CN107863253A - 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法 - Google Patents

一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法 Download PDF

Info

Publication number
CN107863253A
CN107863253A CN201711007255.0A CN201711007255A CN107863253A CN 107863253 A CN107863253 A CN 107863253A CN 201711007255 A CN201711007255 A CN 201711007255A CN 107863253 A CN107863253 A CN 107863253A
Authority
CN
China
Prior art keywords
preparation
iron
nanoporous
combination electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711007255.0A
Other languages
English (en)
Inventor
康建立
张少飞
张志佳
于镇洋
乔志军
黄钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201711007255.0A priority Critical patent/CN107863253A/zh
Publication of CN107863253A publication Critical patent/CN107863253A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本发明公开了一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法。本发明采用调控不同NiFeMn成分配比成功制备出具有韧性的合金条带,去合金化法可制备出纳米多孔合金前驱体,进一步极化处理可在电极表面和孔道内自生长一层混价掺杂薄层氧化物。铁的价格低廉,本发明用铁代替铜制备出三元NiFeMn三元复合电极,原料丰富易得,通过实际超级电容器应用测试发现,相比二元NiMn体系,比电容可达到400~1500F/cm3,且工作电压窗口可达到1.2~1.5V,有效提高了电极能量密度(15‑80mWh/cm3)。

Description

一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法
技术领域
本发明属于电化学电容器电极的研发和应用技术领域,尤其涉及一种纳米多孔镍铁锰合金/氧化物复合电极,还涉及一种制备上述电极的方法。
背景技术
由于具有能量密度高、充放电速度快等优势,采用过渡族金属氧化物作为超级电容器的电极材料受到研究领域和工业应用领域的高度重视。但是过渡族金属氧化物或氢氧化物导电性差导致其在实际应用中存在稳定性差,容量保持率低的缺陷。
采用导电增强体,如碳纳米材料、纳米多孔金属以及原子的掺杂可有效提高材料的电子传输效率从而提高电极材料的电化学性能,但是仍存在界面结合力差的缺陷。研究发现采用在去合金化法制备的纳米多孔金属表面自氧化技术可成功制备出不同体系合金/氧化物复合电极。采用去合金化法和自氧化相结合的技术可成功制备二元纳米多孔NiMn合金/羟基氧化物复合电极,并展现了优良电化学性能。为进一步提高电极的能量密度,根据公式一:
通过掺杂铜制备的三元NiCuMn体系可在过电势和多组分氧化还原共同作用下有效扩大电压窗口至1.8V而不发生水解,极大程度上提高了电极的能量密度。但是如何在保持高电位窗口条件下制备出价格低廉的体系并可应用于工业化受到领域高度重视。铁的价格低廉,我们用铁代替铜制备出三元NiFeMn体系,并意外的发现经过去合金化与极化工艺相结合的方法可成功制备出纳米多孔镍铁锰/氧化物复合电极,可有效提高电极的能量密度。
发明内容
本发明的目的在于提供一种纳米多孔镍铁锰合金/氧化物复合电极的制备方法。
为实现上述目的,本发明提供如下技术方案:一种纳米多孔镍铁锰合金/氧化物复合电极的制备方法,包括以下步骤:(1)合金的制备:将Ni、Fe和Mn的金属颗粒熔炼加工制备NiFeMn合金,其中Ni原子含量为5%-25%,Mn原子含量为60%-80%,余量为Fe原子;(2)纳米多孔合金的制备:将步骤(1)制备的NiFeMn合金通过去合金化工艺选择性腐蚀部分Fe和Mn,制得的纳米多孔合金的孔径分布在1~100nm之间,比表面积在10~100m2/g;(3)纳米多孔复合电极的制备:将步骤(2)制得的的纳米多孔金属进行极化工艺,纳米多孔金属作为阳极,在碱金属氢氧化物溶液中进行电化学氧化,氧化电位保持在1V以下,极化时间10s~10min,使纳米多孔金属表面产生掺杂羟基的氧化层,得到纳米多孔复合电极。
优选的,所述步骤(1)中采用甩带机在氩气保护气氛下制备厚度在20~50um的合金条带。
优选的,所述步骤(1)中采用熔炼轧制的工艺制备厚度在20-500um的合金板。
优选的,所述步骤(2)选用化学去合金化法,采用0.001-0.1mol/L盐酸进行腐蚀或0.1-10mol/L弱酸性硫酸铵溶液进行腐蚀,腐蚀时间在10min~10h。
优选的,所述步骤(2)选用电化学去合金化法,根据电位与PH关系选择0.5~6mol/L的硫酸铵溶液,去合金化电位选择-0.4V~-0.9V,去合金化时间可控在500s~10h。
本发明的另一目的是提供过一种采用上述制备方法制备的纳米多孔镍铁锰合金/氧化物复合电极。
与现有技术相比,本发明的有益效果是:1)铁的价格低廉,用铁代替铜制备出三元NiFeMn三元复合电极,原料丰富易得;2)本发明制备的电极材料为双联通的三维纳米多孔结构,电极表面和孔道内自生长一层混价掺杂薄层氧化物,导电性能好,且其孔径可在去合金过程中通过不同的腐蚀液浓度和腐蚀时间进行调节;3)相比二元NiMn体系,本发明制备的电极材料比电容可达到400~1500F/cm3,且工作电压窗口可达到1.2~1.5V,有效提高了电极能量密度(15-80mWh/cm3)。
附图说明
图1为纳米多孔镍铁锰合金/氧化物复合电极制备流程图;
图2为不同母合金成分配比下制备纳米多孔复合电极的循环伏安曲线;
图3为不同母合金成分配比下制备电极的比电容倍率性能图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
请参见图1,本发明涉及的纳米多孔镍铁锰合金/氧化物复合电极的制备方法,包括以下步骤:
(1)合金的制备;制备NiFeMn合金,其合金成分配比可根据三元相图进行确定得到单相或少相固溶体。制备工艺包括甩带制备合金条带和熔炼轧制制备的不同厚度合金板。为保证后续去合金化和极化工艺后得到连续自支撑电极,所述合金中锰原子含量应保证在60%~80%,镍原子含量可保证在5%~25%之间,余量为铁原子(所述配比皆为原子含量比)。
(2)纳米多孔合金的制备;在步骤(1)的基础上通过去合金化工艺选择性腐蚀部分锰和铁,腐蚀溶液可选用弱酸性硫酸铵以及稀盐酸等溶液。纳米多孔孔径分布1~100nm之间,比表面积在10~100m2/g。
(3)纳米多孔复合电极的制备;在步骤(2)所述的纳米多孔金属的前驱体基础上进行极化处理,即将纳米多孔金属置于碱性溶液中进行电化学自氧化从而在纳米多孔金属表面和孔道内部自生长薄层混价氧化物/氢氧化物。所选用极化电压在1V以下,极化时间可控制在10s~10min。
所述纳米多孔合金制备是在氩气保护气氛下采用甩带机制备厚度在20~50um的合金条带或采用熔炼轧制的工艺制备厚度在20-500um的合金板。
所述去合金化工艺可选用化学去合金化法和电化学去合金化法。化学去合金化法采用0.001-0.1mol/L盐酸进行腐蚀或0.1~10mol/L弱酸性硫酸铵等腐蚀,腐蚀时间可控在10min~10h;电化学去合金化法可根据电位与PH关系选择弱酸性溶液如0.5~6mol/L的硫酸铵溶液,去合金化电位选择-0.4V~-0.9V,去合金化时间可控在500s~10h。
所述极化工艺可选用碱性溶液如氢氧化钾,氢氧化钠等,浓度可控在0.1mol/L~6mol/L,极化电压可控在1V以下,极化时间为10s~5min。
上述三电极体系均以所制备材料包括合金,前驱体等为工作电极;以惰性铂片为对电极;以Ag/AgCl电极为参比电极;两电极体系中以所制备材料包括合金,前驱体等为工作电极,以惰性铂片作为对电极。对称电容器的封装测试以所制备的纳米多孔NiFeMn合金/羟基氧化物为电极进行对称封装。不对称电极中选用纳米碳基材料与所制备的电极进行封装测试。
以下具体实施例制得电极的循环伏安曲线和比电容倍率性能图请参见图2和图3。
实施例1:
选用合金配比为Ni10Fe20Mn70合金作为母合金在1mol/L硫酸铵溶液中进行三电极电化学去合金化,去合金化电压为-0.65V,去合金化时间为1h。采用1mol/L的氢氧化钾作为极化电解液和测试电解液,极化后进行测试分析发现:在测试电压窗口为1.3V时,当电流密度为1A/cm3时,比电容为685F/cm3。电流密度在0.5-10A/cm3时,能量密度可保持在9.9-34mWh/cm3
实施例2:
选用合金配比为Ni15Fe15Mn70合金作为母合金在1mol/L硫酸铵溶液中进行三电极电化学去合金化,去合金化电压为-0.65V,去合金化时间为1h。采用1mol/L的氢氧化钾作为极化电解液和测试电解液,极化后进行测试分析发现:当电流密度为1A/cm3时,比电容为901F/cm3。电流密度在0.5-10A/cm3时,能量密度可保持在20-48mWh/cm3(电压窗口1.3V)。
实施例3:
选用合金配比为Ni20Fe10Mn70合金作为母合金在1mol/L硫酸铵溶液中进行三电极电化学去合金化,去合金化电压为-0.65V,去合金化时间为1h。采用1mol/L的氢氧化钾作为极化电解液和测试电解液,极化后进行测试分析发现:当电流密度为1A/cm3时,比电容为617F/cm3。电流密度在0.5-10A/cm3时,能量密度可保持在5-30mWh/cm3(电压窗口1.3V)。
实施例4:
优选合金配比为Ni15Fe15Mn70合金作为母合金在1mol/L硫酸铵溶液中进行化学腐蚀,腐蚀条件为:50摄氏度恒温条件下腐蚀2h后采用电化学性能测试(1mol/L氢氧化钾为电解液),分析发现,当电流密度为1A/cm3时,比电容为485F/cm3,电流密度控制在1-10A/cm3时,其能量密度为3-26mWh/cm3(电压窗口1.3V)。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种纳米多孔镍铁锰合金/氧化物复合电极的制备方法,其特征在于:包括以下步骤,
(1)合金的制备:将Ni、Fe和Mn的金属颗粒熔炼加工制备NiFeMn合金,其中Ni原子含量为5%-25%,Mn原子含量为60%-80%,余量为Fe原子;
(2)纳米多孔合金的制备:将步骤(1)制备的NiFeMn合金通过去合金化工艺选择性腐蚀部分Fe和Mn,制得的纳米多孔合金的孔径分布在1~100nm之间,比表面积在10~100m2/g;
(3)纳米多孔复合电极的制备:将步骤(2)制得的的纳米多孔金属进行极化工艺,纳米多孔金属作为阳极,在碱金属氢氧化物溶液中进行电化学氧化,氧化电位保持在1V以下,极化时间10s~10min,使纳米多孔金属表面产生掺杂羟基的氧化层,得到纳米多孔复合电极。
2.根据权利要求1所述的纳米多孔镍铁锰合金/氧化物复合电极的制备方法,其特征在于:所述步骤(1)中采用甩带机在氩气保护气氛下制备厚度在20~50um的合金条带。
3.根据权利要求1所述的纳米多孔镍铁锰合金/氧化物复合电极的制备方法,其特征在于:所述步骤(1)中采用熔炼轧制的工艺制备厚度在20-500um的合金板。
4.根据权利要求1所述的纳米多孔镍铁锰合金/氧化物复合电极的制备方法,其特征在于:所述步骤(2)选用化学去合金化法,采用0.001-0.1mol/L盐酸进行腐蚀或0.1-10mol/L弱酸性硫酸铵溶液进行腐蚀,腐蚀时间在10min~10h。
5.根据权利要求1所述的纳米多孔镍铁锰合金/氧化物复合电极的制备方法,其特征在于:所述步骤(2)选用电化学去合金化法,根据电位与PH关系选择0.5~6mol/L的硫酸铵溶液,去合金化电位选择-0.4V~-0.9V,去合金化时间可控在500s~10h。
6.根据权利要求1-5任一项所述制备方法制得的纳米多孔镍铁锰合金/氧化物复合电极。
CN201711007255.0A 2017-10-16 2017-10-16 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法 Pending CN107863253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711007255.0A CN107863253A (zh) 2017-10-16 2017-10-16 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711007255.0A CN107863253A (zh) 2017-10-16 2017-10-16 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法

Publications (1)

Publication Number Publication Date
CN107863253A true CN107863253A (zh) 2018-03-30

Family

ID=61697378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711007255.0A Pending CN107863253A (zh) 2017-10-16 2017-10-16 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法

Country Status (1)

Country Link
CN (1) CN107863253A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735518A (zh) * 2018-05-31 2018-11-02 济南大学 一种六方片状氧化锰@氧化镍复合材料及其制备方法
CN109133664A (zh) * 2018-09-19 2019-01-04 北京工业大学 一种多孔电致变色玻璃薄膜的制备工艺
CN110306061A (zh) * 2019-08-06 2019-10-08 攀钢集团研究院有限公司 钒铝合金制备金属钒的方法
CN110635103A (zh) * 2019-08-29 2019-12-31 天津工业大学 一种二次电池用柔性纳米多孔金属氧化物负极及其制备方法
CN111560635A (zh) * 2020-06-18 2020-08-21 暨南大学 具有抗菌纳米多孔铜锌涂层的钛合金及制备方法与应用
CN112768663A (zh) * 2021-01-26 2021-05-07 惠州锂威新能源科技有限公司 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池
CN113668005A (zh) * 2021-09-08 2021-11-19 四川华能氢能科技有限公司 一种多孔镍电极及其制备方法
CN114534738A (zh) * 2020-11-27 2022-05-27 王益成 一种金属锰或锰合金催化剂及制造方法
CN114535581A (zh) * 2022-01-10 2022-05-27 西安理工大学 具备分级孔结构的纳米多孔铜制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051161A (zh) * 2014-07-11 2014-09-17 天津工业大学 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051161A (zh) * 2014-07-11 2014-09-17 天津工业大学 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANLI KANG等: ""Extraordinary Supercapacitor Performance of a Multicomponent and Mixed‐Valence Oxyhydroxide"", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
张少飞: ""多元纳米多孔复合电极的制备与性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735518B (zh) * 2018-05-31 2020-07-07 济南大学 一种六方片状氧化锰@氧化镍复合材料及其制备方法
CN108735518A (zh) * 2018-05-31 2018-11-02 济南大学 一种六方片状氧化锰@氧化镍复合材料及其制备方法
CN109133664A (zh) * 2018-09-19 2019-01-04 北京工业大学 一种多孔电致变色玻璃薄膜的制备工艺
CN110306061A (zh) * 2019-08-06 2019-10-08 攀钢集团研究院有限公司 钒铝合金制备金属钒的方法
CN110635103A (zh) * 2019-08-29 2019-12-31 天津工业大学 一种二次电池用柔性纳米多孔金属氧化物负极及其制备方法
CN111560635B (zh) * 2020-06-18 2021-07-27 暨南大学 具有抗菌纳米多孔铜锌涂层的钛合金及制备方法与应用
CN111560635A (zh) * 2020-06-18 2020-08-21 暨南大学 具有抗菌纳米多孔铜锌涂层的钛合金及制备方法与应用
CN114534738A (zh) * 2020-11-27 2022-05-27 王益成 一种金属锰或锰合金催化剂及制造方法
CN114534738B (zh) * 2020-11-27 2024-05-24 王益成 一种金属锰或锰合金催化剂及制造方法
CN112768663A (zh) * 2021-01-26 2021-05-07 惠州锂威新能源科技有限公司 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池
CN113668005A (zh) * 2021-09-08 2021-11-19 四川华能氢能科技有限公司 一种多孔镍电极及其制备方法
CN114535581A (zh) * 2022-01-10 2022-05-27 西安理工大学 具备分级孔结构的纳米多孔铜制备方法
CN114535581B (zh) * 2022-01-10 2024-01-26 西安理工大学 具备分级孔结构的纳米多孔铜制备方法

Similar Documents

Publication Publication Date Title
CN107863253A (zh) 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法
Balogun et al. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting
Zhang et al. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization
Wang et al. CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes
Li et al. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
Wang et al. Ultrathin Fe 2 O 3 nanoflakes using smart chemical stripping for high performance lithium storage
Huang et al. Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance
Meng et al. Synthesis of SnO2 nanoflowers and electrochemical properties of Ni/SnO2 nanoflowers in supercapacitor
CN110729462B (zh) 金属阳离子插层结构的锰氧化物电极材料及其制备方法和应用
CN106222584B (zh) 一种纳米多孔Fe基非晶合金及制备方法和在析氧催化电极上的应用
CN103456939B (zh) 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法
CN106158419A (zh) 硫化钴镍/泡沫镍超级电容器电极的制备方法
CN104051161B (zh) 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极
CN106894045A (zh) 一种用于电化学析氧的铁掺杂镍基复合材料的制备方法
Yan et al. Controllable preparation of core-shell Co3O4@ CoNiS nanowires for ultra-long life asymmetric supercapacitors
Lu et al. Electrochemically activated 3D Mn doped NiCo hydroxide electrode materials toward high-performance supercapacitors
CN107240507A (zh) 一种纳米多孔镍/氧化镍超级电容器电极材料及其制备方法
Wen et al. The effects of element Cu on the electrochemical performances of Zinc-Aluminum-hydrotalcites in Zinc/Nickel secondary battery
CN104084216B (zh) 一种银铜纳米合金电催化剂及其激光气相沉积方法
Liu et al. Synthesis of Ni-Rich cathode material from maleic acid-leachate of spent lithium-ion batteries
Zhang et al. Hierarchically porous nickel oxide nanoflake arrays grown on carbon cloth by chemical bath deposition as superior flexible electrode for supercapacitors
CN105448536B (zh) 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用
Wei et al. Hollow Co-Fe LDH as an effective adsorption/catalytic bifunctional sulfur host for high-performance Lithium–Sulfur batteries
Suganya et al. Nitrogen doped 2D graphene/Zn3V2O8 nanocomposite with enhanced supercapacitive features
Shen et al. Insight into electrochemical performance of porous FexSiy intermetallic anode for zinc electrowinning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180330

RJ01 Rejection of invention patent application after publication