为:
第三步与第二步类似,在第二步中选择的基本系统以及可靠度的基础上,将可靠度的变化量按照改变的内外部层次而作相应的改变。
3.1)首先,进行附加并联元件的可靠度更新计算:
3.1.a)若剩余系统与基本系统相比,增加有一个内部并联元件,内部并联元件是指在主元件所并联有的附加元件上再串联有的另外附件元件,则更新后可靠度计算公式为:
A’=A+(R’-AR’)R’
其中,A为当前可靠度,R’为内部并联元件的可靠度,A’为更新后可靠度;
3.1.b)若剩余系统与基本系统相比,增加有多个内部并联元件,重复步骤3.1.a)依次对所有增加的内部并联元件以相同方式迭代计算,初始计算时当前可靠度A为基本系统的可靠度,之后以当前内部并联元件对应处理获得的更新后可靠度作为下一内部并联元件对应处理时的当前可靠度A,从而获得剩余系统的第二中间可靠度;
3.2)接着,进行附加并联元件的可靠度更新计算:
3.2.a)若剩余系统与基本系统相比,增加有一个外部并联元件,外部并联元件是指在主元件或者附加元件上并联有的另外附件元件,则更新后可靠度计算公式为:
A’=1-(1-A)(1-R”)
其中,A为当前可靠度,R”为外部并联元件的可靠度,A’为更新后可靠度;
外部并联元件的可靠度公式与无级别的并联元件的步骤2.1)公式一致。
3.2.b)若剩余系统与基本系统相比,增加有多个外部并联元件,重复步骤3.2.a)依次对所有增加的外部并联元件以相同方式迭代计算,初始计算时当前可靠度A为步骤3.1)获得的第二中间可靠度,之后以当前外部并联元件对应处理获得的更新后可靠度作为下一外部并联元件对应处理时的当前可靠度A,从而获得剩余系统的第三中间可靠度;
3.3)然后,进行共因失效结构的可靠度更新计算(本发明中基本系统认为不含有共因失效结构):
3.3.a)若剩余系统与基本系统相比,其中多存在一组共因失效结构,则更新后可靠度为当前可靠度B乘以所存在的共因失效结构的所有元件可靠度的乘积;
3.3.b)若剩余系统与基本系统相比,存在多组共因失效结构,重复步骤3.3.a)依次对所有共因失效结构以相同方式迭代计算,初始计算时当前可靠度B为步骤3.2)获得的第三中间可靠度,之后以当前共因失效结构对应处理获得的更新后可靠度作为下一共因失效结构对应处理时的当前可靠度B,从而获得剩余系统的精确可靠度;
3.4)针对步骤2.4)中选择的前g个系统,以精确可靠度按照降序进行排列,并再从中选取前s个系统作为“选择子集S”中的元素,s为步骤2.4)获得的“选择子集S”的个数。
此处步骤3.4)获得的s个系统是通过前两次筛选方法处理后获得的具有高可靠度的系统,即s个系统均为所有系统中满足可靠度要求的系统,后续步骤在这s个系统上采用冗余优化算法进行处理。
本发明的第二修正方法相比于第一修正方法不仅考虑了并联和共因失效结构的影响,还考虑了内部并联以及内部共因失效结构、外部并联以及外部共因失效结构的影响,从而可以得到相比于第一种更加精确的可靠度。
本发明通过第二步和第三步的步骤进行分类筛选大大减少了计算的系统数量,并且提高了可靠度筛选计算的准确性。
所述第四步具体为:
针对第三步筛选得到的所有多状态电力系统,采用以下公式的冗余优化算法进行处理,通过min函数得到其中成本最小的系统作为最优系统:
minC=∑ci*ni
其中,c为单个多状态电力系统中每一元件的成本,n为元件的总数量,C为单个多状态电力系统的成本。
本发明的有益效果是:
相对于现有技术方案,本发明对于最优系统(满足可靠度要求具有最少成本的系统)的求取所用的时间大大缩减。
相对于现有技术方案,本发明提出的筛选过程具有更加准确的精确度,保证了高可靠度系统筛选的精确性。
相对于现有技术方案,蒙特卡洛相比于马氏链更加适用于系统,所用的时间比马氏链少,本发明适用于系统的冗余优化算法,更加适用于现实的实际情况。
附图说明
图1是本发明方法的逻辑框图。
图2是本发明实施例的结构类型编号为9-1的多状态电力系统。
图3是本发明实施例的结构类型编号为9-2的多状态电力系统。
图4是本发明实施例的结构类型编号为9-3的多状态电力系统。
图5是本发明实施例的结构类型编号为9-4的多状态电力系统。
图6是本发明实施例的结构类型编号为10-1的多状态电力系统。
图7是本发明实施例的结构类型编号为10-2的多状态电力系统。
图8是本发明实施例的结构类型编号为10-3的多状态电力系统。
图9是本发明实施例的结构类型编号为10-4的多状态电力系统。
图10是本发明实施例的结构类型编号为11-1的多状态电力系统。
图11是本发明实施例的结构类型编号为11-2的多状态电力系统。
图12是本发明实施例的结构类型编号为11-3的多状态电力系统。
图13是本发明实施例的结构类型编号为11-4的多状态电力系统。
图14是本发明实施例的结构类型编号为12-1的多状态电力系统。
图15是本发明实施例的结构类型编号为12-2的多状态电力系统。
图16是本发明实施例的结构类型编号为12-3的多状态电力系统。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明的实施例如下:
第一步:对所有的多状态电力系统进行分类,每一类中找出一个最具有代表性的基本系统,并且利用蒙特卡洛算法计算求出基本系统的可靠度;
本实施例一共有15种系统结构,如图2~图16所示,将其一共分为四类,假设元件相同,且成本为1,其中方框代表该元件组具有共因失效结构。
在每一个系统结构中,方框代表各个电力元件,两个方框串联连接代表电力元件的串联,两个方框并联代表电力元件的并联,两两元件之间的方框代表这两个元件之间存在共因失效结构。
各个系统结构就代表一类电力系统结构,从发电,变电,输电,配电以及用电侧的各类元件之间的拓扑结构。每一个结构中带有并联附加元件的串联元件数即该结构编号的前面数字,每一个结构在所属类中的图表排序号即是该结构编号的后面数字。
图2~图5的结构类型编号分别为9-1、9-2、9-3、9-4,图6~图9的结构类型编号分别为10-1、10-2、10-3、10-4,图10~图13的结构类型编号分别为11-1、11-2、11-3、11-4,图14~图16的结构类型编号分别为12-1、12-2、12-3。
选取每一类的基本系统,分别为9-1,10-1,11-1,12-1,采用蒙特卡洛算法,得到这四类的精确可靠度为如下表1:
表1四类基本结构的精确可靠度
第二步:基于基本系统的可靠度,通过第一修正方法计算获得除基本系统以外的每个多状态电力系统的粗略可靠度,利用序优化算法BP针对所有多状态电力系统的粗略可靠度进行处理进行第一次筛选;
基于公式,得到每一类中的剩余系统的粗略可靠度,选择前9种结构,作为序优化算法的数据。
表2粗略可靠度
第三步:基于基本系统的可靠度,通过第二修正方法计算获得除基本系统以外的每个多状态电力系统的较精确可靠度,利用序优化算法BP进行第二次筛选;
采用序优化算法的盲选规则,计算可得选择子集中的个数为5个。
依据定义公式,计算选出的9种系统的较精确可靠度,选前5位系统,分别为12-2,12-3,11-3,11-4,10-4。
表3较精确可靠度
第四步:针对第三步筛选得到的所有多状态电力系统,采用冗余优化算法求得最优的多状态电力系统。
采用冗余优化算法,求选出的5种系统的成本,求取最优系统,为10-4和11-3系统。
表4筛选系统的最终可靠度
本实施例验证:
a)可靠度准确性验证:采用蒙特卡洛算法计算所有系统的精确可靠度和成本,由表5可知,系统10-4和11-3为具有高可靠度且成本最少的系统,与计算结果相符合。
表5系统准确可靠性
b)筛准确性比较:从表5可知计算前已知可靠度最高前5位的系统为12-3,12-2,11-411-3,10-4,通过计算筛选得到的前5的系统为12-3,12-2,11-411-3,10-4,与精确计算结果相同,表明了筛选的合理性与高的精确性。
c)与仅蒙特卡洛算法的传统算法相比的计算时间:由表6可知,与仅蒙特卡洛算法的传统算法相比,提出的新算法所用的计算时间可以缩短二分之一。
表6计算时间对比
由此可见,本发明具有更加准确的精确度,方法可靠性高,而且求取所用的时间大大缩减,更适用于现实的实际情况,其技术效果显著突出。

Claims (5)

1.一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法,其特征在于包括如下步骤:
第一步:对所有的多状态电力系统进行分类,每一类中找出一个最具有代表性的基本系统,并且利用蒙特卡洛算法计算求出基本系统的可靠度;
第二步:基于基本系统的可靠度,通过第一修正方法计算获得除基本系统以外的每个多状态电力系统的粗略可靠度,利用序优化算法BP针对所有多状态电力系统的粗略可靠度进行处理进行第一次筛选;
第三步:基于基本系统的可靠度,通过第二修正方法计算获得除基本系统以外的每个多状态电力系统的精确可靠度,利用序优化算法BP进行第二次筛选;
第四步:针对第三步筛选得到的所有多状态电力系统,采用冗余优化算法求得最优的多状态电力系统。
2.根据权利要求1所述的一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法,其特征在于:所述第一步具体为:
1.1)将所有多状态电力系统进行分类,以多状态电力系统中并联有附加元件且相串联的主元件的总数作为分类依据,将并联有附加元件且相串联的主元件的总数相同的多状态电力系统归为一分类;
1.2)归为同一分类的从依次提取基本系统,基本系统是指在同一分类中元件(包括附加元件和主元件)总数最少的系统;
1.3)用蒙特卡洛算法计算求出每一分类中基本系统的可靠度。
3.根据权利要求1所述的一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法,其特征在于:所述第二步具体为:
针对同一分类中的剩余系统,剩余系统是指除基本系统以外的其他多状态电力系统,依次采用以下方式进行可靠度计算:
2.1)首先,进行附加并联元件的可靠度更新计算:
2.1.a)若剩余系统与基本系统相比,增加有一个并联元件,则更新后可靠度计算公式为:
A’=1-(1-A)(1-R)
其中,A为当前可靠度,R为并联元件的可靠度,A’为更新后可靠度;
2.1.b)若剩余系统与基本系统相比,增加有多个并联的附加元件,重复步骤2.1.a)依次对所有增加的并联元件以相同方式迭代计算,初始计算时当前可靠度A为基本系统的可靠度,之后以当前增加的并联元件对应处理获得的更新后可靠度作为下一增加的并联元件对应处理时的当前可靠度A,从而获得剩余系统的第一中间可靠度;
2.2)接着,进行共因失效结构的可靠度更新计算:
2.2.a)若剩余系统与基本系统相比,其中多存在一组共因失效结构,则更新后可靠度为当前可靠度B乘以所存在的共因失效结构的所有元件可靠度的乘积;
2.2.b)若剩余系统与基本系统相比,存在多组共因失效结构,重复步骤2.2.a)依次对所有共因失效结构以相同方式迭代计算,
初始计算时当前可靠度B为步骤2.1)获得的第一中间可靠度,之后以当前共因失效结构对应处理获得的更新后可靠度作为下一共因失效结构对应处理时的当前可靠度B,从而获得剩余系统的粗略可靠度;
2.3)将所有分类的基本系统的可靠度和所有分类的剩余系统的粗略可靠度按照降序进行排列,获得第一排序序列,并绘制出降序排列曲线;
2.4)采用序优化算法中的盲选方法BP对第一排序序列进行处理,具体是从第一排序序列中选择前g个系统作为盲选方法BP中的“足够好子集G”,用盲选方法BP求出“选择子集S”的个数s。
4.根据权利要求1所述的一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法,其特征在于:所述第三步具体为:
3.1)首先,进行附加并联元件的可靠度更新计算:
3.1.a)若剩余系统与基本系统相比,增加有一个内部并联元件,内部并联元件是指在主元件所并联有的附加元件上再串联有的另外附件元件,则更新后可靠度计算公式为:
A’=A+(R’-AR’)R’
其中,A为当前可靠度,R’为内部并联元件的可靠度,A’为更新后可靠度;
3.1.b)若剩余系统与基本系统相比,增加有多个内部并联元件,重复步骤3.1.a)依次对所有增加的内部并联元件以相同方式迭代计算,初始计算时当前可靠度A为基本系统的可靠度,之后以当前内部并联元件对应处理获得的更新后可靠度作为下一内部并联元件对应处理时的当前可靠度A,从而获得剩余系统的第二中间可靠度;
3.2)接着,进行附加并联元件的可靠度更新计算:
3.2.a)若剩余系统与基本系统相比,增加有一个外部并联元件,外部并联元件是指在主元件或者附加元件上并联有的另外附件元件,则更新后可靠度计算公式为:
A’=1-(1-A)(1-R”)
其中,A为当前可靠度,R”为外部并联元件的可靠度,A’为更新后可靠度;
3.2.b)若剩余系统与基本系统相比,增加有多个外部并联元件,重复步骤3.2.a)依次对所有增加的外部并联元件以相同方式迭代计算,初始计算时当前可靠度A为步骤3.1)获得的第二中间可靠度,之后以当前外部并联元件对应处理获得的更新后可靠度作为下一外部并联元件对应处理时的当前可靠度A,从而获得剩余系统的第三中间可靠度;
3.3)然后,进行共因失效结构的可靠度更新计算:
3.3.a)若剩余系统与基本系统相比,其中多存在一组共因失效结构,则更新后可靠度为当前可靠度B乘以所存在的共因失效结构的所有元件可靠度的乘积;
3.3.b)若剩余系统与基本系统相比,存在多组共因失效结构,重复步骤3.3.a)依次对所有共因失效结构以相同方式迭代计算,初始计算时当前可靠度B为步骤3.2)获得的第三中间可靠度,之后以当前共因失效结构对应处理获得的更新后可靠度作为下一共因失效结构对应处理时的当前可靠度B,从而获得剩余系统的精确可靠度;
3.4)针对步骤2.4)中选择的前g个系统,以精确可靠度按照降序进行排列,并再从中选取前s个系统作为“选择子集S”中的元素,s为步骤2.4)获得的“选择子集S”的个数。
5.根据权利要求1所述的一种基于序优化和蒙特卡洛的多状态电力系统冗余优化方法,其特征在于:所述第四步具体为:
针对第三步筛选得到的所有多状态电力系统,采用以下公式的冗余优化算法进行处理得到最优系统:
min C=∑ci*ni
其中,c为单个多状态电力系统中每一元件的成本,n为元件的总数量,C为单个多状态电力系统的成本。
CN201710944297.0A 2017-10-12 2017-10-12 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法 Active CN107863771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710944297.0A CN107863771B (zh) 2017-10-12 2017-10-12 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710944297.0A CN107863771B (zh) 2017-10-12 2017-10-12 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法

Publications (2)

Publication Number Publication Date
CN107863771A true CN107863771A (zh) 2018-03-30
CN107863771B CN107863771B (zh) 2019-04-05

Family

ID=61698754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710944297.0A Active CN107863771B (zh) 2017-10-12 2017-10-12 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法

Country Status (1)

Country Link
CN (1) CN107863771B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601187A (zh) * 2019-09-18 2019-12-20 浙江大学 一种基于连续离散函数的多状态电力系统优化构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142024A (ja) * 2008-12-11 2010-06-24 Toshiba Corp 電力系統監視制御装置
CN105449667A (zh) * 2015-11-05 2016-03-30 国家电网公司 一种发输电系统可靠性预测方法
CN105870913A (zh) * 2016-03-23 2016-08-17 国网山西省电力公司大同供电公司 考虑供暖约束的时序蒙特卡洛模拟可靠性评估方法及系统
CN106779477A (zh) * 2017-01-11 2017-05-31 浙江大学 一种计及需求响应的多状态电力系统可靠性计算方法
CN106897814A (zh) * 2017-01-17 2017-06-27 广西电网有限责任公司电力科学研究院 基于多重因素的电力系统运行状态可靠性评估系统及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142024A (ja) * 2008-12-11 2010-06-24 Toshiba Corp 電力系統監視制御装置
CN105449667A (zh) * 2015-11-05 2016-03-30 国家电网公司 一种发输电系统可靠性预测方法
CN105870913A (zh) * 2016-03-23 2016-08-17 国网山西省电力公司大同供电公司 考虑供暖约束的时序蒙特卡洛模拟可靠性评估方法及系统
CN106779477A (zh) * 2017-01-11 2017-05-31 浙江大学 一种计及需求响应的多状态电力系统可靠性计算方法
CN106897814A (zh) * 2017-01-17 2017-06-27 广西电网有限责任公司电力科学研究院 基于多重因素的电力系统运行状态可靠性评估系统及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601187A (zh) * 2019-09-18 2019-12-20 浙江大学 一种基于连续离散函数的多状态电力系统优化构建方法

Also Published As

Publication number Publication date
CN107863771B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US20200184308A1 (en) Methods, systems, and computer readable mediums for determining a system state of a power system using a convolutional neural network
CN105868863B (zh) 一种基于模糊判断的机电系统多层级可靠性预计方法
CN106408423A (zh) 用于风险评估的方法、系统及构建风险评估系统的方法
CN104539601B (zh) 动态网络攻击过程可靠性分析方法及系统
Sha et al. Towards the design of complex evolving networks with high robustness and resilience
Svendsen Grid model reduction for large scale renewable energy integration analyses
CN107863771A (zh) 基于序优化和蒙特卡洛的多状态电力系统冗余优化方法
CN108039068A (zh) 一种基于航班延误传播的加权航空网络社团结构划分方法
CN107909185A (zh) 基于序优化和马氏链的多状态电力系统可靠性分析方法
CN107834538A (zh) 基于序优化和马氏链的多状态电力系统冗余优化方法
CN107909184B (zh) 基于序优化和蒙特卡洛的多状态电力系统可靠性分析方法
CN106786602A (zh) 一种配电网潮流计算方法
CN107179758B (zh) 一种动态信号参数辨识方法及系统
CN109558436A (zh) 基于转移熵的机场航班延误因果关系挖掘方法
CN110601187B (zh) 一种基于连续离散函数的多状态电力系统优化构建方法
CN104731638B (zh) 半导体器件seu翻转概率的数值模拟方法
CN110649600B (zh) 一种基于模糊生成函数的多状态电力系统优化构建方法
CN107706919B (zh) 一种基于序优化的含分布式电源的配电网冗余优化算法
CN103838140B (zh) 基于直接逆控制算法的弱非线性网络控制方法
CN111628531B (zh) 一种针对电力系统静态电压稳定评估的数据驱动方法
Mishra et al. Multi-objective genetic algorithm: A comprehensive survey
Zhang et al. Research on cascading failure in multilayer network with different coupling preference
He et al. Section-representation scheme for evolutionary analog filter synthesis and fault tolerance design
CN117390017B (zh) 一种大数据信息安全系统
Lu et al. Research on grouping-cascaded BP network model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant