CN107863415A - 一种热氧化结合pecvd提升太阳能电池片转化效率的方法 - Google Patents

一种热氧化结合pecvd提升太阳能电池片转化效率的方法 Download PDF

Info

Publication number
CN107863415A
CN107863415A CN201710937776.XA CN201710937776A CN107863415A CN 107863415 A CN107863415 A CN 107863415A CN 201710937776 A CN201710937776 A CN 201710937776A CN 107863415 A CN107863415 A CN 107863415A
Authority
CN
China
Prior art keywords
pecvd
thermal oxide
flow
transformation efficiency
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710937776.XA
Other languages
English (en)
Other versions
CN107863415B (zh
Inventor
薛建锋
邓刚
张向斌
宋飞飞
董方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengdian Group DMEGC Magnetics Co Ltd
Original Assignee
Hengdian Group DMEGC Magnetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengdian Group DMEGC Magnetics Co Ltd filed Critical Hengdian Group DMEGC Magnetics Co Ltd
Priority to CN201710937776.XA priority Critical patent/CN107863415B/zh
Publication of CN107863415A publication Critical patent/CN107863415A/zh
Application granted granted Critical
Publication of CN107863415B publication Critical patent/CN107863415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及太阳能电池领域,公开了一种热氧化结合PECVD提升太阳能电池片转化效率的方法,包括:1)硅片预清洗、制绒及酸清洗;2)高温磷扩散、湿法刻蚀;3)热氧化处理:方阻控制在95‑120 ohm/squ,二氧化硅层厚度控制在10‑20nm;4)PECVD镀膜:依次沉积SixNy膜、SixNyO膜和SiOx膜;三步镀膜后膜厚控制在50‑70nm;且热氧化处理和PECVD镀膜后总膜厚控制在60‑90nm,折射率控制在1.9‑2.1;5)背电极和正电极丝网印刷及烧结。本发明方法独创性地将PECVD镀膜工艺与热氧化工艺匹配结合,并且进一步在热氧化基础上提升电池片的转化效率0.1%以上。

Description

一种热氧化结合PECVD提升太阳能电池片转化效率的方法
技术领域
本发明涉及太阳能电池领域,尤其涉及一种热氧化结合PECVD提升太阳能电池片转化效率的方法。
背景技术
表面钝化就是降低半导体的表面活性,使表面的复合速率降低,其主要的方式是饱和半导体表面处的悬挂键,降低表面活性,增加表面的清洁程度,避免由于杂质在表面层的引入而形成复合中心,以此来降低少数载流子的表面复合速率,使器件稳定工作。适用于太阳电池表面钝化的措施一般有以下四个方面:表面悬挂键饱和钝化、发射结钝化、发射结氧化钝化和场钝化。包括氢化钝化和氧化钝化等多种方法。氧化钝化方法就是在硅片表面热氧化生长SiO2钝化膜以达到表面钝化的效果。SiO2膜是通过硅氧化形成,具有一个不规则多面体网络的非晶态结构。氧化反应在SiO2/Si界面发生,在生长氧化层时硅不断消耗,整个SiO2/Si界面逐渐向硅片内部侵入,而SiO2/Si界面的电荷主要有界面态、固定电荷、可动正离子三种类型。
这三种电荷都会造成晶体表层晶格缺陷增多、悬挂键增加,进而影响增加载流子的复合速率,降低少子寿命,所以如何控制热氧化过程中氧化层的生长速度和SiO2/Si界面特性显得尤为重要。
另外行业现有制备PECVD工艺只是简单在硅片表面镀一层减反射膜,用于减少电池片表面的反射率,增加对光的吸收,但是电池片对于长波范围光吸收还是较少。并且PECVD工艺与热氧化工艺都是表面生长一层膜,虽然两种生长膜的折射率不同,但是可以相互匹配进一步优化电池片的电性能,而行业现有的制备工艺没能将二者很好的结合起来,所以如何将热氧化工艺所形成的SiO2膜与PECVD工艺所形成的减反射膜结合起来变得非常关键。
发明内容
为了解决上述技术问题,本发明提供了一种热氧化结合PECVD提升太阳能电池片转化效率的方法。本发明方法独创性地将PECVD镀膜工艺与热氧化工艺匹配结合,并且进一步在热氧化基础上提升电池片的转化效率0.1%以上(在本领域中,在转化效率上能够取得0.1%以上提高已经属于非常显著的进步)。
本发明的具体技术方案为:一种热氧化结合PECVD提升太阳能电池片转化效率的方法,包括以下步骤:
1)原始硅片预清洗、制绒及酸清洗。
2)高温磷扩散、湿法刻蚀。
3)热氧化处理:热氧化后方阻控制在95-120ohm/squ,二氧化硅层厚度控制在10-20nm。
4)PECVD镀膜:第一步,沉积SixNy膜;第二步,沉积SixNyO膜;第三步,沉积SiOx膜;三步镀膜后膜厚控制在50-70nm;且热氧化处理和PECVD镀膜后总膜厚控制在60-90nm,折射率控制在1.9-2.1。
5)背电极和正电极丝网印刷及烧结,完成电池片制备。
1、本发明在热氧化处理方面,本发明通过对各项参数调节来控制氧化层的生长速度,以控制SiO2膜的厚度(厚度为10nm-20nm)以使其具有良好的钝化效果,同时还能够控制以及Si/SiO2界面特性,从而减少硅片表面的缺陷态密度,减少载流子复合,提高少子寿命,有利于提升电池片的开路电压。
2、本发明的PECVD镀膜工艺采用三步工艺,即在硅片表面镀三层膜,然后通过对各层膜厚调节,可以很好地把减反射膜厚控制在50nm-70nm,热氧化处理和PECVD镀膜后总膜厚控制在60-90nm。本发明的PECVD镀膜工艺能够控制减反射膜的厚度和均匀性,并且可以很好匹配热氧化工艺所形成的SiO2膜,可以起到多层减反射膜的效果,使得硅片表面有较低折射率、反射率以及较高的外量子效率,从而增强对光的吸收,有利于提高电池片的短路电流。
作为优选,步骤1)中,所述硅片制绒后绒面尺寸控制在2~4μm,反射率大于13%。
作为优选,步骤2)中,高温磷扩散形成发射区后进行湿法刻蚀,发射区方阻控制在85-105ohm/squ。
作为优选,步骤3)中,热氧化处理具体为:初始温度为710-730℃,经450-550s升温至770-790℃;保温氧化10-25min,氧气流量为3000-5000sccm,氮气流量10000-14000sccm,炉管压力为正压状态;然后经750-850s降温至690-710℃,氮气流量13000-15000sccm。
作为优选,步骤4)的第一步中,炉管温度控制在420-480℃,时间450-650s,NH3流量5000-6000sccm,SiH4流量400-600sccm,压力1500-1900mtorr,功率3500-4500W,占空比3/40。
作为优选,步骤4)的第二步中,炉管温度控制在420-480℃,时间100-200s,N2O流量2000-3000sccm,SiH4流量300-500sccm,NH3流量1500-2500sccm,压力1200-1600mtorr,功率2500-3500W,占空比3/40。
作为优选,步骤4)的第三步中,炉管温度控制在420-480℃,时间100-200s,硅烷SiH4流量300-500sccm,笑气N2O流量3000-5000sccm,压力1200-1600mtorr,功率2500-3500W,占空比3/40。
本发明的技术原理依据:
1.热氧化层的生长速度主要受氧分子在SiO2层中的迁移速度和SiO2/Si界面处氧分子与硅原子的反应速率影响。而这两个速率主要受氧化时间、氧气流量、氮气流量、炉管温度和炉内气体压力控制。
2.PECVD镀膜工艺是直接在热氧化的SiO2氧化层上面镀SixNy膜,SixNy膜与SiO2膜的晶格系数更加匹配,折射率形成高低搭配,从而可以达到更好的光学参数匹配,从而降低了硅片表面整体的反射率和折射率。
通过对上述各步骤工艺的调整、配合,能够更好地提升电池片转化效率。
与现有技术对比,本发明的有益效果是:
本发明可提升单晶硅电池片开路电压、短路电流,从而提升转换效率,该热氧化工艺能够很好的控制SiO2层厚度,膜厚控制在10-20nm,且能够保证优异的SiO2/Si界面特性。采用该PECVD工艺能够很好地与热氧化工艺进行匹配,使硅片表面整体的膜厚可以控制在60-90nm,起到多层减反射膜的效果,并且可以确保硅片表面膜厚均匀性以及降低表面折射率和反射率,(用SE400adv-PV椭偏仪测得折射率1.9-2.1,D8积分反射仪测得反射率1.8-2.3)增强了对光的吸收,提高短路电流;另外PECVD过程所形成的减反射层还可以有效地提高热氧化过成所形成SiO2/Si界面的特性,降低了光生载流子复合,提高少子寿命,进而提高开路电压。采用该技术方案,单晶电池片开路电压Uoc提升1.5-3mV,短路电流Ise提高10-30mA,效率可以提升0.1%以上。
具体实施方式
下面结合实施例对本发明作进一步的描述。
实施例1
一种热氧化结合PECVD提升太阳能电池片转化效率的方法,包括以下步骤:
1)原始硅片预清洗、制绒及酸清洗,硅片制绒后绒面尺寸控制在3μm,反射率大于13%。
2)高温磷扩散形成发射区后进行湿法刻蚀,发射区方阻控制在89-96ohm/squ(详见表2)。
3)热氧化处理:初始温度为720℃,经500s升温至780℃;保温氧化1200s,氧气流量为4000sccm,氮气流量10000sccm,炉管压力为正压状态;然后经800s降温至700℃,氮气流量14000sccm。热氧化后方阻控制在98-105ohm/squ(详见表2),二氧化硅层厚度控制在13-17nm。
4)PECVD镀膜:
第一步,沉积SixNy膜:炉管温度控制在450℃,时间520s,氨气NH3流量5500sccm,硅烷SiH4流量500sccm,压力1700mtorr,功率4000W,占空比3/40。
第二步,沉积SixNyO膜:炉管温度控制在450℃,时间120s,氨气NH3流量2000sccm,硅烷SiH4流量400sccm,笑气N2O流量2500sccm,压力1300mtorr,功率3000W,占空比3/40。
第三步,沉积SiOx膜:炉管温度控制在450℃,时间150s,硅烷SiH4流量400sccm,笑气N2O流量4500sccm,压力1300mtorr,功率3000W,占空比3/40。
三步镀膜后膜厚控制在60-64nm;且热氧化处理和PECVD镀膜后总膜厚控制在77.5-80.1nm(详见表3),折射率控制在2.021-2.025(详见表3)。
5)背电极和正电极丝网印刷及烧结,完成电池片制备。
表1:常规工艺方案与发明实施例1的热氧化/PECVD结合工艺方案的效率对比
由上表可知,实施例1的电池与常规工艺制得的电池,在各项性能上均更为出色,特别是在转化效率上,取得了0.12%的提升,在本领域中,在转化效率上能够取得0.1%以上提高已经属于非常显著的进步。
表2典型的扩散方阻与氧化方阻
表3典型的热氧化/PECVD结合工艺的膜厚与折射率
常规工艺膜厚/nm 72.5 72.1 73.8 75.5 71.2 74.3
常规工艺折射率 2.071 2.075 2.062 2.052 2.054 2.052
实施例1膜厚/nm 80.1 79.6 77.5 78.3 78.8 79.5
实施例1折射率 2.021 2.022 2.023 2.025 2.025 2.023
实施例2
一种热氧化结合PECVD提升太阳能电池片转化效率的方法,包括以下步骤:
1)原始硅片预清洗、制绒及酸清洗,硅片制绒后绒面尺寸控制在2μm,反射率大于13%。
2)高温磷扩散形成发射区后进行湿法刻蚀,发射区方阻控制在85ohm/squ。
3)热氧化处理:初始温度为710℃,经450s升温至770℃;保温氧化10min,氧气流量为3000sccm,氮气流量12000sccm,炉管压力为正压状态;然后经750s降温至690℃,氮气流量13000sccm。热氧化后方阻控制在85-105ohm/squ,二氧化硅层厚度控制在10nm左右。
4)PECVD镀膜:
第一步,沉积SixNy膜:炉管温度控制在420℃,时间450s,NH3流量5000sccm,SiH4流量400sccm,压力1500mtorr,功率3500W,占空比3/40。
第二步,沉积SixNyO膜:炉管温度控制在420℃,时间100s,N2O流量2000sccm,SiH4流量300sccm,NH3流量1500sccm,压力1200mtorr,功率2500W,占空比3/40。
第三步,沉积SiOx膜:炉管温度控制在420℃,时间100s,硅烷SiH4流量300sccm,笑气N2O流量3000sccm,压力1200mtorr,功率2500W,占空比3/40。
三步镀膜后膜厚控制在50nm左右;且热氧化处理和PECVD镀膜后总膜厚控制在60nm左右,折射率控制在2.02左右。
5)背电极和正电极丝网印刷及烧结,完成电池片制备。
实施例3
一种热氧化结合PECVD提升太阳能电池片转化效率的方法,包括以下步骤:
1)原始硅片预清洗、制绒及酸清洗,硅片制绒后绒面尺寸控制在4μm,反射率大于13%。
2)高温磷扩散形成发射区后进行湿法刻蚀,发射区方阻控制在105ohm/squ。
3)热氧化处理:初始温度为730℃,经550s升温至790℃;保温氧化25min,氧气流量为5000sccm,氮气流量14000sccm,炉管压力为正压状态;然后经850s降温至710℃,氮气流量15000sccm。热氧化后方阻控制在120ohm/squ,二氧化硅层厚度控制在20nm左右。
4)PECVD镀膜:
第一步,沉积SixNy膜:炉管温度控制在480℃,时间650s,NH3流量6000sccm,SiH4流量600sccm,压力1900mtorr,功率4500W,占空比3/40。
第二步,沉积SixNyO膜:炉管温度控制在480℃,时间200s,N2O流量3000sccm,SiH4流量500sccm,NH3流量2500sccm,压力1600mtorr,功率3500W,占空比3/40。
第三步,沉积SiOx膜:炉管温度控制在480℃,时间200s,硅烷SiH4流量500sccm,笑气N2O流量5000sccm,压力1600mtorr,功率3500W,占空比3/40。
三步镀膜后膜厚控制在70nm左右;且热氧化处理和PECVD镀膜后总膜厚控制在90nm左右,折射率控制在1.9-2.1。
5)背电极和正电极丝网印刷及烧结,完成电池片制备。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (7)

1.一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于包括以下步骤:
1)原始硅片预清洗、制绒及酸清洗;
2)高温磷扩散、湿法刻蚀;
3)热氧化处理:热氧化后方阻控制在95-120 ohm/squ,二氧化硅层厚度控制在10-20nm;
4)PECVD镀膜:第一步,沉积SixNy膜;第二步,沉积SixNyO膜;第三步,沉积SiOx膜;三步镀膜后膜厚控制在50-70nm;且热氧化处理和PECVD镀膜后总膜厚控制在60-90nm,折射率控制在1.9-2.1;
5)背电极和正电极丝网印刷及烧结,完成电池片制备。
2.如权利要求1所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤1)中,所述硅片制绒后绒面尺寸控制在2~4μm,反射率大于13%。
3.如权利要求1所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤2)中,高温磷扩散形成发射区后进行湿法刻蚀,发射区方阻控制在85-105ohm/squ。
4.如权利要求1所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤3)中,热氧化处理具体为:初始温度为710-730℃,经450-550s升温至770-790℃;保温氧化10-25min,氧气流量为3000-5000sccm,氮气流量10000-14000sccm,炉管压力为正压状态;然后经750-850s降温至690-710℃,氮气流量13000-15000sccm。
5.如权利要求1或4所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤4)的第一步中,炉管温度控制在420-480℃,时间450-650s,NH3流量5000-6000sccm,SiH4流量400-600sccm,压力1500-1900mtorr,功率3500-4500W,占空比3/40。
6.如权利要求5所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤4)的第二步中,炉管温度控制在420-480℃,时间100-200s,N2O流量2000-3000sccm,SiH4流量300-500sccm,NH3流量1500-2500sccm,压力1200-1600mtorr,功率2500-3500W,占空比3/40。
7.如权利要求6所述的一种热氧化结合PECVD提升太阳能电池片转化效率的方法,其特征在于,步骤4)的第三步中,炉管温度控制在420-480℃,时间100-200s,硅烷SiH4流量300-500sccm,笑气N2O流量3000-5000sccm,压力1200-1600mtorr,功率2500-3500W,占空比3/40。
CN201710937776.XA 2017-10-10 2017-10-10 一种热氧化结合pecvd提升太阳能电池片转化效率的方法 Active CN107863415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710937776.XA CN107863415B (zh) 2017-10-10 2017-10-10 一种热氧化结合pecvd提升太阳能电池片转化效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710937776.XA CN107863415B (zh) 2017-10-10 2017-10-10 一种热氧化结合pecvd提升太阳能电池片转化效率的方法

Publications (2)

Publication Number Publication Date
CN107863415A true CN107863415A (zh) 2018-03-30
CN107863415B CN107863415B (zh) 2019-03-19

Family

ID=61698411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710937776.XA Active CN107863415B (zh) 2017-10-10 2017-10-10 一种热氧化结合pecvd提升太阳能电池片转化效率的方法

Country Status (1)

Country Link
CN (1) CN107863415B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133788A (zh) * 2020-09-21 2020-12-25 横店集团东磁股份有限公司 一种提高perc电池开压的热氧化工艺方法及得到的perc电池片
CN115101622A (zh) * 2022-06-02 2022-09-23 浙江晶科能源有限公司 一种太阳能电池及其制作方法、光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245100A1 (en) * 2004-04-30 2005-11-03 Taiwan Semiconductor Manufacturing Co. Reliability improvement of SiOC etch with trimethylsilane gas passivation in Cu damascene interconnects
CN101882650A (zh) * 2010-06-29 2010-11-10 常州大学 带有电荷埋层的太阳电池的制备方法
CN103413841A (zh) * 2013-08-28 2013-11-27 中电投西安太阳能电力有限公司 太阳能电池表面钝化层结构及其制备方法
CN103996720A (zh) * 2014-05-20 2014-08-20 奥特斯维能源(太仓)有限公司 一种晶硅电池表面钝化膜及其制备方法
CN105140306A (zh) * 2015-07-27 2015-12-09 尚德太阳能电力有限公司 抗pid效应的太阳能电池结构及生产方法
CN105470341A (zh) * 2014-09-05 2016-04-06 中国科学院苏州纳米技术与纳米仿生研究所 一种廉价无序宽谱广角减反结构及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245100A1 (en) * 2004-04-30 2005-11-03 Taiwan Semiconductor Manufacturing Co. Reliability improvement of SiOC etch with trimethylsilane gas passivation in Cu damascene interconnects
CN101882650A (zh) * 2010-06-29 2010-11-10 常州大学 带有电荷埋层的太阳电池的制备方法
CN103413841A (zh) * 2013-08-28 2013-11-27 中电投西安太阳能电力有限公司 太阳能电池表面钝化层结构及其制备方法
CN103996720A (zh) * 2014-05-20 2014-08-20 奥特斯维能源(太仓)有限公司 一种晶硅电池表面钝化膜及其制备方法
CN105470341A (zh) * 2014-09-05 2016-04-06 中国科学院苏州纳米技术与纳米仿生研究所 一种廉价无序宽谱广角减反结构及其制作方法
CN105140306A (zh) * 2015-07-27 2015-12-09 尚德太阳能电力有限公司 抗pid效应的太阳能电池结构及生产方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133788A (zh) * 2020-09-21 2020-12-25 横店集团东磁股份有限公司 一种提高perc电池开压的热氧化工艺方法及得到的perc电池片
CN112133788B (zh) * 2020-09-21 2022-12-16 横店集团东磁股份有限公司 一种提高perc电池开压的热氧化工艺方法及得到的perc电池片
CN115101622A (zh) * 2022-06-02 2022-09-23 浙江晶科能源有限公司 一种太阳能电池及其制作方法、光伏组件
CN115101622B (zh) * 2022-06-02 2024-02-06 浙江晶科能源有限公司 一种太阳能电池及其制作方法、光伏组件

Also Published As

Publication number Publication date
CN107863415B (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN112349816B (zh) 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN109087956B (zh) 一种双面perc太阳能电池结构及其制备工艺
WO2021068644A1 (zh) 一种高效背钝化晶硅太阳能电池及其制备方法
WO2021031500A1 (zh) 一种复合介电钝化层结构太阳电池及其制备工艺
WO2018209729A1 (zh) 管式perc双面太阳能电池及其制备方法和专用设备
CN105226112B (zh) 一种高效晶硅太阳能电池的制备方法
CN106992229A (zh) 一种perc电池背面钝化工艺
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
CN105355723B (zh) 晶体硅太阳电池二氧化硅钝化膜的制备方法
CN109192813A (zh) Perc电池背面钝化工艺
CN105185851A (zh) 一种背面钝化太阳能电池及其制备方法
CN102339871B (zh) 适用于rie绒面的三明治结构正面介质膜及其制备方法
CN105355707A (zh) 一种高效晶硅太阳能电池及其制备方法
CN104952941A (zh) 一种多层异质减反射膜太阳能电池
CN107731935A (zh) 一种背钝化晶硅太阳能电池及其背钝化膜层的制备方法
WO2024021895A1 (zh) 太阳能电池及制备方法、光伏组件
CN111952153A (zh) 隧穿氧化层的制备方法、太阳能电池及其制备方法
CN112825340B (zh) 一种钝化接触电池及其制备方法和应用
CN104851923A (zh) 一种提升晶体硅太阳能电池效率减反射膜制备方法
CN107863415A (zh) 一种热氧化结合pecvd提升太阳能电池片转化效率的方法
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN104659150A (zh) 一种晶体硅太阳电池多层减反射膜的制备方法
CN105161547A (zh) 一种用于背钝化太阳电池的叠层膜及其制备方法以及一种背钝化太阳电池
CN113257927A (zh) 一种perc电池背钝化结构、perc电池及制备方法
CN103066132A (zh) 一种用于太阳能电池的双层氮化硅减反射膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for improving the conversion efficiency of solar cells by thermal oxidation combined with PECVD

Effective date of registration: 20210804

Granted publication date: 20190319

Pledgee: Dongyang Branch of China Construction Bank Co.,Ltd.

Pledgor: HENGDIAN GROUP DMEGC MAGNETICS Co.,Ltd.

Registration number: Y2021330001068

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230628

Granted publication date: 20190319

Pledgee: Dongyang Branch of China Construction Bank Co.,Ltd.

Pledgor: HENGDIAN GROUP DMEGC MAGNETICS Co.,Ltd.

Registration number: Y2021330001068