CN107857853A - 聚氨酯吸波阻燃多孔材料及其制备方法 - Google Patents
聚氨酯吸波阻燃多孔材料及其制备方法 Download PDFInfo
- Publication number
- CN107857853A CN107857853A CN201610840966.5A CN201610840966A CN107857853A CN 107857853 A CN107857853 A CN 107857853A CN 201610840966 A CN201610840966 A CN 201610840966A CN 107857853 A CN107857853 A CN 107857853A
- Authority
- CN
- China
- Prior art keywords
- parts
- porous material
- wave resistance
- resistance combustion
- polyurethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/08—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/04—Ingredients characterised by their shape and organic or inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/048—Elimination of a frozen liquid phase
- C08J2201/0484—Elimination of a frozen liquid phase the liquid phase being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/02—CO2-releasing, e.g. NaHCO3 and citric acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2275—Ferroso-ferric oxide (Fe3O4)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/387—Borates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
本发明提供了一种聚氨酯吸波阻燃多孔材料,其中,它由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯20~70份,纳米白炭黑0.2~1份,去离子水10~20份,甲基磷酸二甲酯5~20份,羧基多壁碳纳米管2~10份,四氧化三铁10~25份,硼酸锌2~8份,辛酸亚锡0.02~0.4份,三乙烯二胺0.03~0.6份,有机硅表面活性剂0.2~3份,碳酸氢钠2~8份。本发明提供的上述聚氨酯吸波阻燃多孔材料具有低烟、低毒、难燃、吸收波的吸收频率分布宽等特点。本发明还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法。
Description
技术领域
本发明属于功能材料技术领域,具体涉及一种聚氨酯吸波阻燃多孔材料及其制备方法。
背景技术
吸波材料,是指能够将投射到它表面的电磁波大部分吸收并转化成其他形式的能量而几乎无反射的材料。随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。另外电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。
聚氨酯泡沫具有多孔、相对密度小,而且耐温、耐老化、抗有机溶剂侵蚀,容易成型加工等特点,在吸波材料中应用广泛。目前主要通过将吸波剂加入到硬质聚氨酯泡沫体系,再注入到模具中反应发泡,或者将软质聚氨酯泡沫切割成预定形状,浸渍吸波剂溶液来制备聚氨酯泡沫复合吸波材料,这些材料具有制作工艺复杂、功能单一、吸波助剂易于脱落、易燃等缺陷。
中国专利CN200910029840.X“发泡型高回弹聚氨酯吸波材料及其制备方法”公开了一种使用吸收助剂、阻燃剂等原料制备的聚氨酯吸波材料。但该材料具有尺寸大、制作工艺复杂等缺陷。如何提高吸波性能的同时提高阻燃性能、制作工艺简单、降低污染是吸波材料发展的关键问题。
发明内容
有鉴于此,本发明确有必要提供一种聚氨酯吸波阻燃多孔材料及其制备方法,以解决上述问题。
本发明提供一种聚氨酯吸波阻燃多孔材料,其由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯20~70份,纳米白炭黑0.2~1份,去离子水10~20份,甲基磷酸二甲酯5~20份,羧基多壁碳纳米管2~10份,四氧化三铁10~25份,硼酸锌2~8份,辛酸亚锡0.02~0.4份,三乙烯二胺0.03~0.6份,有机硅表面活性剂0.2~3份,碳酸氢钠2~8份。
其中,所述聚醚多元醇羟值为30~60mgKOH/g。所述甲苯二异氰酸酯的异氰酸酯的指数为0.60~1.15。
基于上述,所述聚氨酯吸波阻燃多孔材料由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯40~50份,纳米白炭黑0.4~0.8份,去离子水13~17份,甲基磷酸二甲酯10~15份,羧基多壁碳纳米管4~8份,四氧化三铁15~20份,硼酸锌4~6份,辛酸亚锡0.08~0.3份,三乙烯二胺0.12~0.45份,有机硅表面活性剂1~2份,碳酸氢钠4~6份。
本发明还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,其包括以下步骤:
原料混合:将聚醚多元醇、甲基磷酸二甲酯、纳米白炭黑、四氧化三铁、硼酸锌、辛酸亚锡、三乙烯二胺、去离子水,有机硅表面活性剂在室温下搅拌均匀,然后经超声分散处理得到初次混合物;
反应发泡:先向所述初次混合物中加入甲苯二异氰酸酯并超声搅拌5~10分钟,再加入羧基碳纳米管和碳酸氢钠,然后迅速倒入模具进行室温发泡30~90分钟,得到吸波材料凝胶;
冷冻干燥:对所述吸波材料凝胶进行冷冻干燥即得所述聚氨酯吸波阻燃多孔材料。
基于上述,所述反应发泡的步骤包括:在超声搅拌的作用下,先将甲苯二异氰酸酯在边加热边搅拌的条件下加入到所述初次混合物中5~10分钟,再加入羧基多壁碳纳米管和碳酸氢钠;然后迅速倒入模具进行室温发泡30~90分钟,得到所述吸波材料凝胶。
基于上述,在所述原料混合的步骤中,所述超声分散处理是在水浴中进行的。
基于上述,所述冷冻干燥的步骤包括:先将所述吸波材料凝胶冷冻10~70小时,冷冻温度为混合溶液凝固点温度以下5~50℃;然后将冷冻后的混合溶液进一步于-10~-100℃低温低压干燥24~96小时,压力为0.1~1kPa;最后将低温低压干燥后的混合溶液于60~100℃固化4~12小时。
与现有技术相比,本发明提供的聚氨酯吸波阻燃多孔材料采用甲基磷酸二甲酯与硼酸锌相结合,使之起到阻燃协同作用,使得所述聚氨酯吸波阻燃多孔材料具有低烟、低毒、难燃等特点,而且该材料的阻燃性能达到HF-1级;碳酸氢钠与羧基多壁碳纳米管反应产生气泡,同时配合冷冻干燥技术去除所述吸波材料凝胶中的去离子水,使得制备的聚氨酯吸波阻燃多孔材料具有多孔结构,较大的比表面积,另外,纳米白炭黑和羧基多壁碳纳米管具有较大的吸附性,再与四氧化三铁配合,使得所述聚氨酯吸波阻燃多孔材料具有较高的吸波效率,吸收频率分布宽,适用于吸波隐身领域。本发明采用化学发泡技术和定向冷冻干燥技术相结合来制备所述聚氨酯吸波阻燃多孔材料,制备工艺简单,投资少,生产效率高,环境友好。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
本发明实施例提供一种聚氨酯吸波阻燃多孔材料,其由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯20份,纳米白炭黑0.2份,去离子水10份,甲基磷酸二甲酯5份,羧基多壁碳纳米管2份,四氧化三铁10份,硼酸锌2份,辛酸亚锡0.02份,三乙烯二胺0.03份,有机硅表面活性剂0.2份,碳酸氢钠2份。
本发明实施例还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,其包括以下步骤:
原料混合:上述质量份,将聚醚多元醇、甲基磷酸二甲酯、纳米白炭黑、四氧化三铁、硼酸锌、辛酸亚锡、三乙烯二胺、去离子水,有机硅表面活性剂在室温下搅拌均匀,然后经超声分散处理得到初次混合物;
反应发泡:在超声搅拌的作用下,先将甲苯二异氰酸酯在边加热边搅拌的条件下加入到所述初次混合物中5~10分钟,再加入羧基多壁碳纳米管和碳酸氢钠;然后迅速倒入模具进行室温发泡30分钟,得到吸波材料凝胶;
冷冻干燥:先将所述吸波材料凝胶冷冻10小时,冷冻温度为混合溶液凝固点温度以下5℃;然后将冷冻后的混合溶液进一步于-10℃低温低压干燥24小时,压力为0.1 kPa;最后将低温低压干燥后的混合溶液于60℃固化12小时,得到上述聚氨酯吸波阻燃多孔材料。
性能测试
吸波性能检测方法:将上述聚氨酯吸波阻燃多孔材料切割成面积为3cm×3cm,厚度为4mm的矩形片状样品,并在一侧表面上贴上一层表面非常平整的铝箔,采用数字化矢量网络分析仪(8722ET型)测试在4~20 GHz频段内上述样品的微波反射率曲线。将检测,吸波性能在4GHz~20GHz频率范围内小于-31 db。
阻燃性能检测方法:按照GB/T 8332-2008泡沫塑料燃烧性能试验方法水平燃烧法对上述进行检测。经检测,上述聚氨酯吸波阻燃多孔材料的阻燃性能达到HF-1级。
实施例2
本发明实施例提供一种聚氨酯吸波阻燃多孔材料由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯30份,纳米白炭黑0.4份,去离子水13份,甲基磷酸二甲酯10份,羧基多壁碳纳米管4份,四氧化三铁15份,硼酸锌4份,辛酸亚锡0.08份,三乙烯二胺0.12份,有机硅表面活性剂1份,碳酸氢钠4份。
本发明实施例还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,该制备方法与实施例1提供的制备方法基本相同,不同之处在于:
反应发泡:该步骤中的室温发泡时间为60分钟;
冷冻干燥:该步骤包括先将所述吸波材料凝胶冷冻30小时,冷冻温度为混合溶液凝固点温度以下15℃;然后将冷冻后的混合溶液进一步于-30℃低温低压干燥48小时,压力为0.3 kPa;最后将低温低压干燥后的混合溶液于70℃固化10小时,得到上述聚氨酯吸波阻燃多孔材料。
性能测试
采用与实施例1中提供的相同的方法,对上述实施例提供的聚氨酯吸波阻燃多孔材料的吸收波性能和阻燃性能进行检测,检测结果为:吸波性能在4GHz~20GHz频率范围内小于-34 db,上述聚氨酯吸波阻燃多孔材料的阻燃性能达到HF-1级。
实施例3
本发明实施例提供一种聚氨酯吸波阻燃多孔材料,其由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯40份,纳米白炭黑0.6份,去离子水15份,甲基磷酸二甲酯13份,羧基多壁碳纳米管6份,四氧化三铁18份,硼酸锌5份,辛酸亚锡0.2份,三乙烯二胺0.3份,有机硅表面活性剂1.6份,碳酸氢钠5份。
本发明实施例还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,该制备方法与实施例1提供的制备方法基本相同,不同之处在于:
反应发泡:该步骤中的室温发泡时间为60分钟;
冷冻干燥:该步骤包括先将所述吸波材料凝胶冷冻40小时,冷冻温度为混合溶液凝固点温度以下30℃;然后将冷冻后的混合溶液进一步于-50℃低温低压干燥60小时,压力为0.6 kPa;最后将低温低压干燥后的混合溶液于80℃固化8小时,得到上述聚氨酯吸波阻燃多孔材料。
性能测试
采用与实施例1中提供的相同的方法,对上述实施例提供的聚氨酯吸波阻燃多孔材料的吸收波性能和阻燃性能进行检测,检测结果为:吸波性能在4GHz~20GHz频率范围内小于-37 db,上述聚氨酯吸波阻燃多孔材料的阻燃性能达到HF-1级。
实施例4
本发明实施例提供一种聚氨酯吸波阻燃多孔材料由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯50份,纳米白炭黑0.8份,去离子水17份,甲基磷酸二甲酯15份,羧基多壁碳纳米管8份,四氧化三铁20份,硼酸锌6份,辛酸亚锡0.3份,三乙烯二胺0.45份,有机硅表面活性剂2份,碳酸氢钠6份。
本发明实施例还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,该制备方法与实施例1提供的制备方法基本相同,不同之处在于:
反应发泡:该步骤中的室温发泡时间为90分钟;
冷冻干燥:该步骤包括先将所述吸波材料凝胶冷冻60小时,冷冻温度为混合溶液凝固点温度以下40℃;然后将冷冻后的混合溶液进一步于-80℃低温低压干燥72小时,压力为0.8 kPa;最后将低温低压干燥后的混合溶液于90℃固化6小时,得到上述聚氨酯吸波阻燃多孔材料。
性能测试
采用与实施例1中提供的相同的方法,对上述实施例提供的聚氨酯吸波阻燃多孔材料的吸收波性能和阻燃性能进行检测,检测结果为:吸波性能在4GHz~20GHz频率范围内小于-36 db,上述聚氨酯吸波阻燃多孔材料的阻燃性能达到HF-1级。
实施例5
本发明实施例提供一种聚氨酯吸波阻燃多孔材料,其由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯70份,纳米白炭黑1份,去离子水20份,甲基磷酸二甲酯20份,羧基多壁碳纳米管10份,四氧化三铁25份,硼酸锌8份,辛酸亚锡0.4份,三乙烯二胺0.6份,有机硅表面活性剂3份,碳酸氢钠8份。
本发明实施例还提供一种上述聚氨酯吸波阻燃多孔材料的制备方法,该制备方法与实施例1提供的制备方法基本相同,不同之处在于:
反应发泡:该步骤中的室温发泡时间为90分钟;
冷冻干燥:该步骤包括先将所述吸波材料凝胶冷冻70小时,冷冻温度为混合溶液凝固点温度以下50℃;然后将冷冻后的混合溶液进一步于-100℃低温低压干燥96小时,压力为1kPa;最后将低温低压干燥后的混合溶液于100℃固化4小时,得到上述聚氨酯吸波阻燃多孔材料。
性能测试
采用与实施例1中提供的相同的方法,对上述实施例提供的聚氨酯吸波阻燃多孔材料的吸收波性能和阻燃性能进行检测,检测结果为:吸波性能在4GHz~20GHz频率范围内小于-36 db,上述聚氨酯吸波阻燃多孔材料的阻燃性能达到HF-1级。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。
Claims (6)
1.一种聚氨酯吸波阻燃多孔材料,其特征在于,它由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯20~70份,纳米白炭黑0.2~1份,去离子水10~20份,甲基磷酸二甲酯5~20份,羧基多壁碳纳米管2~10份,四氧化三铁10~25份,硼酸锌2~8份,辛酸亚锡0.02~0.4份,三乙烯二胺0.03~0.6份,有机硅表面活性剂0.2~3份,碳酸氢钠2~8份,其中,所述聚醚多元醇羟值为30~60mgKOH/g,所述甲苯二异氰酸酯的异氰酸酯的指数为0.60~1.15。
2.根据权利要求1所述的聚氨酯吸波阻燃多孔材料,其特征在于,它由以下质量份的组分经聚合反应得到:聚醚多元醇100份,甲苯二异氰酸酯40~50份,纳米白炭黑0.4~0.8份,去离子水13~17份,甲基磷酸二甲酯10~16份,羧基多壁碳纳米管4~8份,四氧化三铁15~20份,硼酸锌4~6份,辛酸亚锡0.08~0.3份,三乙烯二胺0.12~0.45份,有机硅表面活性剂1~2份,碳酸氢钠4~6份。
3.一种权利要求1或2所述的聚氨酯吸波阻燃多孔材料的制备方法,其包括以下步骤:
原料混合:将聚醚多元醇、甲基磷酸二甲酯、纳米白炭黑、四氧化三铁、硼酸锌、辛酸亚锡、三乙烯二胺、去离子水,有机硅表面活性剂在室温下搅拌均匀,然后经超声分散处理得到初次混合物;
反应发泡:先向所述初次混合物中加入甲苯二异氰酸酯并超声搅拌5~10分钟,再加入羧基碳纳米管和碳酸氢钠,然后迅速倒入模具进行室温发泡30~90分钟,得到吸波材料凝胶;
冷冻干燥:对所述吸波材料凝胶进行冷冻干燥即得所述聚氨酯吸波阻燃多孔材料。
4.根据权利要求3所述的聚氨酯吸波阻燃多孔材料的制备方法,其特征在于,所述反应发泡的步骤包括:在超声搅拌的作用下,先将甲苯二异氰酸酯在边加热边搅拌的条件下加入到所述初次混合物中5~10分钟,再加入羧基多壁碳纳米管和碳酸氢钠;然后迅速倒入模具进行室温发泡30~90分钟,得到所述吸波材料凝胶。
5.根据权利要求4所述的聚氨酯吸波阻燃多孔材料的制备方法,其特征在于,在所述原料混合的步骤中,所述超声分散处理是在水浴中进行的。
6.根据权利要求3或4或5任一项所述的聚氨酯吸波阻燃多孔材料的制备方法,其特征在于,所述冷冻干燥的步骤包括:先将所述吸波材料凝胶冷冻10~70小时,冷冻温度为混合溶液凝固点温度以下5~50℃;然后将冷冻后的混合溶液进一步于-10~-100℃低温低压干燥24~96小时,压力为0.1~1kPa;最后将低温低压干燥后的混合溶液于60~100℃固化4~12小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610840966.5A CN107857853A (zh) | 2016-09-22 | 2016-09-22 | 聚氨酯吸波阻燃多孔材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610840966.5A CN107857853A (zh) | 2016-09-22 | 2016-09-22 | 聚氨酯吸波阻燃多孔材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107857853A true CN107857853A (zh) | 2018-03-30 |
Family
ID=61698768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610840966.5A Withdrawn CN107857853A (zh) | 2016-09-22 | 2016-09-22 | 聚氨酯吸波阻燃多孔材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107857853A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110483980A (zh) * | 2019-08-30 | 2019-11-22 | 东北师范大学 | 一种复合电磁屏蔽材料及其制备方法和应用 |
-
2016
- 2016-09-22 CN CN201610840966.5A patent/CN107857853A/zh not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110483980A (zh) * | 2019-08-30 | 2019-11-22 | 东北师范大学 | 一种复合电磁屏蔽材料及其制备方法和应用 |
CN110483980B (zh) * | 2019-08-30 | 2021-05-25 | 东北师范大学 | 一种复合电磁屏蔽材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103172828A (zh) | 一种聚氨酯吸波凝胶材料的制备 | |
CN103408788B (zh) | 阻燃型聚苯乙烯泡沫吸波材料及其制备方法 | |
CN108774390B (zh) | 一种层状发泡吸波材料及其制备方法 | |
CN107857850A (zh) | 聚氨酯吸波阻燃材料及其制备方法 | |
CN102977587A (zh) | 一种发泡型聚氨酯吸波材料及其制备方法 | |
CN108705829A (zh) | 一种轻质环氧泡沫基夹芯板及其制备方法 | |
CN104479092A (zh) | 低密度全水开孔硬质聚氨酯泡沫及其制备方法 | |
CN105585725A (zh) | 一种隔热阻燃泡沫材料的制备方法与应用 | |
CN106340726A (zh) | 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法 | |
CN109851750A (zh) | 一种分子链硬段阻燃聚氨酯泡沫的制备方法 | |
CN107868220A (zh) | 聚氨酯铁氧体复合吸波材料及其制备方法 | |
CN107857852A (zh) | 聚氨酯吸波材料及其制备方法 | |
CN107868207A (zh) | 聚氨酯钛酸钡复合阻燃吸波材料及其制备方法 | |
CN107857857A (zh) | 聚氨酯复合吸波多孔材料及其制备方法 | |
CN107868221A (zh) | 聚氨酯钛酸钡复合吸波多孔材料及其制备方法 | |
CN114644795A (zh) | 吸波材料及其制备方法和应用 | |
CN107857853A (zh) | 聚氨酯吸波阻燃多孔材料及其制备方法 | |
CN107857851A (zh) | 聚氨酯复合阻燃吸波多孔材料及其制备方法 | |
CN107857987A (zh) | 聚氨酯复合阻燃吸波材料及其制备方法 | |
CN107868213A (zh) | 聚氨酯钛酸钡复合阻燃吸波多孔材料及其制备方法 | |
CN107857856A (zh) | 聚氨酯复合吸波阻燃多孔材料及其制备方法 | |
CN107857855A (zh) | 聚氨酯复合吸波阻燃材料及其制备方法 | |
CN107868209A (zh) | 聚氨酯铁氧体复合吸波阻燃多孔材料及其制备方法 | |
CN106751826B (zh) | 一种增强增韧自固化硬质聚酰亚胺泡沫及其制备方法 | |
CN107857864A (zh) | 聚氨酯复合吸波材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180330 |