CN107852157A - 开关电源装置 - Google Patents

开关电源装置 Download PDF

Info

Publication number
CN107852157A
CN107852157A CN201680041943.6A CN201680041943A CN107852157A CN 107852157 A CN107852157 A CN 107852157A CN 201680041943 A CN201680041943 A CN 201680041943A CN 107852157 A CN107852157 A CN 107852157A
Authority
CN
China
Prior art keywords
switching power
power unit
transistor
normally
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680041943.6A
Other languages
English (en)
Other versions
CN107852157B (zh
Inventor
格雷戈里·布宁
大卫·夏皮罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POWER TECHNOLOGY Co Ltd
VISIC Tech Ltd
Original Assignee
POWER TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POWER TECHNOLOGY Co Ltd filed Critical POWER TECHNOLOGY Co Ltd
Publication of CN107852157A publication Critical patent/CN107852157A/zh
Application granted granted Critical
Publication of CN107852157B publication Critical patent/CN107852157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K2017/6875Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors using self-conductive, depletion FETs

Abstract

提供一种开关电源装置(100),其包括:常导通型晶体管(12)、常截止型金属氧化物半导体场效应晶体管(MOSFET)(14),常截止型MOSFET(14)与常导通型晶体管(12)的源极端子(12S)串联连接、以及驱动器(16),被连接到常导通型晶体管(12)的栅极端子(12G)并被布置为驱动常导通型晶体管(12)的栅极(12G)。然后,可以将开关晶体管(28)位于常导通型晶体管(12)的源极端子(12S)和驱动器(16)的公共连接(30)之间,以保护开关电源装置(100)不受有害的过电压和过电流峰值的影响。

Description

开关电源装置
技术领域
本发明涉及开关电源装置,特别是用于控制消费者电子产品或系统的开关电源装置。
背景技术
诸如电视机、电动车辆、雷达系统、电动机控制器和不间断供电系统之类的各种产品和系统需要相对大量的电力供给,其通常从高压电源传输。可以使用各种类型的半导体场效应晶体管(FET)作为电源开关来执行产品和/或系统所需的开关功能。
半导体FET依赖于硅材料和技术。典型的FET将包括用于将电源连接到负载的源极端子和漏极端子。然后,在FET中位于源极端子和漏极端子之间存在另一端子,被称为栅极,并且该栅极端子控制FET中的位于源极端子和漏极端子之间的栅极下方的载流沟道的电阻。相对于施加到栅极端子的公共地电压的电压在FET中产生电场,该电场用于控制其中的电阻,从而导通或截止晶体管。
当FET导通时,施加到栅极端子的电压降低了沟道中的电阻,从而允许源极端子和漏极端子之间相对较大的电流流动。当FET导通时,源极端子和漏极端子之间的总电阻可以被称为晶体管的导通电阻。导通电阻取决于沟道的电阻、源极端子下面和附近的FET区域的电流的电阻、以及漏极端子下面和附近的FET区域的电阻。源极端子和漏极端子中及其周围的各个区域被称为FET的接入区域(Access region)。
尽管基于硅(Si)的常规电源FET提供有用的开关功能,但是它们已经达到理论上的性能极限,并且不能支持进一步或更高的开关频率和/或实现系统尺寸的减小,以及提高效率。例如,这样的电力开关应用对于诸如电动机和车辆、快速充电器、不间断电源和光伏逆变器的装置的操作可能是有用的。适用于这些装置操作的开关有利地具有以下特征:当它们断开时具有相对高的击穿电压,在漏极和源极端子之间具有低电阻(低Rds(导通))的高导通电流,以及相对较低的栅极和漏极泄漏电流。同样有利的是,开关能够在高结温下工作,并且对在从开关的断开和导通状态切换期间易于发生的电流和/或电压瞬变表现出良好的容限。当它们的栅极端子处于地电位时,断开这样的开关也是优选的。
例如,有利的是,半导体功率开关具有大于或等于约600V的击穿电压以及在断开时小于栅极周边每毫米约4nA的漏极泄漏电流。当开关导通时,有利的是,开关具有小于或等于栅极周边每毫米10Ω的导通电阻,并且还能够安全地支持大于或等于约50A的漏极电流。
此外,出于安全原因,通常有利的是,对于小于约2V的栅极电压开关是断开的,并且其对于超过175℃的结点温度能够不发生损坏地工作。硅半导体开关通常不可配置为提供这些规格,因为这种器件的半导体的带隙通常小于约1.5eV,并且材料中电子的饱和漂移速度和最大电场自然不支持高击穿电压和大导通电流。
另一方面,基半导体的氮化物,诸如氮化镓(GaN)和氮化铝(AJN),其特征在于具有相对较大的带隙。GaN和Al的带隙分别为3.4eV和6.2eV。此外,包括包含与大带隙层相邻的小带隙层的氮化物半导体层结构的FET提供相对高浓度的高迁移率电子,FET的特征在于具有高饱和漂移速度。这些高迁移率电子在层之间的交界处的狭窄三角形电势阱中积累,以形成称为二维电子气(2DEG)的相对较薄的片状电子浓度。由于2DEG的几何构造和位置,2DEG中的电子通常表现出非常低的施主杂质散射,因此,例如,相对高的电子迁移率和速度分别大约为1800cm2/V*s和1.5×107cm/s。2DEG中的电子浓度可以高达1×1013/cm2。由于上述原因,具有非常低的特定Rds(导通)的晶体管是可行的,Rds(导通)也就是晶体管饱和时的电阻。
通过在2DEG中生成和控制高迁移率电子而工作的FET晶体管通常被称为高电子迁移率晶体管。包括不同组成的层的半导体层结构被称为具有异质结构,并且不同组成的两个相邻层之间的界面被称为异质结。
尽管基于半导体材料的氮化物的固有特性似乎使其成为用于制造高功率半导体开关的优良材料,但已经证明难以利用它们的的理想特性来提供这种开关。例如,2DEG氮化物FET是常导通型的,而这种开关则需要常截止型晶体管。制造具有足够低的缺陷浓度的氮化物半导体层以便以成本有效的方式生产具有所需特性的功率FET,并具有可靠性,这是很难的。
最近的基于栅极端子下的p-n结的GaN常截止型晶体管遭受通常小于1.4V的低阈值电压和对栅极过电压峰值的高灵敏度。另外,栅极端子p-n结二极管的导通电压低,流过栅极的电流为十分之一mA,限制了器件的效率和可靠性。
提供常截止型装置10的一种方法是通过使用常导通型晶体管12(诸如基于GaN的晶体管)和常截止型硅低电压FET14典型地为金属氧化物半导体FET(MOSFET))的级联连接,这种共源共栅电路可以在图1a中看到。图1a提供常导通型GaN/AlGaN晶体管12,其源极端子12S连接到常截止型MOSFET 14的漏极端子14D。还示出了驱动器16和电源18。
在诸如图1a中所示的可用共源共栅配置中,低压硅MOSFET 14可以通过它的驱动器20来转换,该驱动器20可以作为单个驱动器芯片22的一部分来提供,并且GaN晶体管12可以提供阻塞功能。然而,这种方法存在明显的缺点:在GaN晶体管12的源极端子12S和MOSFET14的源极端子14S之间的电势存在不确定性。可能出现高于低电压硅晶体管允许的漏极电压范围的电压峰值,结果,电路的晶体管和其它元件可能损坏,例如,在如图1b所示的布置中。此外,在标准共源共栅配置中,为了处理数十安培数量级的大电流,必须使用具有大栅极电荷和电容的特定硅MOSFET,并且这通常不能支持高效的高频开关操作。
增加并联齐纳二极管来限制这些峰值,在每个开关周期内增加额外的电容充放电,这反过来又增加开关电源装置的开关损耗。理想的开关电源装置将立即在导通和断开状态之间切换,并具有0功率损耗。
发明内容
本发明试图提供限制与这种类型的开关装置相关的传导损耗和开关损耗的方法。
根据本发明的第一方面,提供开关电源装置,包括:常导通型晶体管;常截止型金属氧化物半导体场效应晶体管(MOSFET),该常截止型MOSFET的源极端子或漏极端子串联连接常导通型晶体管的源极端子;驱动器,被连接到常导通型晶体管的栅极端子,并被布置为驱动常导通型晶体管的栅极端子;以及位于常导通型晶体管的源极端子和驱动器的公共连接之间的开关晶体管。
通过提供这种布置,可以以安全和受控的方式提供与开关电源装置相关联的系统的产品的开关。常截止型MOSFET的提供确保开关电源装置是常截止型的,同时常导通型晶体管提供器件的导通-截止切换。然后开关晶体管通过切断在驱动器的公共连接中的破坏性电流的路径,在相关的产品或系统初始接通或最终断开情况期间,确保开关电源装置的安全操作。
优选地,常导通型晶体管可以被形成为高压GaN/AlGaN晶体管。在这种情况下,常导通型晶体管可以由具有三级或四级异质结构的氮化物-III元素形成,如InxGayAl1-yN,其中0≤x≤0.25、0≤y≤0.4,其中可能形成二维电子气,主要由于自发极化效应的影响以及由于压电效应的影响。这种晶体管能够降低Rds(导通)根据结温增长的影响,由于温度变化对自发极化效应的依赖性低。
可选地,常截止型晶体管可以形成为低电压p沟道或者n沟道SiMOSFET,并且附加地或可选地,开关晶体管可以形成为p沟道或者n沟道Si MOSFET。
开关电源装置可以进一步包括以下中的任一个或全部:将开关电源装置的漏极端子连接到开关电源装置的源极端子的二极管,该二极管可以形成为反向并联的肖特基二极管;将常导通型晶体管的栅极端子连接到开关电源装置的源极端子的另外的二极管;从常截止型MOSFET的漏极端子连接到源极端子的MOSFET体二极管;以及从开关晶体管的源极端子连接到漏极端子的开关晶体管体二极管。
二极管的提供保证和改善开关电源装置在接通和断开条件下的安全工作区域的工作条件。
优选地,可以进一步提供连接到常截止型MOSFET的栅极端子并被布置为驱动常截止型MOSFET的栅极端子的另外的驱动器,并且此外,可以提供至少与驱动器相关联的用于控制开关电源装置的逻辑序列发生器。可选地,开关电源装置可以具有小于150mΩ的Rds(导通)、大于400V的阻断电压和大于15A的连续电流。
根据本发明的第二方面,提供保护开关电源装置的组件免受过电流峰值的影响的方法,该方法包括提供开关电源装置步骤,优选地,根据本发明的第一方面,在过电流峰值的情况下,该开关晶体管切断从常导通型晶体管的源极端子到驱动器的公共连接(30)的路径。
附图说明
现在将参考附图仅以举例的方式更具体地描述本发明,其中:
图1a示出根据现有技术的经典共源共栅电路的电路图;
图1b示出根据现有技术的高压常导通型晶体管和硅低压常截止晶体管之间的串联连接的电路图的一部分;
图1c示出不具有附加开关晶体管的功率开关器件的电路图,指示通过电路的不合需要的高电流路径;
图2a示出根据本发明的第一方面的开关电源装置的第一实施方式的电路图;
图2b示出图2a中的界定区域的放大图;
图2c示出根据本发明的第一方面的开关电源装置的第二实施方式的电路图;
图3示出在绝缘衬底上的图2a的开关电源装置的组件平面图;
图4a示出根据本发明第一方面的开关电源装置的第三实施方式的电路图,开关晶体管被短路;
图4b(i)和图4b(ii)分别示出图4a的开关电源装置的过电压和过电流对开关时间的模拟图;
图5a示出开关电源装置的第三实施方式的电路图,其中旁路线已经从开关晶体管移除;以及
图5b(i)和图5b(ii)分别示出图5a的开关电源装置的电压和电流对开关时间的模拟图。
具体实施方式
参考图1c,可以看到在装置10不正确地导通的情况下,通过开关电源装置10的电路的不希望的电流I的流动,这会导致被圈出的组件24被损坏或破坏。参照图2a,图2b和图3,示出了在100处全局指示的开关电源装置。描述了与现有技术的开关电源装置10有关的先前描述的部件相似或相同的部件,为了简单起见,将使用相应的参考数字来指代它们。
开关电源装置100包括常导通型晶体管12,诸如所描绘的常导通型高压GaN/AlGaN晶体管,尽管也可以考虑其他常导通型晶体管。例如,可以使用由一系列氮化物-III元素或具有三级或四级异质结构的化合物形成的晶体管,例如InxAlyGa1-yN合金。常导通型晶体管12的源极端子12S串联连接到常截止MOSFET 14的源极端子14S,优选地,如所描绘的低电压p沟道硅MOSFET。常导通型晶体管12的栅极端子12G连接到驱动器16,并且还可以提供与常截止型MOSFET 14的栅极端子14G连接的分开的驱动器20。该驱动器或每个驱动器16、20可以作为单个驱动器芯片22的一部分提供,以及可以被提供为与被布置为控制开关电源装置100的开关的逻辑序列发生器26相关联。
然后,提供开关晶体管28,在所示实施方式中,开关晶体管28被形成为另外的低压开关元件,在此为p沟道硅MOSFET,该元件连接在驱动器16与常导通型晶体管12的公共连接30和常导通型晶体管12的源极端子12S之间。特别地,连接到串联连接的常导通型晶体管12和常截止晶体管14的源极-源极点。
另外可以提供二极管32,其将开关电源装置100的源极端子100S连接到开关电源装置100的漏极端子100D,二极管32可以提供为肖特基二极管,优选地,由碳化硅(SiC)形成,二极管32可以被布置为与开关电源装置100的漏极端子100D到源极端子100S反向平行。
此外,可以提供另外的二极管34,其将常导通型晶体管12的栅极端子12G连接到开关电源装置100的源极端子100S;MOSFET体二极管36,从常截止MOSFET 14的漏极端子14D连接到源极端子14S,和/或开关晶体管体二极管38,其从开关晶体管28的源极端子28S连接到漏极端子28D。可以提供任意或全部这些二极管32、34、36、38以便改善开关电源装置100的安全操作条件,因为流过电路的电流将被控制。
图2c中示出了开关电源装置100'的替代实施方式。本发明的这个实施方式与图2a和图2b所示的实施方式基本相同;然而,代替p沟道常截止型MOSFET和p沟道MOSFET开关晶体管,提供分别具有源极端子14S'、28S',漏极端子14D'、28D'以及栅极端子14G、28G'的n沟道常截止型MOSFET 14'和n沟道MOSFET开关晶体管28'。在操作上,开关电源装置100'以与前述开关电源装置100几乎相同的方式运行。
图3中原位示出了开关电源装置100。可能的是,这种装置100利用在由诸如陶瓷材料的具有高导热率的物质制成的高度绝缘的衬底40上使用导电粘合剂通过焊接、烧结或粘合来组装的部件。可以提供这种材料,以便具有限定部件之间的连接的金属或其他导电迹线,例如使用铝、铜或金线结合。
如图所示,然后,可以将所有部件和绝缘衬底40组装到无引线封装或模块42的空腔中。可选地,模块42可以是表面安装型的,或者模块42可以具有在热循环期间可以用作弹簧的短的或者缩短的引线,以便在苛刻的操作条件下增加开关电源装置100的机械稳定性。
为了实现快速、低损耗的开关,期望电源开关装置100具有低的元件的寄生电感互连。在功率开关器件100的实施方案中,相关部件可以通过导线结合而相互连接到具有良好导热性的所述部件和绝缘衬底40上。衬底40可以通过任何热复合物或焊料附接到模块42的散热元件。
还可以提供外部控制器,该外部控制器能够向开关电源装置100提供正确的接通和断开时序和逻辑序列。这可以可选地放置在模块42的空腔内。可以提供外部序列发生器以用作能够在安全条件下保持开关晶体管28的栅极28G的比较器,直到当驱动器16、20的供应电压变得稳定并且大于预定的电平的时候。这可以启动用于开关电源装置100的脉宽调制的信号。此外,这种外部序列发生器可以能够经由开关晶体管28的漏极端子28D和源极端子28S连接常导通型晶体管12的驱动器16的公共连接30。
总的来说,例如,这可以提供开关电源装置100,开关电源装置100具有小于150mΩ的Rds(导通),大于400V的阻断电压和大于15A的连续电流。
在使用中,常导通型晶体管12使用其,优选地独立的,驱动器16执行开关,而常截止型MOSFET 14一直工作,除非在诸如驱动信号的丢失以及在电源开关装置100的接通和断开期间的反常情况。
通常情况下,在时序不正确的情况下接通电源开关装置时,会出现不希望的大的过电流和过电压峰值。这可以从图4a的电路图中具体化,其中开关晶体管28已经被短路连接44短路,以及可以在图4b(i)和4b(ii)所示的对应开关时间的电压电流图中具体化。
在图4b(i)中,上面的线VI表示常导通型晶体管的栅极端子12G和源极端子12S之间的电位差,而下面的线V2表示的常截止MOSFET 14的源极端子14S上的瞬时电压。在图4b(ii)中,上面的线I1表示在图4a中46处所示的电阻上测量的电流,而下面的线I2表示在将常导通型晶体管12的栅极端子12G连接到常截止MOSFET 14的漏极端子14D的另外的二极管34处测量的电流。如可以看到的,在各个部件之间可以测量达到200A以上的有害电流,因此这将可能导致损坏。
这可以与图5a所示的电路图形成对比,图5a中不存在绕过开关晶体管28的短路连接。开关晶体管28切断从常导通型晶体管12的源极端子12S到它的驱动器16的公共连接30中的有害电流的路径,并且相应的电压和电流可以在图5b(i)和5b(ⅱ)看到。
在图5b(i)的上面的线V1'中,可以看出常导通型晶体管12的栅极端子12G与源极端子12S之间的电位差,并且在其峰值处,这大约是图4b(i)所示情况的1/5。如下面的线V2'所示,常截止MOSFET 14的源极端子14S的电压与之前的情况大致相同。
但是,对于电流模拟,已经阻止了流经开关功率器件100的有害电流。可以看出,在电阻器46和另外的二极管34两者处,在开关上存在小的电流峰值,如分别从上线和下线11',12'可以看到的那样,其被限制为大约4A。但是,这只是一个瞬间电流,损坏元器件的危险可以忽略不计。
逻辑序列发生器26为所有组件提供正确的时序。在系统接通时,开关晶体管28阻断不需要的电流。在预定的时间之后,当所有瞬间接通峰值已经过去之后,序列发生器26可以接通开关晶体管28,以便将从常导通型晶体管12的源极端子12S到公共连接30的连接短接到它的驱动器。在短暂的延迟之后,序列发生器允许插入用于开关器件的脉宽调制信号。
因此,可以提供开关电源装置,其能够通过使用开关晶体管来减少或消除组件部分上的有害过电流的影响。这允许在不需要齐纳二极管或类似器件的情况下采用串联连接的常导通型晶体管和常截止型MOSFET的组合,显著提高了电源开关装置的效率。
当在本文中参考本发明时使用的词语“包括/包括”以及词语“具有/包含”用于指定陈述特征、整体、步骤或组件的存在,但不排除存在或添加一个或更多其他特征、整体、步骤、组件或其组合。
应该认识到,为了清楚起见,在单独实施方式的上下文中描述的本发明的某些特征也可以在单个实施方式中组合提供。相反地,为了简洁起见,在单个实施方案的上下文中描述的本发明的各种特征也可以单独提供或以任何合适的子组合提供。
上面描述的实施方式仅仅是作为实例提供的,在不背离这里所限定的本发明的范围的情况下,对于本领域的技术人员来说,各种其他修改是显而易见的。

Claims (14)

1.一种开关电源装置(100),包括:
常导通型晶体管(12);
常截止型金属氧化物半导体场效应晶体管(MOSFET)(14),所述常截止型MOSFET(14)的源极端子(14S)或漏极端子(14D)串联连接所述常导通型晶体管(12)的源极端子(12S),
驱动器(16),被连接到所述常导通型晶体管(12)的栅极端子(12G),并且被布置为驱动所述常导通型晶体管(12)的栅极端子(12G);以及
开关晶体管(28),位于所述常导通型晶体管(12)的所述源极端子(12S)和所述驱动器(16)的公共连接(30)之间。
2.根据权利要求1所述的开关电源装置(100),其中,所述常导通型晶体管(12)形成为高电压GaN/AlGaN晶体管。
3.根据权利要求1或2所述的开关电源装置(100),其中,所述常导通型晶体管(12)由具有三级或四级异质结构的氮化物-III元素形成。
4.根据权利要求1至3中任一项所述的开关电源装置(100),其中,所述常截止型晶体管(14)形成为低电压p沟道或n沟道Si MOSFET。
5.根据前述权利要求中任一项所述的开关电源装置(100),其中,所述开关晶体管(28)形成为p沟道或n沟道Si MOSFET。
6.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括将所述开关电源装置(100)的漏极端子(100D)连接到所述开关电源装置(100)的源极端子(100S)的二极管(32)。
7.根据权利要求6所述的开关电源装置(100),其中,所述二极管(32)被形成为反向并联的肖特基二极管。
8.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括将所述常导通型晶体管(12)的栅极端子(12G)连接到所述开关电源装置(100)的源极端子(100S)的另外的二极管(34)。
9.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括从所述常截止型MOSFET(14)的漏极端子(14D)连接到源极端子(14S)的MOSFET体二极管(36)。
10.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括从所述开关晶体管(28)的源极端子(28S)连接到漏极端子(28D)的开关晶体管体二极管(38)。
11.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括连接到所述常截止型MOSFET(14)的栅极端子(14G)并且被布置成驱动所述常截止型MOSFET(14)的栅极端子(14G)的另外的驱动器(20)。
12.根据前述权利要求中任一项所述的开关电源装置(100),进一步包括逻辑序列发生器(26),所述逻辑序列发生器(26)至少与所述驱动器(16)相关联,用于控制所述开关电源装置(100)。
13.根据前述权利要求中任一项所述的开关电源装置(100),其中,所述装置(100)具有小于150mΩ的Rds(导通)、大于400V的阻断电压和大于15A的连续电流。
14.一种保护开关电源装置(100)的组件免受过电流峰值的影响的方法,所述方法包括提供如前述权利要求中任一项所述的开关电源装置(100)步骤,在过电流峰值的情况下,所述开关晶体管(28)切断从所述常导通型晶体管(12)的源极端子(12S)到所述驱动器(16)的所述公共连接(30)的路径。
CN201680041943.6A 2015-05-27 2016-04-11 开关电源装置 Active CN107852157B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562166711P 2015-05-27 2015-05-27
US62/166,711 2015-05-27
PCT/IB2016/000457 WO2016189371A1 (en) 2015-05-27 2016-04-11 Switching power device

Publications (2)

Publication Number Publication Date
CN107852157A true CN107852157A (zh) 2018-03-27
CN107852157B CN107852157B (zh) 2021-11-02

Family

ID=56108672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680041943.6A Active CN107852157B (zh) 2015-05-27 2016-04-11 开关电源装置

Country Status (4)

Country Link
US (1) US10715131B2 (zh)
EP (1) EP3304738B1 (zh)
CN (1) CN107852157B (zh)
WO (1) WO2016189371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172123A (zh) * 2020-09-11 2022-03-11 株式会社东芝 半导体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059490B1 (fr) * 2016-11-25 2018-11-16 Exagan Dispositif de commutation d'un circuit de puissance presentant un circuit passif de protection
CN109087613A (zh) * 2018-10-29 2018-12-25 惠科股份有限公司 过流保护电路及显示驱动装置
US11251607B2 (en) * 2018-12-06 2022-02-15 Hewlett Packard Enterprise Development Lp Fuse having parallel transorb device with switch
JP7455604B2 (ja) * 2020-02-14 2024-03-26 株式会社東芝 ノーマリオン型トランジスタの駆動回路及び駆動方法
JP7378372B2 (ja) 2020-09-18 2023-11-13 株式会社東芝 半導体装置
WO2023073682A1 (en) * 2021-10-29 2023-05-04 Visic Technologies Ltd. Power switch with normally on transistor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642067A (en) * 1995-07-26 1997-06-24 Grace; James W. Variable slew rate pulse generator
US20090167411A1 (en) * 2007-12-26 2009-07-02 Sanken Electric Co., Ltd. Normally-off electronic switching device
US20110102054A1 (en) * 2009-10-30 2011-05-05 Infineon Technologies Ag Power semiconductor module and method for operating a power semiconductor module
US20120087167A1 (en) * 2009-06-26 2012-04-12 Central Research Institute Of Electric Power Ind. Power conversion device
CN102769451A (zh) * 2011-05-06 2012-11-07 夏普株式会社 半导体装置及电子设备
CN103516338A (zh) * 2012-06-18 2014-01-15 瑞萨电子株式会社 半导体器件和使用该半导体器件的系统
US20140070786A1 (en) * 2012-09-07 2014-03-13 International Rectifier Corporation Power Converter Including Integrated Driver Providing Overcurrent Protection
US20140091852A1 (en) * 2012-09-28 2014-04-03 Infineon Technologies Austria Ag Switch Circuit with a First Transistor Device and a Second Transistor Device Connected in Series
CN104079282A (zh) * 2013-03-15 2014-10-01 弗莱克斯电子有限责任公司 耗尽型金属氧化物半导体场效应管驱动器
US20140300394A1 (en) * 2013-04-08 2014-10-09 Fujitsu Semiconductor Limited Drive circuit, semiconductor integrated circuit, and control method of drive circuit
CN104347619A (zh) * 2013-08-09 2015-02-11 英飞凌科技奥地利有限公司 高电压半导体开关以及用于切换高电压的方法
US20150048875A1 (en) * 2013-08-19 2015-02-19 Ememory Technology Inc. High voltage power control system
CN104467775A (zh) * 2013-09-20 2015-03-25 富士通株式会社 共源共栅晶体管和控制共源共栅晶体管的方法
EP2819161A3 (en) * 2013-06-25 2015-05-06 Kabushiki Kaisha Toshiba Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858221A1 (en) 2013-10-07 2015-04-08 ABB Oy Short circuit protection
US9350342B2 (en) * 2014-08-29 2016-05-24 Infineon Technologies Austria Ag System and method for generating an auxiliary voltage
JP6639103B2 (ja) * 2015-04-15 2020-02-05 株式会社東芝 スイッチングユニット及び電源回路

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642067A (en) * 1995-07-26 1997-06-24 Grace; James W. Variable slew rate pulse generator
US20090167411A1 (en) * 2007-12-26 2009-07-02 Sanken Electric Co., Ltd. Normally-off electronic switching device
US20120087167A1 (en) * 2009-06-26 2012-04-12 Central Research Institute Of Electric Power Ind. Power conversion device
EP2448102A1 (en) * 2009-06-26 2012-05-02 Kabushiki Kaisha Toshiba Power conversion device
US20110102054A1 (en) * 2009-10-30 2011-05-05 Infineon Technologies Ag Power semiconductor module and method for operating a power semiconductor module
CN102769451A (zh) * 2011-05-06 2012-11-07 夏普株式会社 半导体装置及电子设备
CN103516338A (zh) * 2012-06-18 2014-01-15 瑞萨电子株式会社 半导体器件和使用该半导体器件的系统
US20140070786A1 (en) * 2012-09-07 2014-03-13 International Rectifier Corporation Power Converter Including Integrated Driver Providing Overcurrent Protection
US20140091852A1 (en) * 2012-09-28 2014-04-03 Infineon Technologies Austria Ag Switch Circuit with a First Transistor Device and a Second Transistor Device Connected in Series
CN104079282A (zh) * 2013-03-15 2014-10-01 弗莱克斯电子有限责任公司 耗尽型金属氧化物半导体场效应管驱动器
US20140300394A1 (en) * 2013-04-08 2014-10-09 Fujitsu Semiconductor Limited Drive circuit, semiconductor integrated circuit, and control method of drive circuit
EP2819161A3 (en) * 2013-06-25 2015-05-06 Kabushiki Kaisha Toshiba Semiconductor device
CN104347619A (zh) * 2013-08-09 2015-02-11 英飞凌科技奥地利有限公司 高电压半导体开关以及用于切换高电压的方法
US20150048875A1 (en) * 2013-08-19 2015-02-19 Ememory Technology Inc. High voltage power control system
CN104467775A (zh) * 2013-09-20 2015-03-25 富士通株式会社 共源共栅晶体管和控制共源共栅晶体管的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. HANDT等: "Intelligent, compact and robust semiconductor circuit breaker based on silicon carbide devices", 《 2008 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE》 *
李伊珂: "采用N耗尽高压工艺的开关电源控制芯片设计与版图实现", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172123A (zh) * 2020-09-11 2022-03-11 株式会社东芝 半导体装置
CN114172123B (zh) * 2020-09-11 2024-03-22 株式会社东芝 半导体装置

Also Published As

Publication number Publication date
WO2016189371A1 (en) 2016-12-01
EP3304738B1 (en) 2021-03-24
EP3304738A1 (en) 2018-04-11
US10715131B2 (en) 2020-07-14
US20180145674A1 (en) 2018-05-24
CN107852157B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN107852157A (zh) 开关电源装置
US11671004B2 (en) Power converter with multi-level topology
EP4220701A1 (en) Power semiconductor device with auxiliary gate structure and circuit
US9293458B2 (en) Semiconductor electronic components and circuits
TWI778574B (zh) 電子電路及操作一電子電路之方法
US9741702B2 (en) Semiconductor power modules and devices
US7082020B2 (en) Electronic switching device and an operating method thereof
EP2789011B1 (en) Semiconductor module and methods of forming the same
TWI499058B (zh) 氮化鎵二極體及積體組件
CN111193395A (zh) 基于零电流检测的谐振转换器控制
CN104348461A (zh) Mosfet驱动器器件
US11955478B2 (en) Power semiconductor device with an auxiliary gate structure
US10200030B2 (en) Paralleling of switching devices for high power circuits
US11011971B2 (en) Rectifying circuit and power supply device
US20230131602A1 (en) Power semiconductor device with an auxiliary gate structure
TW202410613A (zh) 共振電路及操作一共振電路之方法
TW201705656A (zh) 半導體裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant