CN107850907B - User control device with cantilevered display - Google Patents
User control device with cantilevered display Download PDFInfo
- Publication number
- CN107850907B CN107850907B CN201680038068.6A CN201680038068A CN107850907B CN 107850907 B CN107850907 B CN 107850907B CN 201680038068 A CN201680038068 A CN 201680038068A CN 107850907 B CN107850907 B CN 107850907B
- Authority
- CN
- China
- Prior art keywords
- thermostat
- base
- wall
- housing
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000000007 visual effect Effects 0.000 claims abstract description 19
- 230000001681 protective effect Effects 0.000 claims description 15
- 238000004891 communication Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920006397 acrylic thermoplastic Polymers 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1902—Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1927—Control of temperature characterised by the use of electric means using a plurality of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4183—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
- G05B19/41855—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by local area network [LAN], network structure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
- G05B19/4186—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by protocol, e.g. MAP, TOP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/115—Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
- H05B47/12—Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by detecting audible sound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2642—Domotique, domestic, home control, automation, smart house
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/115—Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
- Selective Calling Equipment (AREA)
- Casings For Electric Apparatus (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Control Of Temperature (AREA)
Abstract
A thermostat includes a housing, a touch-sensitive display configured to display visual media and receive user input, and processing electronics configured to operate the touch-sensitive display. The housing includes a base and a display mount. The base includes a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall. The top wall, the bottom wall, the first side wall and the second side wall define an interior volume. The display mount depends upwardly from the top wall and includes a mounting surface perpendicular to the top wall of the base. The housing is not opaque. The display is attached to the mounting surface and is not opaque. The processing electronics are positioned within the interior volume.
Description
Cross reference to related patent applications
The present application claims the benefit of U.S. provisional application No. 62/156,868 filed on day 5, month 4 of 2015, U.S. provisional application No. 62/247,672 filed on day 10, month 28 of 2015, U.S. provisional application No. 62/260,141 filed on day 11, month 25 of 2015, U.S. provisional application No. 62/274,750 filed on day 1, month 4 of 2016, U.S. provisional application No. 62/275,199 filed on day 1, month 5 of 2016, U.S. provisional application No. 62/275,202 filed on day 1, month 5 of 2016, U.S. provisional application No. 62/275,204 filed on day 1, month 5 of 2016, and U.S. provisional application No. 62/275,711 filed on day 6 of 2016, all of which are incorporated herein by reference in their entirety.
Background
The present disclosure relates generally to user controls and more particularly to thermostats for controlling a heating, ventilation and air conditioning (HVAC) system of a building or space.
Thermostats are typically components of HVAC control systems. Conventional thermostats sense the temperature or other parameter (e.g., humidity) of the system and control components of the HVAC system in order to maintain a set point for the temperature or other parameter. Thermostats may be designed to control heating or cooling systems or air conditioners. Thermostats are manufactured in many ways and use various sensors to measure the temperature and other desired parameters of the system.
Conventional thermostats are configured for unidirectional communication with networked components and are used to control HVAC systems by turning certain components on or off or by regulating flow. Each thermostat may include a temperature sensor and a user interface. The user interface typically includes a display for presenting information to a user and one or more user interface elements for receiving input from the user. To control the temperature of a building or space, a user adjusts the set point via a user interface of the thermostat.
Disclosure of Invention
One embodiment of the invention is directed to a thermostat that includes a housing, a touch-sensitive display configured to display visual media and receive user input, and processing electronics configured to operate the touch-sensitive display. The housing includes a base and a display mount. The base includes a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall. The top wall, the bottom wall, the first side wall and the second side wall define an interior volume. The display mount depends upwardly from the top wall and includes a mounting surface perpendicular to the top wall of the base. The housing is not opaque. The touch sensitive display is attached to the mounting surface of the display mount and the touch sensitive display is not opaque. The processing electronics are positioned within the interior volume of the base.
Another embodiment of the invention is directed to a thermostat that includes a housing, a touch-sensitive display configured to display visual media and receive user input, processing electronics configured to operate the touch-sensitive display, a plurality of wire terminals each configured to secure one of a plurality of control wires from an hvac system, a mounting plate configured to attach the housing to a mounting surface, a front cover removably attached to the housing, and a top cover removably attached to the housing. The housing includes a base and a display mount. The base includes a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall. The top wall, the bottom wall, the first side wall and the second side wall define an interior volume. The ends of the top wall, the bottom wall, the first side wall and the second side wall remote from the front wall define a planar rear surface of the base. The display mount depends upwardly from the top wall and includes a mounting surface perpendicular to the top wall of the base. The housing is not opaque. The touch sensitive display is attached to the mounting surface of the display mount and the touch sensitive display is not opaque. The processing electronics are positioned within the interior volume of the base. The wire terminal is positioned within the interior volume. The mounting plate is positioned within the interior volume of the base and removably attached to the base. The mounting plate includes apertures configured to allow a plurality of control lines to pass through the mounting plate into the interior volume of the base. The mounting plate includes a rear surface that is flush with the rear surface of the base when the mounting plate is attached to the base. The front cover covers at least a portion of the front wall and at least a portion of the bottom wall. The top cover covers at least a portion of the top wall, at least a portion of the first side wall, and at least a portion of the second side wall.
Another embodiment of the invention is directed to a thermostat that includes a housing, a touch-sensitive display configured to display visual media and receive user input, and processing electronics configured to operate the touch-sensitive display. The housing includes a base defining an interior volume and a display mount cantilevered from the base. The display mount includes a mounting surface perpendicular to an outer surface of the base. The housing is not opaque. The touch sensitive display is attached to a mounting surface of the display mount. The touch sensitive display is not opaque. The processing electronics are positioned within the interior volume of the base.
Another embodiment of the invention relates to a thermostat for use in a home control system for controlling building equipment. The thermostat includes a touch-sensitive display and a housing including electronic circuitry configured to monitor and control building equipment. The housing is configured for attachment to a mounting surface. The touch sensitive display is cantilevered from the housing such that only a first end of the touch sensitive display is connected to the housing.
In some embodiments, a touch sensitive display of the thermostat is transparent or translucent such that a mounting surface on which the thermostat is to be mounted is visible through the touch sensitive display. The touch sensitive display may comprise organic light emitting diodes and may also be flexible. The housing may comprise at least one sensor from the group consisting of: temperature sensors, humidity sensors, air quality sensors, proximity sensors, ambient light sensors, and biometric sensors. Additionally, the housing may further include a rear surface extending along a first plane and configured for attachment to a mounting surface, and the touch sensitive display may extend along a second plane substantially parallel to the first plane such that the first plane is spaced apart from the second plane by a distance.
In some embodiments, the thermostat may further comprise a light source configured to emit ambient light. The light source may be attached to the housing. The light source arrangement may also be arranged to provide light to a waveguide around a periphery of the touch sensitive display and configured to emit light from the periphery of the touch sensitive display. The light source may be configured to emit light in a direction towards the mounting surface and/or in a direction away from the mounting surface.
In some embodiments, all of the electronic components of the thermostat, except for the touch-sensitive display, are located within the housing. The housing may include a first end extending along a first plane and configured for attachment to a mounting surface and a second end offset a distance from the first plane and from which the touch sensitive display extends. The housing may include a housing body having a rear surface configured for connection to a mounting surface. The housing may also include a removable front panel having a contour that matches a contour of at least a portion of the touch sensitive display. The removable front panel may be curved downward and rearward relative to the rear surface of the housing body from a forward-most point of the removable front panel to a point of the removable front panel that is closest to the rear surface of the housing body. An upper edge of the removable front panel may be located proximate to a lower edge of the touch sensitive display.
Drawings
Fig. 1 is a front perspective view from above a thermostat showing visual media according to an exemplary embodiment.
Fig. 2 is a rear perspective view from above of the thermostat in fig. 1.
Fig. 3 is a front perspective view from above of the thermostat of fig. 1, without the visual media shown.
Fig. 4 is a rear perspective view from below of the thermostat in fig. 1.
Fig. 5 is a rear perspective view from below of the thermostat of fig. 1, with the mounting plate not shown.
Fig. 6 is a front view of the thermostat of fig. 1.
Fig. 7 is a front view of the thermostat of fig. 1 without the sensor lens shown.
Fig. 8 is a cross-sectional view of the thermostat of fig. 1 taken along line 8-8 in fig. 6.
Fig. 9 is a top view of the thermostat of fig. 1.
Fig. 10 is a top view of the thermostat of fig. 1 without the top cover shown.
Fig. 11 is a bottom view of the thermostat of fig. 1.
Fig. 12 is a side view of the thermostat of fig. 1.
Fig. 13 is a rear view of the thermostat of fig. 1.
Fig. 14 is an exploded view of the thermostat of fig. 1.
Fig. 15 is a perspective view of the thermostat of fig. 1 with the thermostat body shown separated from a mounting plate attached to a wall.
Fig. 16 is a perspective view of the thermostat of fig. 1 attached to a wall.
Fig. 17 is a front view of the thermostat of fig. 1 attached to a wall.
Fig. 18 is a side view of the thermostat of fig. 1 attached to a wall.
Fig. 19 is a side view of a thermostat attached to a wall according to an exemplary embodiment.
Fig. 20 is a front perspective view from above of the thermostat of fig. 19.
Fig. 21 is a side view of a thermostat according to an example embodiment.
Fig. 22 is a rear view of the housing of the thermostat of fig. 21.
Fig. 23 is a side view of a thermostat attached to a wall according to an exemplary embodiment.
Fig. 24 is a rear perspective view from above of the thermostat in fig. 23.
Fig. 25 is a side view of a thermostat according to an example embodiment.
Fig. 26 is a front perspective view from above of a thermostat, according to an exemplary embodiment.
Fig. 27 is a front view of the thermostat of fig. 26.
Fig. 28 is a side view of the thermostat of fig. 26.
Detailed Description
Referring to the drawings in general, a multi-function user control is shown according to various exemplary embodiments. The user control may be implemented as a thermostat for controlling an HVAC system. The user control device may be implemented as a smart hub and may be connected to any of a variety of controllable systems and devices. For example, the user control device may be connected to a home automation system, a building automation system, an HVAC system, a lighting system, a security system, an electrical system, a spray system, a home entertainment system, and/or any type of system that may be monitored or controlled via the user control device. The user control devices may be implemented in any of a variety of environments (e.g., home, building, classroom, hotel, medical facility, vehicle, etc.) and are used to monitor, control, and/or facilitate user interaction with a controllable system or device in such environments. For example, the user control device may be a thermostat installed in a home or building (e.g., mounted on a wall).
The user control device includes: a housing containing electronic components and a touch-sensitive display for displaying visual media (e.g., information, text, graphics, etc.) to a user and receiving user input. The housing is selectively attachable to a mounting plate for mounting the user control device to a mounting surface, such as a wall. The housing includes a display mount or a support plate that supports the touch sensitive display. The display mount is cantilevered vertically from the base of the housing such that when the user control device is attached to the wall, the entire touch sensitive display and the display mount are spaced a distance from the wall. The touch sensitive display, the display mount, and the protective cover for the display are not opaque (e.g., transparent or translucent), which minimizes the visible footprint of the user control device to a user relative to conventional opaque user control devices. The housing may also include one or more light sources. The light source may be configured to emit illumination towards the wall, thereby producing an illumination effect on the wall. The light source may also emit light in alternative or additional directions.
The user control device may include various user interface devices (e.g., touch sensitive panels, electronic displays, speakers, haptic feedback, microphones, ambient lighting, etc.) configured to facilitate user interaction with the user control device, the user control device may include a data communication interface configured to facilitate communication between the user control device and remote sensor units, building automation systems, home automation systems, HVAC equipment, mobile devices (e.g., via WiFi, Bluetooth, NFC, L TE, L AA L TE, etc.), communication networks (e.g., L AN, WAN, 802.11, the Internet, cellular networks, etc.), and/or any other system or device to which the user control device may be connected.
The user control device may be configured to act as a networked smart hub. For example, the user control may be configured to receive voice commands from a user and to control the networked device in response to the voice commands. The user control device may be configured to connect to a mobile device (e.g., a user's phone, tablet computer, laptop computer, etc.) or other network device (e.g., a desktop computer) to allow remote monitoring and control of the networked system. The user control device may be configured to detect occupancy of a room or space in which the user control device is installed, and may perform various occupancy-based control processes. The user control may monitor the performance of the networked devices (e.g., HVAC devices) and may perform diagnostics based on data received from the HVAC devices.
The user control device may act as a wireless communication hub (e.g., wireless router, access point, etc.) and may be configured to bridge communications between various systems and devices. For example, the user control device may include a cellular communication transceiver, a modem, an ethernet transceiver, or other communication hardware configured for communication with an external communication network (e.g., a cellular network, WAN, internet, etc.). The user control device may include a WiFi transceiver configured to communicate with nearby mobile devices. The user control device may be configured for bridging communications between the mobile device and an external communication network. Such functionality allows the user control device to replace networking equipment (e.g., modems, wireless routers, etc.) in the building or vehicle and provide internet connectivity. For example, the user control device may act as a WiFi hotspot or microcell in a building or vehicle, and may communicate with the internet via an integrated ethernet transceiver, a cellular transceiver (e.g., for locations where internet service providers do not provide service), coaxial cable, or other data communication hardware.
The user control device may receive weather forecasts from a weather service as well as severe weather alerts. The user control device may have an ambient lighting component that emits a specified light color or pattern for indicating a severe weather alert or other alert. The user control device may also receive utility rate information from a utility provider. The user control device may use the weather forecast along with utility rate information to optimize (e.g., minimize) energy consumption of the home or building. In some embodiments, the user control device generates a utility bill forecast and recommends a setting modification to reduce energy consumption or energy costs. In some embodiments, the user control device receives energy consumption information of other homes/buildings from the remote system and compares the energy consumption of the connected HVAC equipment with the energy consumption of the other homes/buildings.
Fig. 1-18 illustrate a multi-function user control device or thermostat 100 according to an exemplary embodiment. The thermostat 100 is configured to be mounted on a wall (e.g., a vertical wall within a home, household, building, etc.) or other suitable mounting location (e.g., a ledge, control panel, or other surface of an object within a building space, furniture, dashboard, vehicle seat, or other vehicle surface, etc.).
As shown in fig. 14, the thermostat 100 includes a housing 102, a touch-sensitive display 104, a protective cover 106 for the display 104, a front panel or cover 108, a back panel or mounting plate 110, one or more circuit boards (shown as circuit board 112 and circuit board 114), a sensor lens or window 116, and a mold or top cover 118 covering a portion of the housing 102. The assembled components of the thermostat 100, in addition to the mounting plate 110 and any fasteners or other components used to secure the mounting plate to a mounting location, are referred to as a "thermostat body".
As shown in fig. 5 and 8, the housing 102 includes a main portion or base 120 and an overhang panel or display mount 122 extending from a front of the base 120. The base 120 defines a recess or volume 124 in which the circuit boards 112 and 114 are positioned. The volume 124 is defined by a front wall 126, two side walls 128 and 130, a top wall 132, and a bottom wall 134, and is closed by the mounting plate 110 when the thermostat body is attached to the mounting plate 110. The front wall 126 connects the top wall 132 to the bottom wall 134. Two side walls 128 and 130 connect the top wall 132 to the bottom wall 134. The bottom wall 134 is angled downwardly at an angle of approximately 45 degrees from the vertical front wall 126. In other embodiments, the angle is greater or less (e.g., between 30 and 60 degrees). In other embodiments, the bottom wall or a portion of the bottom wall is curved. In other embodiments, the base 120 of the housing 102 is substantially square or rectangular in cross-section. In other embodiments, the front wall is omitted and the angled or curved bottom wall is directly connected to the top wall (e.g., resulting in the housing being triangular in cross-section). In some embodiments, the front wall is omitted and the volume 124 is open to the front of the base 120, allowing front access to the interior of the base 120.
As shown in fig. 8, the top wall 132 of the base 120 has two sections 136 and 138, with the section 138 being recessed from the section 136 (e.g., thinner, having a smaller vertical dimension, having a smaller height, etc.). The section 138 receives a portion of the top cover 118 such that the top surface of the top cover 118 is flush with the top surface of the section 136 of the top wall 132 as shown in fig. 8.
As shown in fig. 8 and 12, a portion of the front wall 126 extends through the top wall 132 to form the display mount 122 (back panel, mounting panel). A display mount 122 depends from the base 120. The display mount 122 provides a mounting surface 142 for attaching the display 104 to the housing 102. The display mount 122 has: height 144 (measured from the top surface of top wall 132, which in the illustrated embodiment is the top surface of section 136, to the top or free end 145); a width 146 measured from a first or left side 148 to a second or right side 150; and a thickness 148 measured from the front or mounting surface 142 to the back or back surface 152. The mounting surface 142 is spaced from or recessed by a thickness 149 from a front surface of the front wall 126 forming the portion of the base 120 to form a ledge 151 for supporting the bottom edge of the touch-sensitive display 104 and the protective cover 106. The thickness 149 is the same as the thickness of the touch sensitive display 104 such that the ledge 151 supports the bottom of the display 104.
As illustrated, the display mount 122 extends upwardly from the base 120 in a cantilevered manner such that the display mount 122 is located above the base in the normal operating position of the thermostat. In an alternative embodiment, the display mount extends downwardly from the base in an overhanging manner such that the display mount is located below the base in the normal operating position of the thermostat. In an alternative embodiment, the display mount extends laterally in an overhanging manner from the base such that the display mount lies flat with one side of the base in a normal operating position of the thermostat.
The display mount 122 may be configured as a landscape display with a width 146 greater than a height 144 (as shown in fig. 1-18), a portrait display with a width 146 less than a height 144 (as shown in fig. 26-28), or a square display with a width 146 equal to a height 144. The top surface of the top wall 132 and the top side 145 of the display mount 122 are parallel to each other. Left side 148 and right side 150 are parallel to each other. The mounting surface 142 and the back surface 152 are parallel to each other. Top side 145 is perpendicular to left side 148 and right side 150. In some embodiments, the display mount 122 is arranged such that its four sides are not arranged in a rectangle or square (e.g., parallelogram, prism, trapezoid, etc.), its shape has more or less sides than four (e.g., trilateral, pentagonal, hexagonal, etc.), such as circular, such as oval or elliptical, or other shape suitable for mounting a display.
As shown in fig. 8, 10 and 13, the rear or back face 154 of the base 120 of the housing 102 is defined by the top wall 132, the side walls 128 and 130, and the end of the bottom wall 134 located opposite the front wall 126. The rear surface 154 is arranged vertically and is flat to aid in mounting the thermostat body to a vertical wall. As shown in fig. 8, the back surface 152 of the display mount 122 is spaced a horizontal distance 156 from the back surface 154 of the base 120. As illustrated, the horizontal distance 156 is constant over the height 144 of the display mount such that the back surface 152 of the display mount 122 is parallel to the back surface 154 of the base 120. The mounting surface 142 of the display mount 122 is perpendicular to the top surface of the top wall 132. The back surface 152 of the display mount 122 is perpendicular to the top surface of the top wall 132. In other embodiments, the horizontal distance 156 may decrease from the top wall 132 of the base to the top side 145 of the display mount 122 such that the display mount 122 angles toward the wall. In other embodiments, the horizontal distance 156 may increase from the top wall 132 of the base to the top side 145 of the display mount 122 such that the display mount 122 angles away from the wall. As illustrated, the display mount 122 is part of the front wall 126 to the freestanding top end 145 (i.e., the portion extending upward from the top surface of the top wall 132). In other embodiments, the display mount 122 is a separate structure from the front wall 126. As illustrated, the display mount 122 is positioned in front of the base 120 such that the mounting surface 142 and the front surface of the front wall 126 are coplanar. In other embodiments, the display mount 122 is positioned between the front of the base 120 and the rear surface 154 of the base 120, but is spaced apart from the rear surface 154 by a horizontal distance 156 (i.e., the back surface 152 of the display mount 122 is not coplanar with the rear surface 154 of the base 120).
As shown in fig. 8, the touch sensitive display 104 is attached (e.g., by an adhesive or other suitable securing technique) to a mounting surface 142 of the display mount 122. A protective cover 106 is attached to the front surface of the display 104 for protecting the display 104 from impact and other damage. The protective cover 106 is transparent so as not to impair the display function of the touch sensitive display 104. In some embodiments, the protective cover 106 is omitted. In other embodiments, the protective cover is an integral part of the display 104.
As shown in fig. 8 and 14, in the illustrated embodiment, the housing 102 is a single integrally formed component that includes both the base 120 and the display mount 122. Forming the housing 102 as a single unitary integral component helps the thermostat 100 withstand the torque that is applied about the connection point between the display mount 122 and the base 120 when the user presses the touch-sensitive display 104. The relatively large thickness 148 of the display mount 122 also helps to withstand this moment.
As shown in FIGS. 8 and 14, touch sensitive display 104 may be a touch screen or other type of electronic display configured to present information to a user in a visual format (e.g., as text, graphics, etc.) and to receive input from the user (e.g., via a touch sensitive panel). for example, touch sensitive display 104 may include a touch sensitive panel layered over an electronic visual display. A user may provide input by touching display 104 with one or more fingers and/or a stylus/pen via simple or multi-touch gestures. touch sensitive display 104 may receive user input using any of a variety of touch sensitive technologies such as capacitive sensing (e.g., surface capacitance, projected capacitance, mutual capacitance, self-capacitance, etc.), resistive sensing, surface acoustic wave, infrared grid, infrared acrylic projection, optical imaging, dispersive signal technology, acoustic pulse recognition, or other touch sensitive technologies known in the art). many of these technologies allow for multi-touch responsiveness of display 104 that allows for touch sensitive displays registered in two or even more locations at once, and may be configured using a touch sensitive display technology such as a light emitting diode (e.g., a light emitting diode) as in a light emitting diode display (e.g., a light emitting diode) (L), a display device, such as a display device, a display device.
As shown in fig. 14, the touch-sensitive display 104, the protective cover 106, and the display mount 122 (collectively, "display components") are not opaque, which allows a user operating or viewing the thermostat 100 to see through the display components to the surface behind the display components. In embodiments where the protective cover 106 is omitted or is an integral component of the touch sensitive display 104, the "display assembly" is comprised of the touch sensitive display 104 and the display mount 122. By non-opaque is meant that at least some visible light is able to pass through the member and includes both transparent and translucent members. For example, when the thermostat 100 is mounted on a wall, the wall is visible through the display assembly. This allows the thermostat to blend into its surroundings when not in use (e.g., when no visual media is displayed on the touch screen display). In the illustrated embodiment, the entire housing 102 is not opaque. In other embodiments, only the display mount 122 portion of the housing is not opaque. The housing 102 may be formed from a variety of materials (e.g., polymers including acrylics, metals, composites, laminates, etc.).
As shown in fig. 8 and 14, the housing 102 may contain various electronic components, including: one or more sensors, components configured to perform control functions (e.g., circuit boards, processing circuitry, memory, processors, etc.), components configured to facilitate communications (e.g., WiFi transceivers, cellular transceivers, communication interfaces, etc.), and components configured to provide a visual display via the touch-sensitive display 104 (e.g., video cards or modules, etc.).
The sensors may include temperature sensors, humidity sensors, motion or occupancy sensors (e.g., passive infrared sensors), air quality sensors (e.g., carbon monoxide, carbon dioxide, allergens, smoke, etc.), proximity sensors (e.g., thermopile energy meters for detecting the presence of humans and/or NFC, RFID, bluetooth, sensors for detecting the presence of mobile devices, etc.), cameras, microphones, light sensors, vibration sensors, or any other type of sensor configured to measure a variable state or condition of the environment in which the thermostat 100 is installed. In some embodiments, the proximity sensor is for: turning on the display 104 to present visual media when the user approaches the thermostat 100; and turn off the display 104 when the user is not near the thermostat 100, resulting in less power usage and longer display life. Some sensors, such as proximity sensors, motion sensors, cameras, light sensors, or optical sensors, may be positioned within the housing 102 to monitor the space near the thermostat 100 through the sensor lens 116. The lens 116 is not opaque and allows light of a frequency required for at least a particular sensor to function to pass through the lens, thereby allowing the sensor to "see" or "look" through the lens 116.
In other embodiments, one or more sensors may be located outside of the housing 102 and may provide input to the thermostat 100 via a data communication link. For example, one or more sensors may be mounted in a tool box behind the thermostat 100, in a separate tool box mounted within the same wall as the thermostat 100 is mounted, or otherwise located throughout a room or space monitored or controlled by the thermostat 100 (e.g., in a wall, in a ceiling, in an open area of a room or space, in a duct that provides airflow to or receives airflow from a room or space, etc.). This allows the thermostat 100 to monitor inputs from various sensors located at different locations. For example, a humidity sensor may be positioned in a wall and configured to measure humidity within the wall (e.g., to detect a water leak or pipe burst).
As shown in fig. 5,7, and 8, the circuit boards 112 and 114 may include one or more sensors (e.g., temperature sensors, humidity sensors, etc.), communication electronics, processing circuitry, and/or other electronics configured to facilitate the functions of the thermostat 100. As shown in fig. 8, the circuit boards 112 and 114 are oriented substantially parallel to the display mount 122 and the rear surface 154 of the base 120. The circuit boards 112 and 114 may be spaced apart from each other in a direction perpendicular to the display mount 122 and the rear surface 154. In other embodiments, one or both of the circuit boards 112 and 114 may be oriented substantially perpendicular to the display mount 122 and the rear surface 154.
In some embodiments, the circuit board 112 functions at least in part as a sensor board and has one or more sensors, including a proximity sensor 158, a motion or occupancy sensor 160, and a temperature sensor 162. In some embodiments, the circuit board 114 functions at least in part as a control board and includes processing electronics 164, a power source or battery 166, and input terminals 168 for receiving wiring from the HVAC system to be controlled by the thermostat. Processing electronics 164 are coupled to touch-sensitive display 104 (e.g., by a cable or wiring harness) to receive user input from display 104 and to provide output to control display 104 to control operation of display 104. In some embodiments, the power source 166 is rechargeable. In some embodiments, the power source 166 may be replaced by a user. The processing electronics may include a processor and a memory device. The processor may be implemented as a general purpose processor, an Application Specific Integrated Circuit (ASIC), one or more Field Programmable Gate Arrays (FPGAs), a set of processing components, or other suitable electronic processing components. A memory device (e.g., memory unit, storage device, etc.) is one or more devices (e.g., RAM, ROM, flash memory, hard disk storage, etc.) for storing data and/or computer code for performing or facilitating the various processes, layers, and modules described herein. The memory device may be or include volatile memory or non-volatile memory. The memory devices may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described herein. According to an exemplary embodiment, the memory device is communicatively connected to the processor via the processing circuitry and includes computer code for performing (e.g., by the processing circuitry and/or the processor) one or more processes described herein. In some embodiments, the electronic components are found on a single circuit board, distributed differently among the two circuit boards 112 and 114, or distributed differently among more than two circuit boards.
As shown in fig. 1, 2, 6, and 14, the front cover 108 covers a portion of the front wall 126 below the display mount 122, a bottom wall 134, and portions of two side walls 128 and 130 of the housing 102. The front cover 108 may be formed from a variety of materials (e.g., polymers including acrylics, metals, composites, laminates, etc.). The front cover 108 includes a front wall 170 and a bottom wall 172 that correspond or mate with the front wall 126 and the bottom wall 134 of the housing 102. In the illustrated embodiment, the front cover 108 is removably attached to the housing 102 (e.g., by magnets, by snap-fit connections, by screws, or other mechanical fasteners). Removably attaching the front cover 108 allows the end user to customize the appearance of the thermostat 100 by allowing him to choose among front covers made of different materials or having different colors or finishes. In some embodiments, the front cover 108 is attached to the housing 102 by a hinge. In some embodiments, the front cover 108 is omitted and an aperture for the sensor lens is formed in the housing. As shown in fig. 8, the front cover 108 in combination with the protective cover 106 serve to form a continuous or flush front surface of the thermostat 100.
As shown in fig. 6-8, the sensor lens 116 is positioned within an aperture or opening 171 formed through the bottom wall 134 of the front cover 108 and through the bottom wall 134 of the base 120 of the housing 102. As illustrated, the aperture 171 is three-sided, open-sided at the rear surface 154 of the housing 102. This places the lens 116 and the aperture 171 near the lower end of the front cover 108 and near the lower end of the housing 102. In some embodiments, the lens 116 and aperture 171 are positioned near an upper end of the front cover 108 and near an upper end of the housing 102 (e.g., near the display assembly). The lens 116 may be secured in the aperture 171 by friction or a snap fit, adhesive, or other suitable securing technique. In some embodiments, the thermostat 100 includes a plurality of sensor lenses located in corresponding apertures in the front cover 108 or in corresponding apertures in the housing 102 or top cover 118.
As shown in fig. 14, the top cover 118 is removably attached to the housing 102. The top cover 118 includes a top wall 119 and two side walls 121 and 123 depending downwardly from the top wall 119. The top wall 119 of the top cover 118 covers a portion of the top wall 132 of the base 120, while the two side walls 121 and 123 of the top cover 118 cover a portion of the two side walls 128 and 130 of the base 120. The top cover 118 includes a plurality of apertures or openings 174 that allow increased air flow to the housing 102, which may help cool the electronic components located within the housing 102. In the illustrated embodiment, the orifice 174 is a series of relatively small circular perforations. In other embodiments, the apertures 174 may be larger, shaped differently, and/or formed as slits or louvers. The top cover 118 may be formed from a variety of materials (e.g., polymers including acrylics, metals, composites, laminates, etc.). In the illustrated embodiment, the top cover 118 is removably attached to the housing 102 (e.g., by magnets, by snap-fit connections, by screws, or other mechanical fasteners). Removably attaching the top cover 118 allows the end user to customize the appearance of the thermostat 100 by allowing him to choose among top covers made of different materials or having different colors or finishes. In some embodiments, the top cover 118 is attached to the housing 102 by a hinge. In some embodiments, the top cover 118 is omitted from the thermostat 100.
As shown in fig. 4, 8 and 14, the mounting plate 110 includes a main portion or base 176 and four attachment tabs 178 extending perpendicularly away from the base 176. As shown in fig. 4 and 15, the mounting plate 110 includes a rear surface 177 configured to sit flush against a wall 200 or other surface to which the thermostat 100 is to be mounted. The base 176 includes an aperture or opening 180 configured to allow control lines from the HVAC system to be controlled by the thermostat 100 to pass through the mounting plate 110 and connect to the input terminals 168 located within the housing 102. As illustrated, the aperture 180 is centrally located in the base 176. Two fastener apertures or openings 182 and 184 are formed through the base 176 and are spaced apart from one another. Each aperture 182 and 184 allows a screw 186 or other mechanical fastener to pass through the base 176 in order to attach the mounting plate 110 to a wall or other mounting location. As illustrated, the aperture 182 is circular and the aperture 184 is an elongated slot. The elongated slot allows a user to rotate the mounting plate 110 relative to the mounting hole in the wall to level the mounting plate 110 horizontally before tightening the fastener to secure the mounting plate 110 in place on the wall. In some embodiments, the apertures 182 and 184 are spaced apart by a standard thermostat mounting distance so that the thermostat 100 can be used to replace current thermostats without having to drill new mounting holes in the wall to which the thermostat 100 is being attached.
As shown in fig. 4 and 14, the attachment tab 178 is arranged to extend into the volume 124 within the base 120 of the housing 102. Each tab 178 includes an aperture or opening 188 for receiving a screw or other fastener to attach the housing 102 to the mounting plate 110. As shown in fig. 5, the housing 102 includes corresponding apertures or openings 190 formed in the top wall 132 and the bottom wall 134 for allowing the fasteners to extend through the housing 102 to the attachment tabs. One or both of the apertures 188 and 190 of each pair may be threaded for use with a threaded fastener. The aperture 190 in the top wall 132 is covered by the top cover 118, while the aperture 190 in the bottom wall 134 is covered by the front cover 108. In some embodiments, the attachment tabs 178 are replaced with snap-fit connections, spring-biased arms, or other attachments suitable for attaching the housing 102 to the mounting plate 110. As shown in fig. 8, when the housing 102 is attached to the mounting plate 110, the mounting plate 110 is positioned within the volume 124 formed in the interior of the housing 102, with the rear surface 177 of the mounting plate 176 flush with the rear surface 154 of the base 120 of the housing 102. This covers the mounting plate 110 from the view of an observer or user of the thermostat 100.
As shown in fig. 17 and 18, the thermostat 100 is attached to a wall 200. The display assembly (e.g., touch sensitive display 104, protective cover 106, and display mount 122) is not opaque, which allows a user or viewer to see the wall 200 through the display assembly. When no visual media is displayed on the touch-sensitive display 104, the display assembly may blend into its surroundings, thereby reducing its visual impact on the wall 200 and the space surrounding the wall 200. For example, an observer sees the color of the painted wall 200 through the display assembly, with only the non-opaque parts of the thermostat 100 (e.g., the front cover 108 and the top cover 118) obscuring or covering the observer's view of the wall 200. This has less visual impact on the non-opaque parts covering the wall than a conventional thermostat, which is opaque throughout. Visual impact may be further reduced by matching the color of the front cover 108 and top cover 118 to the color of the wall.
As shown in fig. 16 and 18, the display assembly is spaced from the wall 200 with the back surface 152 of the display mount 122 spaced from the wall 200 by a horizontal distance 156, leaving a gap 202 between the display mount 122 and the wall 200. In conventional thermostats, there is no gap between the display assembly and the wall similar to the gap 202 filled with the ambient atmosphere near the thermostat 100. Conventional thermostats are mounted flush with a wall such that the total or substantially the total circumference of the thermostat is in contact with the wall or a mounting plate having a total circumference that is the same as or greater than the total circumference of the thermostat is in contact with the wall. In contrast to what is shown in fig. 13, for the thermostat 100, the perimeter 204 of the rear surface 154 of the base 120 of the housing 102 that contacts the wall 200 is much less than the overall perimeter 206 of the housing 102 (i.e., the combined perimeter of the back surface 152 of the display mount 122 and the perimeter 204 of the rear surface 154 of the base 120). The gap 202 and the reduced perimeter 204 of the contact wall 200 each help the thermostat's temperature sensor 162 to read conditions as close to room environmental conditions as possible, which may often be at a lower temperature than the room environmental conditions, by spacing the temperature sensor from the wall 200. The gap 202 and reduced perimeter 204 of the contact wall 200 also help improve airflow around the touch-sensitive display 104, thereby dissipating heat that would be transferred to the housing and other components of a conventional thermostat.
Referring to fig. 19-20, an alternative exemplary embodiment of a thermostat 100 is illustrated. A bracket or tab 208 extends outwardly from the back surface 152 of the display mount and is configured to contact the wall 200 on which the thermostat 100 is mounted. The bracket 208 may be part of a single integrally formed housing 102 or may be a separate component that is attached to the display mount (e.g., by adhesive, mechanical fasteners, heat staking, or other suitable attachment techniques). The brace 208 helps to resist the moment applied about the connection point between the display mount 122 and the base 120 when the user presses the touch-sensitive display screen 104. In the illustrated embodiment, three brackets 208 are provided. In other embodiments, more or fewer brackets are provided.
Referring to fig. 21-24, the thermostat 100 may include one or more light sources 210 (e.g., light emitting diodes) configured to provide ambient lighting and/or other lighting effects associated with the thermostat 100. Fig. 21 and 22 illustrate an exemplary embodiment of a thermostat 100 having a display mount 122 that includes a waveguide 212 for guiding light from a light source 210 within the display mount 122. As illustrated, the waveguide 212 forms a frame that surrounds three sides (top, left, and right) of the display mount 122. The waveguide 212 may include one or more optical fibers within or attached to the display mount 122. Fig. 23 and 24 illustrate an exemplary embodiment of the thermostat 100 having a plurality of light sources 210 disposed in a section 136 of the top wall 132 of the base 120 of the housing 102. In some embodiments, the light source 210 (with or without the waveguide 212 (fig. 23)) is configured to emit light toward a wall or other surface on which the thermostat 100 is mounted. When white light is directed at the wall, the display components (e.g., the touch-sensitive display 104, the protective cover 106, and the display mount 122) appear more transparent to the user, further helping the display components blend into their background. The light source 210 may also be controlled to provide a notification or alert to the user (e.g., yellow for an alarm or warning, red for an emergency, etc.). The steady light or flashing light may also provide different notifications or warnings to the user (e.g., flashing lights indicate an alert that has not been acknowledged by the user, while solid lights are used to indicate an alert that has been acknowledged by the user). The light sources 210 may be controlled by a user (e.g., color, brightness, or other characteristics of light) for providing an atmosphere or ambient lighting desired by the user.
Fig. 25 illustrates an exemplary embodiment of a thermostat 100 having the ability to receive various interchangeable modules or components. The housing 102 includes an aperture or opening 214 for receiving a module 216 that is electrically connected to one or other of the circuit boards 112 and 114 to provide additional functionality to the thermostat 100. The various modules 216 allow a user to upgrade or customize the thermostat 100 to include features selected by the user. For example, the thermostat 100 may include any of the features of the modular thermostat described in U.S. provisional patent application No. 62/260,141 filed 11/25/2015, and any of the features of the thermostat described in U.S. provisional patent application No. 62/275,199 filed 1/5/2016, each of which is incorporated herein by reference in its entirety. Module 216 may include a communication transceiver (e.g., ZIGBEE, ZWAVE, near field communication, cellular, etc.), additional sensors, and additional power supplies, or other electronic components. In some embodiments, the thermostat 100 provides for the use of more than one module 216 and includes corresponding apertures 214 in the housing 102. A wired port 218 (e.g., a USB port) may be provided for allowing external wired communication and/or power to and from the electronic components of the thermostat 100. An aperture 220 may be provided to allow access to a reset button located within the housing to allow a user to insert a device (e.g., a pen, paperclip, etc.) to manually shut down the power supply and restart the thermostat 100.
Fig. 26-28 illustrate a multi-function user control device or thermostat 300 according to an exemplary embodiment. The thermostat 300 is substantially similar to the thermostat 300. Those components similar to the thermostat 100 are numbered 300 instead of 100. The thermostat 300 includes a portrait display assembly in which the touch sensitive display 302, the display mount 322, and the protective cover 306 (if included, separated from the display 302) have a height 344 that is greater than a width 346.
The construction and arrangement of the systems and methods as shown in the exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of this disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the scope of the present disclosure. References herein to positions of elements (e.g., "top," "bottom," "above," "below," "upward," "downward," etc.) are used to describe the orientation of the elements relative to each other with the user control device in its normal operating position, as shown in the figures.
The present disclosure contemplates methods, systems, and program products on any machine-readable media for accomplishing operations. Embodiments of the present disclosure may be implemented using an existing computer processor, or by a special purpose computer processor in conjunction with a suitable system for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such computer-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, etc., or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures show the method steps in a specified order, the order of the steps may differ from that depicted. Two or more steps may also be performed simultaneously or partially simultaneously. Such variations will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the present disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
Claims (20)
1. A thermostat, comprising:
a housing, the housing comprising:
a base comprising a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall, wherein the top wall, the bottom wall, the first side wall, and the second side wall define an interior volume; and
a display mount depending upwardly from the top wall of the base, the display mount being located above the base in a normal operating position of the thermostat, the display mount including a mounting surface perpendicular to the top wall of the base;
wherein the housing is not opaque;
a touch-sensitive display configured to display visual media and receive user input, wherein the touch-sensitive display is attached to the mounting surface of the display mount, and wherein the touch-sensitive display is not opaque; and
processing electronics positioned within the interior volume of the base, wherein the processing electronics are configured to operate the touch-sensitive display.
2. The thermostat of claim 1, wherein the housing is a single, unitary component.
3. The thermostat of claim 2, further comprising:
a plurality of wire terminals positioned within the interior volume and each configured to secure one of a plurality of control wires from an HVAC system.
4. The thermostat of claim 3, further comprising:
a mounting plate configured to attach the housing to a mounting surface, wherein the mounting plate is positioned within the interior volume of the base and removably attached to the base, and wherein the mounting plate includes apertures configured to allow the plurality of control lines to pass through the mounting plate into the interior volume of the base.
5. The thermostat of claim 4, wherein ends of the top wall, the bottom wall, the first side wall, and the second side wall distal from the front wall define a planar rear surface of the base; and is
Wherein the mounting plate includes a rear surface that is flush with the rear surface of the base when the mounting plate is attached to the base.
6. The thermostat of claim 1, further comprising:
a front cover removably attached to the housing, wherein the front cover covers at least a portion of the front wall and covers at least a portion of the bottom wall.
7. The thermostat of claim 6, further comprising:
a sensor lens positioned in an aperture formed through the front cover and the base; and
a sensor positioned within the interior volume of the base and aligned with the sensor lens.
8. The thermostat of claim 7, wherein the sensor is a proximity sensor.
9. The thermostat of claim 7, wherein the sensor is an occupancy sensor.
10. The thermostat of claim 1, further comprising:
a top cover removably attached to the housing, wherein the top cover covers at least a portion of the top wall, at least a portion of the first side wall, and at least a portion of the second side wall.
11. The thermostat of claim 1, further comprising:
a protective cover attached to the touch-sensitive display such that the touch-sensitive display is positioned between the protective cover and the display mount.
12. The thermostat of claim 1, wherein the housing is transparent.
13. The thermostat of claim 1, wherein the housing is translucent.
14. The thermostat of claim 1, wherein the touch-sensitive display is transparent.
15. The thermostat of claim 1, wherein the touch-sensitive display is translucent.
16. A thermostat, comprising:
a housing, the housing comprising:
a base comprising a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall, wherein the top wall, the bottom wall, the first side wall, and the second side wall define an interior volume, and wherein ends of the top wall, the bottom wall, the first side wall, and the second side wall distal from the front wall define a planar rear surface of the base; and
a display mount depending upwardly from the top wall of the base, the display mount being located above the base in a normal operating position of the thermostat, the display mount including a mounting surface perpendicular to the top wall of the base;
wherein the housing is not opaque;
a touch-sensitive display configured to display visual media and receive user input, wherein the touch-sensitive display is attached to the mounting surface of the display mount, and wherein the touch-sensitive display is not opaque;
processing electronics positioned within the interior volume of the base, wherein the processing electronics are configured to operate the touch-sensitive display;
a plurality of wire terminals positioned within the interior volume and each configured to secure one of a plurality of control wires from an hvac system;
a mounting plate configured to attach the housing to a mounting surface, wherein the mounting plate is positioned within the interior volume of the base and removably attached to the base, wherein the mounting plate includes apertures configured to allow the plurality of control lines to pass through the mounting plate into the interior volume of the base, and wherein the mounting plate includes a rear surface that is flush with a rear surface of the base when the mounting plate is attached to the base;
a front cover removably attached to the housing, wherein the front cover covers at least a portion of the front wall and covers at least a portion of the bottom wall; and
a top cover removably attached to the housing, wherein the top cover covers at least a portion of the top wall, at least a portion of the first side wall, and at least a portion of the second side wall.
17. The thermostat of claim 16, wherein the housing is a single, unitary component.
18. A thermostat, comprising:
a housing, the housing comprising:
a base defining an interior volume; and
a display mount depending upwardly, downwardly or laterally from the base, the display mount being located above, below or level with a side of the base in a normal operating position of the thermostat, the display mount including a mounting surface perpendicular to an outer surface of the base;
wherein the housing is not opaque;
a touch-sensitive display configured to display visual media and receive user input, wherein the touch-sensitive display is attached to the mounting surface of the display mount, and wherein the touch-sensitive display is not opaque; and
processing electronics positioned within the interior volume of the base, wherein the processing electronics are configured to operate the touch-sensitive display.
19. The thermostat of claim 18, wherein the housing is a single, unitary component.
20. The thermostat of claim 19, wherein the housing and the touch-sensitive display are translucent.
Applications Claiming Priority (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562156868P | 2015-05-04 | 2015-05-04 | |
US62/156,868 | 2015-05-04 | ||
US201562247672P | 2015-10-28 | 2015-10-28 | |
US62/247,672 | 2015-10-28 | ||
US201562260141P | 2015-11-25 | 2015-11-25 | |
US62/260,141 | 2015-11-25 | ||
US201662274750P | 2016-01-04 | 2016-01-04 | |
US62/274,750 | 2016-01-04 | ||
US201662275202P | 2016-01-05 | 2016-01-05 | |
US201662275199P | 2016-01-05 | 2016-01-05 | |
US201662275204P | 2016-01-05 | 2016-01-05 | |
US62/275,199 | 2016-01-05 | ||
US62/275,204 | 2016-01-05 | ||
US62/275,202 | 2016-01-05 | ||
US201662275711P | 2016-01-06 | 2016-01-06 | |
US62/275,711 | 2016-01-06 | ||
PCT/US2016/030827 WO2016179314A1 (en) | 2015-05-04 | 2016-05-04 | User control device with cantilevered display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107850907A CN107850907A (en) | 2018-03-27 |
CN107850907B true CN107850907B (en) | 2020-07-17 |
Family
ID=55969496
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680037294.2A Pending CN107787469A (en) | 2015-05-04 | 2016-05-04 | Multifunctional household control system with control system maincenter and distance sensor |
CN201680037771.5A Pending CN107810368A (en) | 2015-05-04 | 2016-05-04 | User control with the shell comprising angled circuit board |
CN201680037724.0A Active CN107810369B (en) | 2015-05-04 | 2016-05-04 | User control device having a housing containing a circuit board extending to a mounting location |
CN201680038067.1A Expired - Fee Related CN107710099B (en) | 2015-05-04 | 2016-05-04 | User control device with hinged mounting plate |
CN201680038068.6A Active CN107850907B (en) | 2015-05-04 | 2016-05-04 | User control device with cantilevered display |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680037294.2A Pending CN107787469A (en) | 2015-05-04 | 2016-05-04 | Multifunctional household control system with control system maincenter and distance sensor |
CN201680037771.5A Pending CN107810368A (en) | 2015-05-04 | 2016-05-04 | User control with the shell comprising angled circuit board |
CN201680037724.0A Active CN107810369B (en) | 2015-05-04 | 2016-05-04 | User control device having a housing containing a circuit board extending to a mounting location |
CN201680038067.1A Expired - Fee Related CN107710099B (en) | 2015-05-04 | 2016-05-04 | User control device with hinged mounting plate |
Country Status (8)
Country | Link |
---|---|
US (7) | US10907844B2 (en) |
EP (5) | EP3292452B1 (en) |
JP (1) | JP2018524534A (en) |
KR (1) | KR102125516B1 (en) |
CN (5) | CN107787469A (en) |
AU (2) | AU2016257459B2 (en) |
NZ (1) | NZ737663A (en) |
WO (5) | WO2016179321A1 (en) |
Families Citing this family (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9016627B2 (en) * | 2009-10-02 | 2015-04-28 | Panasonic Avionics Corporation | System and method for providing an integrated user interface system at a seat |
JP6659204B2 (en) * | 2013-07-16 | 2020-03-04 | 東芝ライフスタイル株式会社 | Camera device, indoor imaging system, indoor information acquisition device |
KR20150079106A (en) * | 2013-12-31 | 2015-07-08 | 삼성전자주식회사 | Display apparatus, terminal apparatus and controlling method thereof |
SG11201605989QA (en) | 2014-02-20 | 2016-08-30 | Dirtt Environmental Solutions | Method of configuring walls |
US10102585B1 (en) | 2014-04-25 | 2018-10-16 | State Farm Mutual Automobile Insurance Company | Systems and methods for automatically mitigating risk of property damage |
US10161833B2 (en) * | 2014-08-25 | 2018-12-25 | Battelle Memorial Institute | Building environment data collection systems |
US10092197B2 (en) * | 2014-08-27 | 2018-10-09 | Apple Inc. | Reflective surfaces for PPG signal detection |
US10215698B2 (en) | 2014-09-02 | 2019-02-26 | Apple Inc. | Multiple light paths architecture and obscuration methods for signal and perfusion index optimization |
WO2016072116A1 (en) * | 2014-11-07 | 2016-05-12 | ソニー株式会社 | Control system, control method, and storage medium |
US10017186B2 (en) * | 2014-12-19 | 2018-07-10 | Bosch Automotive Service Solutions Inc. | System and method for optimizing vehicle settings |
SG11201606345UA (en) | 2015-03-16 | 2018-05-30 | Dirtt Environmental Solutions | Glass panel reconfigurable wall panels |
JP6529609B2 (en) | 2015-05-04 | 2019-06-12 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Attachable touch thermostat using transparent screen technology |
CN107787469A (en) * | 2015-05-04 | 2018-03-09 | 江森自控科技公司 | Multifunctional household control system with control system maincenter and distance sensor |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
KR101723169B1 (en) * | 2015-06-18 | 2017-04-05 | 동부대우전자 주식회사 | Apparatus and method for controlling a refrigerator according to surrounding brightness |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US20170074536A1 (en) | 2015-09-11 | 2017-03-16 | Johnson Controls Technology Company | Thermostat with near field communication features |
JP6496221B2 (en) * | 2015-09-18 | 2019-04-03 | 株式会社東芝 | Lighting control system |
US10537284B1 (en) | 2015-09-30 | 2020-01-21 | Apple Inc. | Enhanced sensor signal collection and reflection of reflected and/or scattered light |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
US10310477B2 (en) | 2015-10-28 | 2019-06-04 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
US10372192B2 (en) * | 2015-11-23 | 2019-08-06 | Tricklestar Ltd | System and an apparatus for controlling electric power supply and methods therefor |
US10444816B2 (en) | 2015-11-23 | 2019-10-15 | Tricklestar Ltd | System and an apparatus for controlling electric power supply and methods therefor |
US10318266B2 (en) * | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
USD810591S1 (en) * | 2015-12-11 | 2018-02-20 | Johnson Controls Technology Company | Thermostat |
USD852067S1 (en) * | 2015-12-11 | 2019-06-25 | Johnson Controls Technology Company | Thermostat |
USD790369S1 (en) * | 2015-12-11 | 2017-06-27 | Johnson Controls Technology Company | Thermostat |
TWI584232B (en) * | 2016-01-19 | 2017-05-21 | 台達電子工業股份有限公司 | Area abnormality detecting system and area abnormality detecting method |
USD784270S1 (en) * | 2016-02-08 | 2017-04-18 | Vivint, Inc. | Control panel |
USD784269S1 (en) * | 2016-02-08 | 2017-04-18 | Vivint, Inc. | Control panel |
US10672079B1 (en) | 2016-02-12 | 2020-06-02 | State Farm Mutual Automobile Insurance Company | Systems and methods for enhanced personal property replacement |
CN111156622B (en) | 2016-02-26 | 2022-04-26 | Lg电子株式会社 | Air cleaner |
US10508658B2 (en) | 2016-02-26 | 2019-12-17 | Lg Electronics Inc. | Air cleaner |
US10518205B2 (en) | 2016-02-26 | 2019-12-31 | Lg Electronics Inc. | Air cleaner |
EP3211337B1 (en) | 2016-02-26 | 2020-09-23 | LG Electronics Inc. | Air cleaner |
US9769420B1 (en) * | 2016-03-18 | 2017-09-19 | Thomas Lawrence Moses | Portable wireless remote monitoring and control systems |
US10359746B2 (en) * | 2016-04-12 | 2019-07-23 | SILVAIR Sp. z o.o. | System and method for space-driven building automation and control including actor nodes subscribed to a set of addresses including addresses that are representative of spaces within a building to be controlled |
US9949540B2 (en) * | 2016-05-09 | 2018-04-24 | Shadecraft, Inc. | Automated intelligent shading objects and computer-readable instructions for interfacing with, communicating with and controlling a shading object |
USD836720S1 (en) | 2016-05-18 | 2018-12-25 | ACCO Brands Corporation | Dry erase board |
US11240922B2 (en) * | 2016-06-10 | 2022-02-01 | Dirtt Environmental Solutions Ltd. | Wall system with electronic device mounting assembly |
CA2997014A1 (en) | 2016-06-10 | 2017-12-14 | Patrick Harris | Glass substrates with touchscreen technology |
US10411946B2 (en) * | 2016-06-14 | 2019-09-10 | TUPL, Inc. | Fixed line resource management |
CA3030282A1 (en) | 2016-07-08 | 2018-01-11 | Dirtt Environmental Solutions, Inc. | Low-voltage smart glass |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
JP1574549S (en) * | 2016-08-09 | 2018-10-09 | ||
US10136280B2 (en) * | 2016-08-29 | 2018-11-20 | International Business Machines Corporation | Parallel user interaction with physical and modeled system |
KR101866736B1 (en) | 2016-09-23 | 2018-06-15 | 현대자동차주식회사 | Touch controll device and manufacturing method thereof |
US11586166B2 (en) * | 2016-11-11 | 2023-02-21 | Recon Pillar, Llc | Systems and methods for providing monitoring and response measures in connection with remote sites |
US20190310667A1 (en) * | 2016-11-22 | 2019-10-10 | Engie North America | System for providing thermostat configuration guidance |
US10627123B2 (en) | 2016-12-09 | 2020-04-21 | Johnson Controls Technology Company | Thermostat with master control features |
US10528015B2 (en) * | 2016-12-15 | 2020-01-07 | Trane International Inc. | Building automation system controller with real time software configuration and database backup |
US10429817B2 (en) | 2016-12-19 | 2019-10-01 | Honeywell International Inc. | Voice control of components of a facility |
US10288307B2 (en) * | 2016-12-30 | 2019-05-14 | Echostar Technologies International Corporation | Controller and process for controlling a plurality of resources within a workplace |
WO2018132296A1 (en) * | 2017-01-13 | 2018-07-19 | Johnson Controls Technology Company | User control device with automatic mirroring and leveling system for semi-transparent display |
US10918322B2 (en) | 2017-02-13 | 2021-02-16 | Apple Inc. | Light restriction designs in optical sensing applications having shared windows |
US10458669B2 (en) | 2017-03-29 | 2019-10-29 | Johnson Controls Technology Company | Thermostat with interactive installation features |
USD857791S1 (en) * | 2017-04-06 | 2019-08-27 | Pax Computer Technology (Shenzhen) Co., Ltd. | Electronic cash register |
WO2018191703A1 (en) * | 2017-04-14 | 2018-10-18 | Johnson Controls Technology Company | Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US10712038B2 (en) | 2017-04-14 | 2020-07-14 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
US10146237B2 (en) | 2017-04-28 | 2018-12-04 | Johnson Controls Technology Company | Smart thermostat with model predictive control |
US11274849B2 (en) | 2017-04-28 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Smart thermostat with model predictive control and demand response integration |
USD834541S1 (en) * | 2017-05-19 | 2018-11-27 | Universal Remote Control, Inc. | Remote control |
IT201700057527A1 (en) * | 2017-05-26 | 2018-11-26 | Hike S R L | Electrical control system, particularly for home automation systems. |
US10066848B1 (en) * | 2017-06-06 | 2018-09-04 | Emerson Electric Co. | Illuminating substrate-mountable devices |
CN115379617A (en) * | 2017-06-15 | 2022-11-22 | 路创技术有限责任公司 | Communicating with and controlling a load control system |
US11120803B2 (en) | 2017-07-05 | 2021-09-14 | Johnson Controls Tyco IP Holdings LLP | Building automation system with NLP service abstraction |
EP3649546B1 (en) * | 2017-07-05 | 2024-04-10 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for conversational interaction with a building automation system |
EP4354041A3 (en) * | 2017-07-14 | 2024-05-01 | Daikin Industries, Ltd. | Information providing system |
EP4040289B1 (en) * | 2017-07-14 | 2023-09-20 | Daikin Industries, Ltd. | Device control system |
USD856410S1 (en) * | 2017-07-19 | 2019-08-13 | Ncr Corporation | Terminal |
US10731886B2 (en) * | 2017-07-20 | 2020-08-04 | Carrier Corporation | HVAC system including energy analytics engine |
US11108584B2 (en) * | 2017-08-10 | 2021-08-31 | The Adt Security Corporation | User scene and schedule creation based on time of the year |
US10345773B1 (en) * | 2017-08-22 | 2019-07-09 | Josh.ai LLC | Contextual home automation controller |
JP2019046101A (en) * | 2017-08-31 | 2019-03-22 | 富士通株式会社 | Interaction control device, interaction control method and interaction control program |
JP1605353S (en) * | 2017-09-11 | 2021-05-31 | ||
EP3658014A1 (en) | 2017-09-26 | 2020-06-03 | Apple Inc. | Concentric architecture for optical sensing |
US11100922B1 (en) * | 2017-09-26 | 2021-08-24 | Amazon Technologies, Inc. | System and methods for triggering sequences of operations based on voice commands |
CN107861446A (en) * | 2017-10-04 | 2018-03-30 | 上海市房地产科学研究院 | A kind of monitoring system and its application method for protecting building |
US20190178518A1 (en) | 2017-12-07 | 2019-06-13 | Johnson Controls Technology Company | Thermostat with energy modeling |
CN109900003A (en) * | 2017-12-08 | 2019-06-18 | 丹佛斯(天津)有限公司 | Fluid injection control system and fluid circulating system |
US10825564B1 (en) | 2017-12-11 | 2020-11-03 | State Farm Mutual Automobile Insurance Company | Biometric characteristic application using audio/video analysis |
US11480356B2 (en) | 2017-12-11 | 2022-10-25 | Johnson Controls Tyco IP Holdings LLP | Thermostat with startup temperature estimation |
US11604002B2 (en) | 2017-12-11 | 2023-03-14 | Johnson Controls Tyco IP Holdings LLP | Thermostat with steady state temperature estimation |
MX2020006207A (en) * | 2017-12-14 | 2020-08-27 | Lutron Tech Co Llc | Privacy mode for a wireless audio device. |
US11490248B2 (en) | 2017-12-14 | 2022-11-01 | Lutron Technology Company Llc | Privacy mode for a wireless audio device |
USD894844S1 (en) | 2018-01-05 | 2020-09-01 | Vivint, Inc. | Control panel |
US20190234640A1 (en) * | 2018-01-31 | 2019-08-01 | Ademco Inc. | Low power network connectivity of a building control device |
JP7281683B2 (en) * | 2018-02-22 | 2023-05-26 | パナソニックIpマネジメント株式会社 | VOICE CONTROL INFORMATION OUTPUT SYSTEM, VOICE CONTROL INFORMATION OUTPUT METHOD AND PROGRAM |
US10382284B1 (en) | 2018-03-02 | 2019-08-13 | SILVAIR Sp. z o.o. | System and method for commissioning mesh network-capable devices within a building automation and control system |
US11567636B2 (en) * | 2018-03-07 | 2023-01-31 | Lutron Technology Company Llc | Configuring a load control system |
US11131474B2 (en) | 2018-03-09 | 2021-09-28 | Johnson Controls Tyco IP Holdings LLP | Thermostat with user interface features |
JP7307103B2 (en) * | 2018-03-09 | 2023-07-11 | サバント システムズ インコーポレイテッド | Smart light switches/thermostats for control and energy management |
CN110296763B (en) | 2018-03-23 | 2021-04-30 | 江森自控科技公司 | Temperature sensor calibration using a circulating network |
US10825318B1 (en) | 2018-04-09 | 2020-11-03 | State Farm Mutual Automobile Insurance Company | Sensing peripheral heuristic evidence, reinforcement, and engagement system |
US11175270B2 (en) * | 2018-04-23 | 2021-11-16 | Sensesafe, Llc | Home and business monitoring system and methods |
CN108762102A (en) * | 2018-05-04 | 2018-11-06 | 安徽三弟电子科技有限责任公司 | A kind of study regulation and control system based on intelligent sound control |
WO2019216888A1 (en) * | 2018-05-08 | 2019-11-14 | Johnson Controls Technology Company | Systems and methods for voice-enabled access of building management system data |
PT3654116T (en) | 2018-05-16 | 2022-07-20 | Robot S A | Rail-mounted building automation device |
US20190361407A1 (en) * | 2018-05-24 | 2019-11-28 | Microsoft Technology Licensing, Llc | Insights for physical space usage |
EP3806482A4 (en) * | 2018-06-11 | 2021-05-26 | Mitsubishi Electric Corporation | Operation terminal and equipment control system |
CN108925067B (en) * | 2018-06-29 | 2020-12-08 | 苏州律点信息科技有限公司 | Anti-fog and anti-freezing floor type advertisement all-in-one machine based on wind power generation and control system thereof |
USD862400S1 (en) * | 2018-07-16 | 2019-10-08 | Distech Controls Sas | Environment controller |
US11137160B2 (en) | 2018-08-06 | 2021-10-05 | Johnson Controls Tyco IP Holdings LLP | Thermostat with estimation of run-time savings |
US10869187B1 (en) | 2018-08-07 | 2020-12-15 | State Farm Mutual Automobile Insurance Company | System and method for generating consumer mobility profile |
US11085665B2 (en) | 2018-08-10 | 2021-08-10 | Johnson Controls Tyco IP Holdings LLP | Remote sensor for smart thermostat |
US10955163B2 (en) * | 2018-08-21 | 2021-03-23 | Microsoft Technology Licensing, Llc | Automated building concierge |
EP3626489A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for energy management of a transport climate control system |
EP3626490A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for power and load management of a transport climate control system |
US11274847B2 (en) | 2018-09-27 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Thermostat with least squares estimation of power savings |
CN109324517B (en) * | 2018-09-28 | 2021-07-06 | 合肥荣电实业股份有限公司 | Intelligent household control system based on server load balancing method |
US11034213B2 (en) | 2018-09-29 | 2021-06-15 | Thermo King Corporation | Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems |
US10979962B2 (en) | 2018-10-02 | 2021-04-13 | Carrier Corporation | Wireless system configuration of master zone devices based on signal strength analysis |
US11270084B2 (en) | 2018-10-12 | 2022-03-08 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for using trigger words to generate human-like responses in virtual assistants |
US10825273B2 (en) * | 2018-10-16 | 2020-11-03 | Edst, Llc | Smart thermostat hub |
US12007732B2 (en) | 2019-07-12 | 2024-06-11 | Johnson Controls Tyco IP Holdings LLP | HVAC system with building infection control |
US11960261B2 (en) | 2019-07-12 | 2024-04-16 | Johnson Controls Tyco IP Holdings LLP | HVAC system with sustainability and emissions controls |
US10746429B2 (en) * | 2018-10-25 | 2020-08-18 | Consumer 2.0 Inc. | System and method for controlling temperature in a building |
US10875497B2 (en) | 2018-10-31 | 2020-12-29 | Thermo King Corporation | Drive off protection system and method for preventing drive off |
US11059352B2 (en) | 2018-10-31 | 2021-07-13 | Thermo King Corporation | Methods and systems for augmenting a vehicle powered transport climate control system |
US20200149771A1 (en) | 2018-11-09 | 2020-05-14 | Johnson Controls Technology Company | Hvac system with thermostat gateway |
WO2020097550A2 (en) | 2018-11-09 | 2020-05-14 | Johnson Controls Technology Company | Hvac system with headless thermostat |
DE102018131790B4 (en) * | 2018-11-15 | 2020-12-17 | Seifert Systems Ltd. | Arrangement for regulating the temperature and / or humidity |
CN111200919B (en) * | 2018-11-19 | 2022-04-01 | 中国移动通信集团内蒙古有限公司 | Cold source BA control system and data center |
JP7397341B2 (en) * | 2018-11-22 | 2023-12-13 | ダイキン工業株式会社 | air conditioning system |
CA184851S (en) * | 2018-11-28 | 2020-01-08 | Distech Controls Sas | Remote control |
CA184850S (en) * | 2018-11-28 | 2020-01-08 | Distech Controls Sas | Remote control with wall support |
WO2020112981A1 (en) | 2018-11-29 | 2020-06-04 | Broan-Nutone Llc | Smart indoor air venting system |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
KR102644957B1 (en) * | 2018-12-31 | 2024-03-08 | 삼성전자주식회사 | Electronic apparatus and control method thereof |
US11993131B2 (en) | 2018-12-31 | 2024-05-28 | Thermo King Llc | Methods and systems for providing feedback for a transport climate control system |
EP3906173B1 (en) | 2018-12-31 | 2024-05-22 | Thermo King LLC | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system |
US12017505B2 (en) | 2018-12-31 | 2024-06-25 | Thermo King Llc | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system using external data |
US11072321B2 (en) | 2018-12-31 | 2021-07-27 | Thermo King Corporation | Systems and methods for smart load shedding of a transport vehicle while in transit |
WO2020142061A1 (en) | 2018-12-31 | 2020-07-09 | Thermo King Corporation | Methods and systems for notifying and mitigating a suboptimal event occurring in a transport climate control system |
USD927439S1 (en) * | 2019-01-07 | 2021-08-10 | Whirlpool Corporation | Display appliance |
US11682202B2 (en) | 2019-01-10 | 2023-06-20 | State Farm Mutual Automobile Insurance Company | Catastrophe analysis via realtime windspeed and exposure visualization |
US11761660B2 (en) | 2019-01-30 | 2023-09-19 | Johnson Controls Tyco IP Holdings LLP | Building control system with feedback and feedforward total energy flow compensation |
GB2581137B (en) * | 2019-01-30 | 2021-03-10 | Lightfi Ltd | Automation system |
US11815274B2 (en) * | 2019-02-15 | 2023-11-14 | Warmboard, Inc. | Line voltage powered thermostat with wireless communication |
US11810183B1 (en) | 2019-02-19 | 2023-11-07 | United Services Automobile Association (Usaa) | Systems and methods for asset sharing using distributed ledger techniques |
WO2020168460A1 (en) * | 2019-02-19 | 2020-08-27 | Johnson Controls Technology Company | Thermostat with detachable control panel |
US20200274931A1 (en) * | 2019-02-27 | 2020-08-27 | Asahi Kasei Kabushiki Kaisha | Device management apparatus and system for remotely managing internet of things device |
US11042947B1 (en) * | 2019-03-19 | 2021-06-22 | Gwen C. Banas | System for matching and assembling a water leak detection system |
JP7324355B2 (en) * | 2019-03-25 | 2023-08-09 | 旭化成エレクトロニクス株式会社 | Control devices, control systems and opening/closing members |
JP7171483B2 (en) * | 2019-03-25 | 2022-11-15 | 旭化成エレクトロニクス株式会社 | Control devices, control systems and opening/closing members |
US11709920B2 (en) | 2019-04-29 | 2023-07-25 | Johnson Controls Tyco IP Holdings LLP | Facility management systems and methods thereof |
JP6856090B2 (en) * | 2019-06-07 | 2021-04-07 | ダイキン工業株式会社 | Equipment management system |
US11592794B2 (en) * | 2019-06-18 | 2023-02-28 | Carrier Corporation | Mobile application for smart systems interaction |
US11714393B2 (en) | 2019-07-12 | 2023-08-01 | Johnson Controls Tyco IP Holdings LLP | Building control system with load curtailment optimization |
US11274842B2 (en) | 2019-07-12 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for optimizing ventilation, filtration, and conditioning schemes for buildings |
US20210011443A1 (en) * | 2019-07-12 | 2021-01-14 | Johnson Controls Technology Company | Heat mapping system |
KR20190091231A (en) * | 2019-07-16 | 2019-08-05 | 엘지전자 주식회사 | Air conditioner and augmented reality apparatus for infroming indoor air condition, and controlling method therefor |
US11098921B2 (en) * | 2019-07-18 | 2021-08-24 | Johnson Controls Tyco IP Holdings LLP | Building management system with automatic comfort constraint adjustment |
CN110392475B (en) * | 2019-07-19 | 2021-07-16 | 青岛海尔科技有限公司 | Method and device for adjusting area corresponding to intelligent equipment based on Internet of things |
US10985511B2 (en) | 2019-09-09 | 2021-04-20 | Thermo King Corporation | Optimized power cord for transferring power to a transport climate control system |
US11420495B2 (en) | 2019-09-09 | 2022-08-23 | Thermo King Corporation | Interface system for connecting a vehicle and a transport climate control system |
US11214118B2 (en) | 2019-09-09 | 2022-01-04 | Thermo King Corporation | Demand-side power distribution management for a plurality of transport climate control systems |
US11135894B2 (en) | 2019-09-09 | 2021-10-05 | Thermo King Corporation | System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system |
CN112467720A (en) | 2019-09-09 | 2021-03-09 | 冷王公司 | Optimized power distribution for a transport climate control system between one or more power supply stations |
US11458802B2 (en) | 2019-09-09 | 2022-10-04 | Thermo King Corporation | Optimized power management for a transport climate control energy source |
US11203262B2 (en) | 2019-09-09 | 2021-12-21 | Thermo King Corporation | Transport climate control system with an accessory power distribution unit for managing transport climate control loads |
EP3789221B1 (en) | 2019-09-09 | 2024-06-26 | Thermo King LLC | Prioritized power delivery for facilitating transport climate control |
US11376922B2 (en) | 2019-09-09 | 2022-07-05 | Thermo King Corporation | Transport climate control system with a self-configuring matrix power converter |
US11687318B1 (en) | 2019-10-11 | 2023-06-27 | State Farm Mutual Automobile Insurance Company | Using voice input to control a user interface within an application |
USD944660S1 (en) | 2019-12-02 | 2022-03-01 | Johnson Controls Tyco IP Holdings LLP | Thermostat with trim plate |
US11441804B2 (en) * | 2019-12-18 | 2022-09-13 | Ademco Inc. | Thermostat wire detection |
IT201900025717A1 (en) * | 2019-12-30 | 2021-06-30 | Bticino Spa | User interface module and modular group for electrical and / or home automation systems |
US11489431B2 (en) | 2019-12-30 | 2022-11-01 | Thermo King Corporation | Transport climate control system power architecture |
US11815364B2 (en) * | 2020-01-04 | 2023-11-14 | Ronald P. Clarridge | Environmental condition sensor with component diagnostics and optically communicated status |
US11402813B2 (en) * | 2020-01-06 | 2022-08-02 | Honeywell International Inc. | Wall mountable universal backplane |
US11445348B2 (en) | 2020-01-23 | 2022-09-13 | Ademco Inc. | Bluetooth perimeter extension |
US12096886B2 (en) * | 2020-02-05 | 2024-09-24 | Warmer Products, LLC | Portable heating device |
US20210254850A1 (en) * | 2020-02-13 | 2021-08-19 | Johnson Controls Technology Company | User control device with in-home monitoring |
US11734767B1 (en) | 2020-02-28 | 2023-08-22 | State Farm Mutual Automobile Insurance Company | Systems and methods for light detection and ranging (lidar) based generation of a homeowners insurance quote |
KR102149671B1 (en) * | 2020-03-06 | 2020-09-01 | 임용택 | Air purification and virus sterilization system |
US20220381467A1 (en) * | 2020-03-11 | 2022-12-01 | Mitsubishi Electric Corporation | Air Conditioning System and Training Apparatus |
US20220366507A1 (en) * | 2020-04-01 | 2022-11-17 | Shipshape Solutions, Inc. | Home Health Optimization via Connected Providers |
US11900535B1 (en) | 2020-04-27 | 2024-02-13 | State Farm Mutual Automobile Insurance Company | Systems and methods for a 3D model for visualization of landscape design |
US11385665B2 (en) * | 2020-05-06 | 2022-07-12 | Computime Ltd. | Temperature compensation for an electronic thermostat |
CN111679635A (en) * | 2020-05-07 | 2020-09-18 | 重庆市全城建筑设计有限公司 | Indoor multifunctional online control system |
CN113781692A (en) * | 2020-06-10 | 2021-12-10 | 骊住株式会社 | Space management device |
US11289089B1 (en) * | 2020-06-23 | 2022-03-29 | Amazon Technologies, Inc. | Audio based projector control |
US11280510B2 (en) | 2020-08-12 | 2022-03-22 | Anacove, Llc | Climate controller that determines occupancy status from barometric data |
USD1013779S1 (en) | 2020-08-19 | 2024-02-06 | ACCO Brands Corporation | Office panel with dry erase surface |
US11861137B2 (en) | 2020-09-09 | 2024-01-02 | State Farm Mutual Automobile Insurance Company | Vehicular incident reenactment using three-dimensional (3D) representations |
CN112361573B (en) * | 2020-11-19 | 2022-02-08 | 珠海格力电器股份有限公司 | Air deflector assembly with display panel, air conditioner and control method |
US12092375B2 (en) * | 2021-02-04 | 2024-09-17 | Lee Wa Wong | Central air conditioning and heat pump system with cooling arrangement |
US11761447B1 (en) | 2021-02-12 | 2023-09-19 | State Farm Mutual Automobile Insurance Company | Adaptive learning system for improving sump pump control |
US20230032735A1 (en) * | 2021-07-30 | 2023-02-02 | Johnson Controls Tyco IP Holdings LLP | Next generation touchless building controls |
US20230066603A1 (en) * | 2021-08-27 | 2023-03-02 | Daniel B Walsdorf | Wide Input-Range Connected Thermostat |
US20230083359A1 (en) * | 2021-09-15 | 2023-03-16 | Ubicquia, Inc. | Electronic apparatus with airflow structure and moisture intrusion mitigation |
US12007240B1 (en) | 2022-03-03 | 2024-06-11 | State Farm Mutual Automobile Insurance Company | Blockchain rideshare data aggregator solution |
US12002107B2 (en) | 2022-04-20 | 2024-06-04 | State Farm Mutual Automobile Insurance Company | Systems and methods for generating a home score and modifications for a user |
US12002108B2 (en) | 2022-04-20 | 2024-06-04 | State Farm Mutual Automobile Insurance Company | Systems and methods for generating a home score and modifications for a user |
KR102474526B1 (en) * | 2022-05-03 | 2022-12-07 | 한국광기술원 | Ventilation Apparatus Capable of Removing Contaminants |
USD1045865S1 (en) | 2022-10-06 | 2024-10-08 | Paul Harris | Touch panel control interface |
DE102022134087A1 (en) | 2022-12-20 | 2024-06-20 | Albrecht Jung Gmbh & Co. Kg | Procedure for operating a presence detector |
USD1044813S1 (en) | 2022-12-30 | 2024-10-01 | Aurora Multimedia Corp. | Touch screen control panel |
USD1025062S1 (en) * | 2022-12-30 | 2024-04-30 | Aurora Multimedia Corp. | Touch panel control interface |
US12118206B2 (en) | 2023-01-04 | 2024-10-15 | Aurora Multimedia Corp. | Interactive workspace integration system and method |
Family Cites Families (539)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4107464A (en) | 1975-08-27 | 1978-08-15 | Lynch John H | Alarm communications system |
US4150718A (en) * | 1977-10-07 | 1979-04-24 | Honeywell Inc. | Replacement thermostat adapter wall plate |
US4873649A (en) | 1988-06-10 | 1989-10-10 | Honeywell Inc. | Method for operating variable speed heat pumps and air conditioners |
US4942613A (en) | 1988-12-02 | 1990-07-17 | Heil-Quaker Corporation | Service thermostat |
US5062276A (en) | 1990-09-20 | 1991-11-05 | Electric Power Research Institute, Inc. | Humidity control for variable speed air conditioner |
US5052186A (en) | 1990-09-21 | 1991-10-01 | Electric Power Research Institute, Inc. | Control of outdoor air source water heating using variable-speed heat pump |
JP3493842B2 (en) | 1995-10-31 | 2004-02-03 | 三菱電機株式会社 | Air conditioner |
US5819840A (en) | 1995-12-15 | 1998-10-13 | Don R. Wilson | Thermostat with occupancy detector |
US5797729A (en) | 1996-02-16 | 1998-08-25 | Aspen Systems, Inc. | Controlling multiple variable speed compressors |
JPH10276483A (en) | 1997-03-28 | 1998-10-13 | Misawa Homes Co Ltd | Voice control system for building facility |
US6121885A (en) | 1998-04-10 | 2000-09-19 | Masone; Reagan | Combination smoke detector and severe weather warning device |
US6169937B1 (en) | 1998-04-14 | 2001-01-02 | Honeywell International Inc. | Subbase programmable control system |
US6227961B1 (en) | 1998-05-21 | 2001-05-08 | General Electric Company | HVAC custom control system |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US6164374A (en) | 1998-07-02 | 2000-12-26 | Emerson Electric Co. | Thermostat having a multiple color signal capability with single indicator opening |
US7415102B2 (en) | 1999-01-22 | 2008-08-19 | Pointset Corporation | Method and apparatus for setting programmable features of an appliance |
US6351693B1 (en) | 1999-01-22 | 2002-02-26 | Honeywell International Inc. | Computerized system for controlling thermostats |
JP2001027455A (en) | 1999-05-13 | 2001-01-30 | Denso Corp | Heat pump air conditioner |
US6310287B1 (en) * | 1999-06-29 | 2001-10-30 | Tapco International Corporation | Electrical block |
US6435418B1 (en) | 2000-01-25 | 2002-08-20 | Emerson Electric Co. | Thermostat having an illuminated keypad and display |
US6260765B1 (en) | 2000-02-25 | 2001-07-17 | American Secure Care, Llc | Remotely controllable thermostat |
US6686838B1 (en) | 2000-09-06 | 2004-02-03 | Xanboo Inc. | Systems and methods for the automatic registration of devices |
US6912429B1 (en) | 2000-10-19 | 2005-06-28 | Destiny Networks, Inc. | Home automation system and method |
US6595430B1 (en) | 2000-10-26 | 2003-07-22 | Honeywell International Inc. | Graphical user interface system for a thermal comfort controller |
US6557771B2 (en) | 2000-12-21 | 2003-05-06 | Honeywell International Inc. | Integrated temperature and humidity controller with priority for humidity temperature control |
US6478233B1 (en) | 2000-12-29 | 2002-11-12 | Honeywell International Inc. | Thermal comfort controller having an integral energy savings estimator |
US6622088B2 (en) | 2001-03-02 | 2003-09-16 | Hill-Rom Services, Inc. | Ambulatory navigation system |
US6874691B1 (en) | 2001-04-10 | 2005-04-05 | Excel Energy Technologies, Inc. | System and method for energy management |
US20030034897A1 (en) | 2001-08-20 | 2003-02-20 | Shamoon Charles G. | Thermostat and remote control apparatus |
US20030034898A1 (en) | 2001-08-20 | 2003-02-20 | Shamoon Charles G. | Thermostat and remote control system and method |
US6993417B2 (en) | 2001-09-10 | 2006-01-31 | Osann Jr Robert | System for energy sensing analysis and feedback |
US6487869B1 (en) | 2001-11-06 | 2002-12-03 | Themo King Corporation | Compressor capacity control system |
US6641054B2 (en) * | 2002-01-23 | 2003-11-04 | Randall L. Morey | Projection display thermostat |
US6824069B2 (en) | 2002-01-30 | 2004-11-30 | Howard B. Rosen | Programmable thermostat system employing a touch screen unit for intuitive interactive interface with a user |
US6786421B2 (en) | 2002-01-30 | 2004-09-07 | Howard Rosen | Programmable thermostat including a feature for providing a running total for the cost of energy consumed during a given period for heating and/or cooling a conditioned space |
US6726113B2 (en) | 2002-02-25 | 2004-04-27 | Carrier Corporation | Temperature control strategy utilizing neural network processing of occupancy and activity level sensing |
US20030177012A1 (en) | 2002-03-13 | 2003-09-18 | Brett Drennan | Voice activated thermostat |
US7383158B2 (en) | 2002-04-16 | 2008-06-03 | Trane International Inc. | HVAC service tool with internet capability |
BE1015088A5 (en) | 2002-09-03 | 2004-09-07 | Atlas Copco Airpower Nv | Improvements in compressors. |
US7356139B2 (en) | 2002-12-31 | 2008-04-08 | At&T Delaware Intellectual Property, Inc. | Computer telephony integration (CTI) complete hospitality contact center |
US6726112B1 (en) | 2003-03-07 | 2004-04-27 | Joseph Ho | Illuminating thermostat |
US7146253B2 (en) | 2003-03-24 | 2006-12-05 | Smartway Solutions, Inc. | Device and method for interactive programming of a thermostat |
US7113086B2 (en) | 2003-04-07 | 2006-09-26 | Altec Energy Systems | Systems and methods for monitoring room conditions to improve occupant performance |
US20040262410A1 (en) | 2003-04-11 | 2004-12-30 | Hull Gerry G. | Graphical thermostat and sensor |
US7050026B1 (en) | 2003-05-15 | 2006-05-23 | Howard Rosen | Reverse images in a dot matrix LCD for an environmental control device |
US7083109B2 (en) | 2003-08-18 | 2006-08-01 | Honeywell International Inc. | Thermostat having modulated and non-modulated provisions |
US6851621B1 (en) | 2003-08-18 | 2005-02-08 | Honeywell International Inc. | PDA diagnosis of thermostats |
US20050270151A1 (en) | 2003-08-22 | 2005-12-08 | Honeywell International, Inc. | RF interconnected HVAC system and security system |
US20050040943A1 (en) | 2003-08-22 | 2005-02-24 | Honeywell International, Inc. | RF interconnected HVAC system and security system |
US6888441B2 (en) | 2003-08-28 | 2005-05-03 | Emerson Electric Co. | Apparatus adapted to be releasably connectable to the sub base of a thermostat |
US7156318B1 (en) | 2003-09-03 | 2007-01-02 | Howard Rosen | Programmable thermostat incorporating a liquid crystal display selectively presenting adaptable system menus including changeable interactive virtual buttons |
US6995518B2 (en) | 2003-10-03 | 2006-02-07 | Honeywell International Inc. | System, apparatus, and method for driving light emitting diodes in low voltage circuits |
US20050083168A1 (en) | 2003-10-17 | 2005-04-21 | Breitenbach John M. | Modular thermostat system |
US6810307B1 (en) | 2003-11-14 | 2004-10-26 | Honeywell International, Inc. | Thermostat having a temperature stabilized superregenerative RF receiver |
US7000849B2 (en) * | 2003-11-14 | 2006-02-21 | Ranco Incorporated Of Delaware | Thermostat with configurable service contact information and reminder timers |
US6951306B2 (en) | 2003-11-18 | 2005-10-04 | Lux Products Corporation | Thermostat having multiple mounting configurations |
US7114554B2 (en) | 2003-12-01 | 2006-10-03 | Honeywell International Inc. | Controller interface with multiple day programming |
US7225054B2 (en) | 2003-12-02 | 2007-05-29 | Honeywell International Inc. | Controller with programmable service event display mode |
US7181317B2 (en) | 2003-12-02 | 2007-02-20 | Honeywell International Inc. | Controller interface with interview programming |
US7274972B2 (en) | 2003-12-02 | 2007-09-25 | Honeywell International Inc. | Programmable controller with saving changes indication |
US8554374B2 (en) | 2003-12-02 | 2013-10-08 | Honeywell International Inc. | Thermostat with electronic image display |
US7775452B2 (en) | 2004-01-07 | 2010-08-17 | Carrier Corporation | Serial communicating HVAC system |
US7222494B2 (en) | 2004-01-07 | 2007-05-29 | Honeywell International Inc. | Adaptive intelligent circulation control methods and systems |
US7188002B2 (en) | 2004-01-08 | 2007-03-06 | Maple Chase Company | Appliance diagnostic display apparatus and network incorporating same |
US7469550B2 (en) | 2004-01-08 | 2008-12-30 | Robertshaw Controls Company | System and method for controlling appliances and thermostat for use therewith |
US7044397B2 (en) | 2004-01-16 | 2006-05-16 | Honeywell Int Inc | Fresh air ventilation control methods and systems |
US7377450B2 (en) | 2004-01-20 | 2008-05-27 | Carrier Corporation | Control of multi-zone and multi-stage HVAC system |
US7212887B2 (en) | 2004-01-20 | 2007-05-01 | Carrier Corporation | Service and diagnostic tool for HVAC systems |
US7308384B2 (en) | 2004-01-20 | 2007-12-11 | Carrier Corporation | Ordered record of system-wide fault in an HVAC system |
DE102004005962A1 (en) * | 2004-02-06 | 2005-08-25 | Angelika Berthold | Building automation system has a central control system that is joined to supply unit via signal lines so that the supply units can be individually controlled by the central control system |
ITMC20040028A1 (en) * | 2004-02-26 | 2004-05-26 | Eclettis S R L | WIRE WIRE SUPPORT DEVICE FOR ELECTRICAL OR ELECTRONIC COMPONENTS. |
US7140551B2 (en) | 2004-03-01 | 2006-11-28 | Honeywell International Inc. | HVAC controller |
US20050194456A1 (en) | 2004-03-02 | 2005-09-08 | Tessier Patrick C. | Wireless controller with gateway |
US20050195757A1 (en) | 2004-03-02 | 2005-09-08 | Kidder Kenneth B. | Wireless association approach and arrangement therefor |
US7167079B2 (en) | 2004-03-24 | 2007-01-23 | Carrier Corporation | Method of setting the output power of a pager to aid in the installation of a wireless system |
US20050270735A1 (en) | 2004-06-07 | 2005-12-08 | Che-Chih Chen | Remote control holding unit |
US7159790B2 (en) | 2004-06-22 | 2007-01-09 | Honeywell International Inc. | Thermostat with offset drive |
US7159789B2 (en) | 2004-06-22 | 2007-01-09 | Honeywell International Inc. | Thermostat with mechanical user interface |
US7099748B2 (en) | 2004-06-29 | 2006-08-29 | York International Corp. | HVAC start-up control system and method |
US7275377B2 (en) | 2004-08-11 | 2007-10-02 | Lawrence Kates | Method and apparatus for monitoring refrigerant-cycle systems |
WO2006022838A1 (en) | 2004-08-11 | 2006-03-02 | Carrier Corporation | Improved power stealing for a thermostat using a triac with fet control |
US20060038025A1 (en) | 2004-08-20 | 2006-02-23 | Lee Wilfred K | Wall thermostat kit to improve overall energy efficiency |
US7156317B1 (en) | 2004-09-09 | 2007-01-02 | Braeburn Systems Llc | Recirculating fan thermostat |
US7287709B2 (en) | 2004-09-21 | 2007-10-30 | Carrier Corporation | Configurable multi-level thermostat backlighting |
US8033479B2 (en) | 2004-10-06 | 2011-10-11 | Lawrence Kates | Electronically-controlled register vent for zone heating and cooling |
JP2008516179A (en) | 2004-10-06 | 2008-05-15 | ローレンス ケーツ | Section heating and cooling system and method |
US7299996B2 (en) | 2004-11-12 | 2007-11-27 | American Standard International Inc. | Thermostat with energy saving backlit switch actuators and visual display |
US7058477B1 (en) | 2004-11-23 | 2006-06-06 | Howard Rosen | Thermostat system with remote data averaging |
US20060113398A1 (en) | 2004-11-30 | 2006-06-01 | Ranco Incorporated Of Delaware | Temperature control with induced airflow |
US7261243B2 (en) | 2004-12-22 | 2007-08-28 | Emerson Electric Co. | Thermostat responsive to inputs from external devices |
US8689572B2 (en) | 2004-12-22 | 2014-04-08 | Emerson Electric Co. | Climate control system including responsive controllers |
US7802618B2 (en) | 2005-01-19 | 2010-09-28 | Tim Simon, Inc. | Thermostat operation method and apparatus |
US7832652B2 (en) | 2005-01-31 | 2010-11-16 | Honeywell International Inc. | HVAC controller with side removable battery holder |
US20060265489A1 (en) | 2005-02-01 | 2006-11-23 | Moore James F | Disaster management using an enhanced syndication platform |
US8550368B2 (en) | 2005-02-23 | 2013-10-08 | Emerson Electric Co. | Interactive control system for an HVAC system |
US7296426B2 (en) | 2005-02-23 | 2007-11-20 | Emerson Electric Co. | Interactive control system for an HVAC system |
US7592713B2 (en) | 2005-02-25 | 2009-09-22 | Marathon Coach, Inc. | Electrical system for controlling coach resources |
US20060192022A1 (en) | 2005-02-28 | 2006-08-31 | Barton Eric J | HVAC controller with removable instruction card |
US7861941B2 (en) | 2005-02-28 | 2011-01-04 | Honeywell International Inc. | Automatic thermostat schedule/program selector system |
US20110128378A1 (en) | 2005-03-16 | 2011-06-02 | Reza Raji | Modular Electronic Display Platform |
US7716937B2 (en) | 2005-03-17 | 2010-05-18 | Electrolux Home Products, Inc. | Electronic refrigeration control system including a variable speed compressor |
US7584897B2 (en) | 2005-03-31 | 2009-09-08 | Honeywell International Inc. | Controller system user interface |
JP4634207B2 (en) | 2005-04-12 | 2011-02-16 | 富士通株式会社 | Disaster prevention information management system |
US20060260334A1 (en) | 2005-05-17 | 2006-11-23 | Carey Steven L | Thermostat and method for operating in either a normal or dehumidification mode |
US7522063B2 (en) | 2005-07-13 | 2009-04-21 | Ranco Incorporated Of Delaware | Combination thermostat and warning device with remote sensor monitoring |
US7402780B2 (en) | 2005-07-29 | 2008-07-22 | Emerson Electric Co. | Thermostat for a heat pump or conventional heating system |
US8880047B2 (en) | 2005-08-03 | 2014-11-04 | Jeffrey C. Konicek | Realtime, location-based cell phone enhancements, uses, and applications |
US7556207B2 (en) | 2005-08-04 | 2009-07-07 | Emerson Electric Co. | Thermostat with touch membrane feature |
US7475558B2 (en) | 2005-08-19 | 2009-01-13 | Emerson Electric Co. | Control of a heating and cooling system for a multi-level space |
US7624931B2 (en) | 2005-08-31 | 2009-12-01 | Ranco Incorporated Of Delaware | Adjustable display resolution for thermostat |
US20070050732A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Proportional scroll bar for menu driven thermostat |
US20070045431A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Occupancy-based zoning climate control system and method |
US20070057079A1 (en) | 2005-09-13 | 2007-03-15 | Emerson Electric Co. | Thermostat capable of displaying downloaded images |
US7731096B2 (en) | 2005-11-02 | 2010-06-08 | Emerson Electric Co. | Controller for two-stage heat source usable with single and two stage thermostats |
US20070114295A1 (en) | 2005-11-22 | 2007-05-24 | Robertshaw Controls Company | Wireless thermostat |
US7434744B2 (en) | 2005-12-12 | 2008-10-14 | Emerson Electric Co. | Low voltage power line communication for climate control system |
US7638739B2 (en) | 2005-12-15 | 2009-12-29 | Emerson Electric Co. | Thermostat having a discardable protective cover |
US7614567B2 (en) | 2006-01-10 | 2009-11-10 | Ranco Incorporated of Deleware | Rotatable thermostat |
US7726581B2 (en) | 2006-01-12 | 2010-06-01 | Honeywell International Inc. | HVAC controller |
JP2007218499A (en) | 2006-02-16 | 2007-08-30 | Hitachi Ltd | Air conditioner |
US7317970B2 (en) | 2006-03-02 | 2008-01-08 | Siemens Building Technologies, Inc. | Remote sensing for building automation |
US20070228183A1 (en) | 2006-03-28 | 2007-10-04 | Kennedy Kimberly A | Thermostat |
US20070228182A1 (en) | 2006-03-31 | 2007-10-04 | Ranco Incorporated Of Delaware | Thermostat with single button access to a menu of commonly used functions |
US20070241203A1 (en) | 2006-04-14 | 2007-10-18 | Ranco Inc. Of Delaware | Management of a thermostat's power consumption |
US7575179B2 (en) | 2006-04-22 | 2009-08-18 | International Contols And Measurments Corp. | Reconfigurable programmable thermostat |
US7667163B2 (en) | 2006-07-10 | 2010-02-23 | Ranco Incorporated Of Delaware | Thermostat with adjustable color for aesthetics and readability |
US7633743B2 (en) | 2006-07-14 | 2009-12-15 | Honeywell International Inc. | Wall mounted controller assembly |
US7765826B2 (en) | 2006-08-01 | 2010-08-03 | Honeywell International Inc. | Selective autodiscovery system |
US7740184B2 (en) | 2006-08-03 | 2010-06-22 | Honeywell International Inc. | Methods of dehumidification control in unoccupied spaces |
US20080048046A1 (en) | 2006-08-24 | 2008-02-28 | Ranco Inc. Of Delaware | Networked appliance information display apparatus and network incorporating same |
US20080054084A1 (en) | 2006-08-29 | 2008-03-06 | American Standard International Inc. | Two-wire power and communication link for a thermostat |
US7832221B2 (en) | 2006-10-20 | 2010-11-16 | Ford Global Technologies, Llc | Vehicle compressor control system and method |
US8089032B2 (en) | 2006-10-27 | 2012-01-03 | Honeywell International Inc. | Wall mount electronic controller |
US7571865B2 (en) | 2006-10-31 | 2009-08-11 | Tonerhead, Inc. | Wireless temperature control system |
US20130310418A1 (en) | 2006-11-15 | 2013-11-21 | Vertex Pharmaceuticals Incorporated | Azaindazoles useful as inhibitors of kinases |
US20080120446A1 (en) | 2006-11-17 | 2008-05-22 | Butler William P | Thermostat with usb interface |
CN200979666Y (en) * | 2006-11-30 | 2007-11-21 | 广东凌霄泵业股份有限公司 | A thermostat |
US7904830B2 (en) | 2006-11-30 | 2011-03-08 | Honeywell International Inc. | HVAC zone control panel |
US7748640B2 (en) | 2006-12-18 | 2010-07-06 | Carrier Corporation | Stackable thermostat |
JP4306726B2 (en) * | 2006-12-27 | 2009-08-05 | ソニー株式会社 | Image display device |
US7645158B2 (en) | 2006-12-29 | 2010-01-12 | Honeywell International Inc. | Terminal block and test pad for an HVAC controller |
WO2008085151A2 (en) | 2006-12-29 | 2008-07-17 | Carrier Corporation | Universal thermostat expansion port |
US8049732B2 (en) * | 2007-01-03 | 2011-11-01 | Apple Inc. | Front-end signal compensation |
US7867646B2 (en) | 2007-01-25 | 2011-01-11 | Emerson Electric, Co. | Thermostat with opening portion for accessing batteries field |
US20080182506A1 (en) * | 2007-01-29 | 2008-07-31 | Mark Jackson | Method for controlling multiple indoor air quality parameters |
US7784704B2 (en) | 2007-02-09 | 2010-08-31 | Harter Robert J | Self-programmable thermostat |
CN101652732B (en) | 2007-02-13 | 2011-06-15 | 开利公司 | Lifestyle activity choice comfort settings |
US7904209B2 (en) | 2007-03-01 | 2011-03-08 | Syracuse University | Open web services-based indoor climate control system |
US8695887B2 (en) | 2007-03-06 | 2014-04-15 | Trane International Inc. | Temperature compensation method for thermostats |
US8115624B2 (en) | 2007-03-06 | 2012-02-14 | American Messagng Services, LLC | System, method, and kit for remotely monitoring an individual with a sensor-integrated picture frame |
US20080221714A1 (en) | 2007-03-07 | 2008-09-11 | Optimal Licensing Corporation | System and method for infrastructure reporting |
US20080227430A1 (en) | 2007-03-15 | 2008-09-18 | Polk James M | Adding Emergency Numbers to a Mobile Address Book |
US7793510B2 (en) | 2007-04-30 | 2010-09-14 | Emerson Electric Co. | Two mode thermostat with set-back temperature and humidity set-point feature |
US8874159B2 (en) | 2007-05-10 | 2014-10-28 | Cisco Technology, Inc. | Method and system for handling dynamic incidents |
US20080294274A1 (en) | 2007-05-22 | 2008-11-27 | Honeywell International Inc. | Special purpose controller interface with breadcrumb navigation support |
US20080290183A1 (en) | 2007-05-22 | 2008-11-27 | Honeywell International Inc. | Special purpose controller interface with instruction area |
US20080289347A1 (en) | 2007-05-22 | 2008-11-27 | Kadle Prasad S | Control method for a variable displacement refrigerant compressor in a high-efficiency AC system |
US20080295030A1 (en) | 2007-05-22 | 2008-11-27 | Honeywell International Inc. | User interface for special purpose controller |
US7774102B2 (en) | 2007-06-22 | 2010-08-10 | Emerson Electric Co. | System including interactive controllers for controlling operation of climate control system |
US7845576B2 (en) | 2007-06-28 | 2010-12-07 | Honeywell International Inc. | Thermostat with fixed segment display having both fixed segment icons and a variable text display capacity |
CN101689058A (en) | 2007-06-28 | 2010-03-31 | 霍尼韦尔国际公司 | Has the thermostat that on display, transmits message capability |
US8091794B2 (en) | 2007-06-28 | 2012-01-10 | Honeywell International Inc. | Thermostat with usage history |
US7954726B2 (en) | 2007-06-28 | 2011-06-07 | Honeywell International Inc. | Thermostat with utility messaging |
US9182141B2 (en) | 2007-08-03 | 2015-11-10 | Honeywell International Inc. | Fan coil thermostat with activity sensing |
US7908117B2 (en) | 2007-08-03 | 2011-03-15 | Ecofactor, Inc. | System and method for using a network of thermostats as tool to verify peak demand reduction |
US9074784B2 (en) | 2007-08-03 | 2015-07-07 | Honeywell International Inc. | Fan coil thermostat with fan ramping |
US7963454B2 (en) | 2007-08-27 | 2011-06-21 | Honeywell International Inc. | Remote HVAC control with remote sensor wiring diagram generation |
US8196185B2 (en) | 2007-08-27 | 2012-06-05 | Honeywell International Inc. | Remote HVAC control with a customizable overview display |
WO2009036764A2 (en) | 2007-09-20 | 2009-03-26 | Danfoss A/S | Distance regulated energy consuming devices |
US8456293B1 (en) | 2007-10-22 | 2013-06-04 | Alarm.Com Incorporated | Providing electronic content based on sensor data |
CA2633200C (en) | 2007-10-29 | 2011-01-25 | Eebeeyess Technologies Inc. | Programmable thermostat with preemptive setpoint adaptation based upon detection of occupancy |
WO2009058127A1 (en) | 2007-10-30 | 2009-05-07 | Henry Lewis Steinberg | Dwellings climate control management system and method |
WO2009062120A1 (en) | 2007-11-07 | 2009-05-14 | Skinit | Customizing print content |
US8289226B2 (en) | 2007-11-28 | 2012-10-16 | Honeywell International Inc. | Antenna for a building controller |
US8276829B2 (en) | 2007-11-30 | 2012-10-02 | Honeywell International Inc. | Building control system with remote control unit and methods of operation |
US20090140065A1 (en) | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Hvac controller with save a wire terminal |
US8346396B2 (en) | 2007-11-30 | 2013-01-01 | Honeywell International Inc. | HVAC controller with parameter clustering |
US8224491B2 (en) | 2007-11-30 | 2012-07-17 | Honeywell International Inc. | Portable wireless remote control unit for use with zoned HVAC system |
US9335769B2 (en) | 2007-12-04 | 2016-05-10 | Honeywell International Inc. | System for determining ambient temperature |
US20090144015A1 (en) | 2007-12-04 | 2009-06-04 | Creative Inspirations By Meryle, Llp | Apparatus And Method for Monitoring A Heating System |
US9285134B2 (en) * | 2007-12-14 | 2016-03-15 | Honeywell International Inc. | Configurable wall module system |
CA2633121C (en) | 2008-03-07 | 2011-08-16 | Eebeeyess Technologies Inc. | Simplified user interface and graduated response in a programmable baseboard thermostat incorporating an occupancy sensor |
FR2929691B1 (en) | 2008-04-03 | 2010-05-28 | Muller & Cie Soc | METHOD FOR AUTO-BALANCING A HEATING DEVICE |
US20090251422A1 (en) | 2008-04-08 | 2009-10-08 | Honeywell International Inc. | Method and system for enhancing interaction of a virtual keyboard provided through a small touch screen |
US20090276096A1 (en) | 2008-05-02 | 2009-11-05 | Carrier Corporation | Device and method for controlling a display using a virtual display buffer |
WO2009151416A1 (en) | 2008-06-10 | 2009-12-17 | Millennial Net, Inc. | System and method for energy management |
US8010237B2 (en) | 2008-07-07 | 2011-08-30 | Ecofactor, Inc. | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
US7992794B2 (en) | 2008-07-10 | 2011-08-09 | Honeywell International Inc. | Backup control for HVAC system |
US8180492B2 (en) | 2008-07-14 | 2012-05-15 | Ecofactor, Inc. | System and method for using a networked electronic device as an occupancy sensor for an energy management system |
US7918406B2 (en) | 2008-07-22 | 2011-04-05 | Howard Rosen | Override of nonoccupancy status in a thermostat device based upon analysis of recent patterns of occupancy |
US8387891B1 (en) | 2008-07-28 | 2013-03-05 | Tim Simon, Inc. | Programmable thermostat time/temperature display and method |
US8346397B2 (en) * | 2008-09-15 | 2013-01-01 | Johnson Controls Technology Company | Airflow adjustment user interfaces |
US20100070092A1 (en) | 2008-09-16 | 2010-03-18 | Williams Furnace Company | System and method for controlling a room environment |
US8671702B1 (en) | 2008-09-16 | 2014-03-18 | Hubbell Incorporated | Recessed thermostat and cutting tool |
US8078326B2 (en) | 2008-09-19 | 2011-12-13 | Johnson Controls Technology Company | HVAC system controller configuration |
US8487634B2 (en) * | 2008-09-25 | 2013-07-16 | Enmetric Systems, Inc. | Smart electrical wire-devices and premises power management system |
US9210125B1 (en) | 2008-10-17 | 2015-12-08 | Honeywell International Inc. | System, method and apparatus for binding communication devices through common association |
US8527096B2 (en) | 2008-10-24 | 2013-09-03 | Lennox Industries Inc. | Programmable controller and a user interface for same |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8239066B2 (en) | 2008-10-27 | 2012-08-07 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8802981B2 (en) * | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US20120230661A1 (en) | 2008-11-11 | 2012-09-13 | Emerson Electric Co. | Apparatus and Method for Control of a Thermostat |
US7938336B2 (en) | 2008-11-11 | 2011-05-10 | Emerson Electric Co. | Apparatus and method for isolating a temperature sensing device in a thermostat |
US8190296B2 (en) | 2008-11-11 | 2012-05-29 | Emerson Electric Co. | Apparatus and method for control of a thermostat |
EP2366133A4 (en) | 2008-11-21 | 2014-03-12 | Trilliant Networks Inc | Methods and systems for virtual energy management display |
US8289182B2 (en) | 2008-11-21 | 2012-10-16 | Trilliant Networks, Inc. | Methods and systems for virtual energy management display |
US8442824B2 (en) | 2008-11-26 | 2013-05-14 | Nuance Communications, Inc. | Device, system, and method of liveness detection utilizing voice biometrics |
US8390473B2 (en) | 2008-12-19 | 2013-03-05 | Openpeak Inc. | System, method and apparatus for advanced utility control, monitoring and conservation |
CN201402417Y (en) | 2008-12-25 | 2010-02-10 | 上海柯耐弗电气有限公司 | Temperature controller with grounding malfunction leakage protection function |
EP2370748B1 (en) | 2008-12-30 | 2017-01-11 | Zoner Llc | Automatically balancing register for hvac systems |
US20100171889A1 (en) | 2009-01-06 | 2010-07-08 | Joseph Pantel | Weather-resistant display |
US8521122B2 (en) | 2009-01-28 | 2013-08-27 | Blackberry Limited | Mobile device user interface for displaying emergency information |
US8393550B2 (en) | 2009-01-30 | 2013-03-12 | Tim Simon, Inc. | Thermostat assembly with removable communication module and method |
US20120022709A1 (en) | 2009-02-02 | 2012-01-26 | Taylor Steven M | Energy delivery control systems and methods |
US7941294B2 (en) | 2009-02-10 | 2011-05-10 | Emerson Electric Co. | System and method for detecting fluid delivery system conditions based on motor parameters |
US8209059B2 (en) | 2009-03-13 | 2012-06-26 | Zeta Communites, Zero Energy Technology & Architecture | Thermostatic controller |
US8141791B2 (en) | 2009-03-26 | 2012-03-27 | Howard Rosen | Energy management improvement for a heating system with reduced setpoint temperature during no occupancy based upon historical sampling of room thermal response with highest power heat applied |
US9020647B2 (en) | 2009-03-27 | 2015-04-28 | Siemens Industry, Inc. | System and method for climate control set-point optimization based on individual comfort |
US20100250707A1 (en) | 2009-03-31 | 2010-09-30 | Guestspan, Llc | Electronic concierge |
US8596550B2 (en) | 2009-05-12 | 2013-12-03 | Ecofactor, Inc. | System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat |
US8350697B2 (en) | 2009-05-18 | 2013-01-08 | Alarm.Com Incorporated | Remote device control and energy monitoring by analyzing data and applying rules |
JP2011014516A (en) | 2009-07-02 | 2011-01-20 | Izumi Shoji:Kk | Outlet with sensor |
US20110006887A1 (en) | 2009-07-13 | 2011-01-13 | Kmc Controls, Inc. | Programmable Communicating Thermostat And System |
US8509954B2 (en) | 2009-08-21 | 2013-08-13 | Allure Energy, Inc. | Energy management system and method |
US8866343B2 (en) | 2009-07-30 | 2014-10-21 | Lutron Electronics Co., Inc. | Dynamic keypad for controlling energy-savings modes of a load control system |
US9838255B2 (en) | 2009-08-21 | 2017-12-05 | Samsung Electronics Co., Ltd. | Mobile demand response energy management system with proximity control |
US9209652B2 (en) | 2009-08-21 | 2015-12-08 | Allure Energy, Inc. | Mobile device with scalable map interface for zone based energy management |
US8498749B2 (en) | 2009-08-21 | 2013-07-30 | Allure Energy, Inc. | Method for zone based energy management system with scalable map interface |
US9404666B2 (en) | 2009-09-23 | 2016-08-02 | Honeywell International Inc. | Bypass humidifier with damper control |
US20160006577A1 (en) | 2009-10-08 | 2016-01-07 | Bringrr Systems, Llc | Method and device to set household parameters based on the movement of items |
US20110087988A1 (en) | 2009-10-12 | 2011-04-14 | Johnson Controls Technology Company | Graphical control elements for building management systems |
US20110088416A1 (en) | 2009-10-16 | 2011-04-21 | CoreRed, LLC | Vacuum And Freeze-Up HVAC Sensor |
US8830267B2 (en) | 2009-11-16 | 2014-09-09 | Alliance For Sustainable Energy, Llc | Augmented reality building operations tool |
US8838282B1 (en) | 2009-11-16 | 2014-09-16 | Comverge, Inc. | Method and system for providing a central controller that can communicate across heterogenous networks for reaching various energy load control devices |
US20140114706A1 (en) | 2009-11-23 | 2014-04-24 | John Ford Blakely | System and method for an automated concierge |
US20110132991A1 (en) | 2009-12-07 | 2011-06-09 | Hunter Fan Company | Thermostat |
EP2513568A4 (en) | 2009-12-16 | 2013-09-18 | Commw Scient Ind Res Org | Hvac control system and method |
US8280556B2 (en) | 2009-12-22 | 2012-10-02 | General Electric Company | Energy management of HVAC system |
US9244445B2 (en) | 2009-12-22 | 2016-01-26 | General Electric Company | Temperature control based on energy price |
US20110181412A1 (en) | 2010-01-22 | 2011-07-28 | Assa Abloy Hospitality, Inc. | Energy management and security in multi-unit facilities |
US9310994B2 (en) | 2010-02-19 | 2016-04-12 | Microsoft Technology Licensing, Llc | Use of bezel as an input mechanism |
US20110264279A1 (en) | 2010-04-23 | 2011-10-27 | Poth Robert J | HVAC control |
CN102314289A (en) | 2010-07-05 | 2012-01-11 | 深圳富泰宏精密工业有限公司 | Transparent touch keyboard |
US8456131B2 (en) | 2010-07-07 | 2013-06-04 | Hans Bukow | Smart wall plate |
US8386087B2 (en) | 2010-08-02 | 2013-02-26 | General Electric Company | Load shed system for demand response without AMI/AMR system |
US8770490B2 (en) | 2010-08-18 | 2014-07-08 | Emerson Electric Co. | Programmable thermostat |
US8090477B1 (en) | 2010-08-20 | 2012-01-03 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US20120048955A1 (en) | 2010-08-27 | 2012-03-01 | Hunter Fan Company | Thermostat |
WO2012031351A1 (en) | 2010-09-10 | 2012-03-15 | Energate Inc. | Portable information display dockable to a base thermostat |
US8843239B2 (en) | 2010-11-19 | 2014-09-23 | Nest Labs, Inc. | Methods, systems, and related architectures for managing network connected thermostats |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US9489062B2 (en) | 2010-09-14 | 2016-11-08 | Google Inc. | User interfaces for remote management and control of network-connected thermostats |
US9104211B2 (en) | 2010-11-19 | 2015-08-11 | Google Inc. | Temperature controller with model-based time to target calculation and display |
US8950686B2 (en) | 2010-11-19 | 2015-02-10 | Google Inc. | Control unit with automatic setback capability |
US8918219B2 (en) | 2010-11-19 | 2014-12-23 | Google Inc. | User friendly interface for control unit |
US9098279B2 (en) | 2010-09-14 | 2015-08-04 | Google Inc. | Methods and systems for data interchange between a network-connected thermostat and cloud-based management server |
US8950687B2 (en) | 2010-09-21 | 2015-02-10 | Honeywell International Inc. | Remote control of an HVAC system that uses a common temperature setpoint for both heat and cool modes |
US8321058B2 (en) | 2010-09-24 | 2012-11-27 | Trane International Inc. | HVAC control system having integrated CPH cycling control and deadband staging |
GB2484269A (en) * | 2010-10-01 | 2012-04-11 | Thorn Security | Mounting unit |
WO2012048184A1 (en) | 2010-10-07 | 2012-04-12 | Field Controls, Llc | Whole house ventilation system |
US20120165993A1 (en) | 2010-10-28 | 2012-06-28 | University Of Virginia Patent Foundation | Self-Programming Thermostat System, Method and Computer Program Product |
US8429566B2 (en) | 2010-11-09 | 2013-04-23 | Honeywell International Inc. | Programmable HVAC controller with cross column selection on a touch screen interface |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US8788103B2 (en) | 2011-02-24 | 2014-07-22 | Nest Labs, Inc. | Power management in energy buffered building control unit |
EP2659319A4 (en) | 2010-11-19 | 2017-07-26 | Google, Inc. | Flexible functionality partitioning within intelligent-thermostat-controlled hvac systems |
US9075419B2 (en) | 2010-11-19 | 2015-07-07 | Google Inc. | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
US8850348B2 (en) | 2010-12-31 | 2014-09-30 | Google Inc. | Dynamic device-associated feedback indicative of responsible device usage |
US9003816B2 (en) | 2010-11-19 | 2015-04-14 | Google Inc. | HVAC controller with user-friendly installation features facilitating both do-it-yourself and professional installation scenarios |
US9552002B2 (en) | 2010-11-19 | 2017-01-24 | Google Inc. | Graphical user interface for setpoint creation and modification |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
EP2641068A4 (en) | 2010-11-19 | 2017-04-19 | Google, Inc. | Thermostat with integrated sensing systems |
US9714772B2 (en) | 2010-11-19 | 2017-07-25 | Google Inc. | HVAC controller configurations that compensate for heating caused by direct sunlight |
US10241527B2 (en) | 2010-11-19 | 2019-03-26 | Google Llc | Thermostat graphical user interface |
US8195313B1 (en) | 2010-11-19 | 2012-06-05 | Nest Labs, Inc. | Thermostat user interface |
US9092039B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US9448567B2 (en) | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US9851728B2 (en) | 2010-12-31 | 2017-12-26 | Google Inc. | Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions |
US20120232969A1 (en) | 2010-12-31 | 2012-09-13 | Nest Labs, Inc. | Systems and methods for updating climate control algorithms |
US8690074B2 (en) | 2010-12-31 | 2014-04-08 | Braeburn Systems Llc | Switch for multi function control of a thermostat |
US9342082B2 (en) | 2010-12-31 | 2016-05-17 | Google Inc. | Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform |
US20120172027A1 (en) | 2011-01-03 | 2012-07-05 | Mani Partheesh | Use of geofences for location-based activation and control of services |
US20120179727A1 (en) | 2011-01-07 | 2012-07-12 | Esser Marla J | Interactive home manual with networked database |
US8644009B2 (en) | 2011-01-13 | 2014-02-04 | Emerson Electric Co. | Thermostat with interchangeable insert |
US8560127B2 (en) | 2011-01-13 | 2013-10-15 | Honeywell International Inc. | HVAC control with comfort/economy management |
US20120193437A1 (en) | 2011-01-31 | 2012-08-02 | Tpi Corporation | Wireless thermostat adapter system |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8944338B2 (en) | 2011-02-24 | 2015-02-03 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
CN103597292B (en) | 2011-02-28 | 2016-05-18 | 艾默生电气公司 | For the heating of building, surveillance and the supervision method of heating ventilation and air-conditioning HVAC system |
US8538588B2 (en) | 2011-02-28 | 2013-09-17 | Honeywell International Inc. | Method and apparatus for configuring scheduling on a wall module |
US8517088B2 (en) | 2011-03-10 | 2013-08-27 | Braeburn Systems, Llc | Rapid programming of thermostat with multiple programming mode conditions |
US9213342B2 (en) | 2011-03-28 | 2015-12-15 | Emerson Electric Co. | Wireless control of a heating or cooling unit |
US20120259470A1 (en) | 2011-04-05 | 2012-10-11 | Neil Nijhawan | Building temperature control appliance recieving real time weather forecast data and method |
US9282590B2 (en) | 2011-04-15 | 2016-03-08 | Appleton Grp Llc | Self-adjusting thermostat for floor warming control systems and other applications |
CA2832211A1 (en) | 2011-05-06 | 2012-11-15 | Opower, Inc. | Method and system for selecting similar consumers |
US9154001B2 (en) | 2011-05-19 | 2015-10-06 | Honeywell International Inc. | Intuitive scheduling for energy management devices |
US20120303165A1 (en) | 2011-05-23 | 2012-11-29 | Lennox Industries Inc. | Control system and method for both energy saving and comfort control in an air conditioning system |
US20120303828A1 (en) | 2011-05-26 | 2012-11-29 | Digi International Inc. | Cloud enabled virtual gateway |
US20120298763A1 (en) | 2011-05-26 | 2012-11-29 | Digi International Inc. | Distributed networked thermostat system and method |
US8718826B2 (en) | 2011-06-01 | 2014-05-06 | Emerson Electric Co. | System for remote control of a condition at a site |
US9300138B2 (en) | 2011-06-07 | 2016-03-29 | Fujitsu Limited | System and method for managing power consumption |
CN202126052U (en) * | 2011-06-10 | 2012-01-25 | 李金洲 | Pallet installation structure of temperature controller of air conditioner |
US9793962B2 (en) | 2011-06-10 | 2017-10-17 | Amx Llc | Processing near field communications between active/passive devices and a control system |
US8613792B2 (en) | 2011-06-20 | 2013-12-24 | Honeywell International Inc. | Method and systems for setting an air filter change threshold value in an HVAC system |
US8549658B2 (en) | 2011-07-19 | 2013-10-01 | Honeywell International Inc. | Provisioning credentials for embedded wireless devices |
US9157764B2 (en) | 2011-07-27 | 2015-10-13 | Honeywell International Inc. | Devices, methods, and systems for occupancy detection |
CA2847360C (en) | 2011-08-30 | 2020-03-24 | Allure Energy, Inc. | Resource manager, system, and method for communicating resource management information for smart energy and media resources |
US20130057381A1 (en) | 2011-09-06 | 2013-03-07 | Honeywell International Inc. | Thermostat and method |
US8870087B2 (en) | 2011-09-12 | 2014-10-28 | Siemens Industry, Inc. | Thermostat control device with integrated feedback and notification capability |
WO2013052389A1 (en) | 2011-10-07 | 2013-04-11 | Nest Labs, Inc. | Hvac controller with user-friendly installation features facilitating both do-it-yourself and professional installation scenarios |
US8893032B2 (en) | 2012-03-29 | 2014-11-18 | Google Inc. | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
US9939824B2 (en) | 2011-10-07 | 2018-04-10 | Honeywell International Inc. | Thermostat with remote access feature |
US9222693B2 (en) | 2013-04-26 | 2015-12-29 | Google Inc. | Touchscreen device user interface for remote control of a thermostat |
JP2014534405A (en) | 2011-10-21 | 2014-12-18 | ネスト・ラブズ・インコーポレイテッド | User-friendly, networked learning thermostat and related systems and methods |
US8622314B2 (en) | 2011-10-21 | 2014-01-07 | Nest Labs, Inc. | Smart-home device that self-qualifies for away-state functionality |
CN103890674B (en) * | 2011-10-21 | 2016-08-24 | 谷歌公司 | Obtain voluntarily and enable the intelligent domestic device leaving status function qualification |
WO2013059671A1 (en) | 2011-10-21 | 2013-04-25 | Nest Labs, Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9077055B2 (en) | 2011-11-16 | 2015-07-07 | Tricopian, Llc | Rechargeable battery system |
US20130123991A1 (en) | 2011-11-16 | 2013-05-16 | Robert Charles Richmond | Thermostat and irrigation controller with removable user interface |
US20130138250A1 (en) | 2011-11-30 | 2013-05-30 | Lennox Industries Inc. | Intelligent comfort management using natural language processing to interface with a comfort system controller |
US20130151016A1 (en) | 2011-12-13 | 2013-06-13 | Lennox Industries Inc. | Heating, ventilation and air conditioning system user interface having a one-touch away feature and method of operation thereof |
US20130151018A1 (en) | 2011-12-13 | 2013-06-13 | Lennox Industries Inc. | Heating, ventilation and air conditioning system user interface having remote platform access application associated therewith and method of operation thereof |
US9201432B2 (en) | 2011-12-15 | 2015-12-01 | Verizon Patent And Licensing Inc. | Home monitoring settings based on weather forecast |
US20130345882A1 (en) | 2011-12-22 | 2013-12-26 | Steven David Dushane | Programmable environmental comfort controller |
CN102437727B (en) | 2011-12-26 | 2013-10-23 | 矽力杰半导体技术(杭州)有限公司 | Boost power factor correction (PFC) controller |
US20130190932A1 (en) | 2012-01-20 | 2013-07-25 | Daniel C. Schuman | System and method for operation of an hvac system to adjust ambient air temperature |
US9261863B2 (en) | 2012-01-23 | 2016-02-16 | Earth Networks, Inc. | Optimizing and controlling the energy consumption of a building |
US20130204408A1 (en) | 2012-02-06 | 2013-08-08 | Honeywell International Inc. | System for controlling home automation system using body movements |
US9804611B2 (en) | 2012-02-14 | 2017-10-31 | Honeywell International Inc. | HVAC controller with ventilation boost control |
US20130215058A1 (en) | 2012-02-16 | 2013-08-22 | Robert Vern Brazell | In-Room Hospitality Devices and Systems |
US10191501B2 (en) | 2012-03-01 | 2019-01-29 | Emerson Electric Co. | Systems and methods for power stealing |
US9442500B2 (en) | 2012-03-08 | 2016-09-13 | Honeywell International Inc. | Systems and methods for associating wireless devices of an HVAC system |
US10452084B2 (en) | 2012-03-14 | 2019-10-22 | Ademco Inc. | Operation of building control via remote device |
US9927819B2 (en) | 2012-03-27 | 2018-03-27 | Honeywell International Inc. | Home energy management devices, systems, and methods |
US9488994B2 (en) | 2012-03-29 | 2016-11-08 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US8972065B2 (en) | 2012-04-05 | 2015-03-03 | Google Inc. | Distribution of call-home events over time to ameliorate high communications and computation peaks in intelligent control system |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
WO2013153480A2 (en) | 2012-04-10 | 2013-10-17 | Koninklijke Philips N.V. | A unifed controller for integrated lighting, shading and thermostat control |
JP6219370B2 (en) | 2012-05-01 | 2017-10-25 | コーテック インダストリーズ プロプライアタリー リミテッド | Module radio power, lighting and automatic operation control |
US10088853B2 (en) | 2012-05-02 | 2018-10-02 | Honeywell International Inc. | Devices and methods for interacting with an HVAC controller |
US10054964B2 (en) | 2012-05-07 | 2018-08-21 | Google Llc | Building control unit method and controls |
US8476964B1 (en) | 2012-05-17 | 2013-07-02 | Emerson Electric Co. | Obtaining elevated output voltages from charge pump circuits |
CN103425360B (en) | 2012-05-18 | 2016-07-06 | 艾默生电气公司 | Capacitive touch screen for temperature controller |
US10048706B2 (en) | 2012-06-14 | 2018-08-14 | Ecofactor, Inc. | System and method for optimizing use of individual HVAC units in multi-unit chiller-based systems |
CN103513584A (en) | 2012-06-27 | 2014-01-15 | 艾默生电气公司 | Display of environment controller |
US10079931B2 (en) | 2012-07-09 | 2018-09-18 | Eturi Corp. | Information throttle that enforces policies for workplace use of electronic devices |
US9887887B2 (en) | 2012-07-09 | 2018-02-06 | Eturi Corp. | Information throttle based on compliance with electronic communication rules |
US9477239B2 (en) | 2012-07-26 | 2016-10-25 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
ES2872351T3 (en) | 2012-07-27 | 2021-11-02 | Assa Abloy Ab | Automatic adjustment controls based on out-of-room presence information |
US9080782B1 (en) | 2012-07-27 | 2015-07-14 | Babak Sheikh | Home automation system providing remote room temperature control |
US20140041846A1 (en) | 2012-08-09 | 2014-02-13 | Honeywell International Inc. | Hvac system with multiple equipment interface modules |
US9732974B2 (en) | 2012-08-14 | 2017-08-15 | Digi International Inc. | System and method for wiring-relay configuration in digital thermostats |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US9602172B2 (en) | 2012-09-05 | 2017-03-21 | Crestron Electronics, Inc. | User identification and location determination in control applications |
US10992494B2 (en) | 2012-09-15 | 2021-04-27 | Ademco Inc. | Gateway round-robin system |
US8659302B1 (en) | 2012-09-21 | 2014-02-25 | Nest Labs, Inc. | Monitoring and recoverable protection of thermostat switching circuitry |
CN104641304A (en) | 2012-09-21 | 2015-05-20 | 皇家飞利浦有限公司 | A unified controller for integrated lighting, shading and thermostat control |
US9046414B2 (en) | 2012-09-21 | 2015-06-02 | Google Inc. | Selectable lens button for a hazard detector and method therefor |
US10332059B2 (en) | 2013-03-14 | 2019-06-25 | Google Llc | Security scoring in a smart-sensored home |
US8708242B2 (en) | 2012-09-21 | 2014-04-29 | Nest Labs, Inc. | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
US8594850B1 (en) | 2012-09-30 | 2013-11-26 | Nest Labs, Inc. | Updating control software on a network-connected HVAC controller |
US8630742B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Preconditioning controls and methods for an environmental control system |
US8630741B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Automated presence detection and presence-related control within an intelligent controller |
WO2014051632A1 (en) | 2012-09-30 | 2014-04-03 | Nest Labs, Inc. | Automated presence detection and presence-related control within an intelligent controller |
CA2885867C (en) | 2012-09-30 | 2021-09-21 | Mark STEFANSKI | Preconditioning controls and methods for an environmental control system |
US8554376B1 (en) | 2012-09-30 | 2013-10-08 | Nest Labs, Inc | Intelligent controller for an environmental control system |
CA2885868C (en) | 2012-10-01 | 2023-04-04 | Google Inc. | Radiant heating controls and methods for an environmental control system |
US9554345B2 (en) | 2012-10-19 | 2017-01-24 | Howard Rosen | Avoidance of network interference between thermostats in a plurality of proximate wireless mesh networks |
JP6154906B2 (en) | 2012-10-19 | 2017-06-28 | マカフィー, インコーポレイテッド | Safety and emergency services |
JP5935006B2 (en) | 2012-10-24 | 2016-06-15 | パナソニックIpマネジメント株式会社 | Control device and program |
US20140117103A1 (en) | 2012-10-29 | 2014-05-01 | Mauro Antonio Rossi | Thermostat and housing for thermostat |
MX341722B (en) | 2012-11-01 | 2016-08-31 | Braeburn Systems Llc | Multi-use segments of touch screen control. |
CA2834642A1 (en) | 2012-11-26 | 2014-05-26 | Stuart Lombard | Hvac controller with integrated metering |
EP2738478A3 (en) | 2012-11-28 | 2014-08-13 | Lennox Industries Inc. | Intelligent comfort management using natural language processing to interface with a comfort system controller |
US9823672B2 (en) | 2012-11-30 | 2017-11-21 | Honeywell International Inc. | Remote application for controlling an HVAC system |
US20140156087A1 (en) | 2012-11-30 | 2014-06-05 | Honeywell International Inc. | Hvac controller that facilitates installer setup via a remote user interface |
US20140152631A1 (en) | 2012-12-05 | 2014-06-05 | Braeburn Systems Llc | Climate control panel with non-planar display |
US9810467B2 (en) | 2012-12-13 | 2017-11-07 | Lennox Industries Inc. | Controlling air conditioner modes |
US9716530B2 (en) | 2013-01-07 | 2017-07-25 | Samsung Electronics Co., Ltd. | Home automation using near field communication |
US20140207291A1 (en) | 2013-01-21 | 2014-07-24 | Lennox Industries Inc. | User interface screens for zoned hvac systems, a controller employing the screens and a method of operating a zoned hvac system |
US10067516B2 (en) | 2013-01-22 | 2018-09-04 | Opower, Inc. | Method and system to control thermostat using biofeedback |
US10094585B2 (en) | 2013-01-25 | 2018-10-09 | Honeywell International Inc. | Auto test for delta T diagnostics in an HVAC system |
US20140216078A1 (en) | 2013-02-04 | 2014-08-07 | Carrier Corporation | Reduced energy heat pump defrost for unoccupied space |
US10261528B2 (en) | 2013-02-04 | 2019-04-16 | Blue Radios, Inc. | Wireless thermostat and system |
CN103974598A (en) * | 2013-02-05 | 2014-08-06 | 欧司朗有限公司 | Circuit board |
US9958176B2 (en) | 2013-02-07 | 2018-05-01 | Trane International Inc. | HVAC system with camera and microphone |
US20140228983A1 (en) | 2013-02-08 | 2014-08-14 | Trane International Inc. | HVAC Customer Support System |
US10001790B2 (en) * | 2013-02-26 | 2018-06-19 | Honeywell International Inc. | Security system with integrated HVAC control |
US20140250399A1 (en) | 2013-03-04 | 2014-09-04 | Emerson Electric Co. | Scheduling Systems |
US20140250397A1 (en) | 2013-03-04 | 2014-09-04 | Honeywell International Inc. | User interface and method |
US9502874B2 (en) | 2013-03-12 | 2016-11-22 | Brainwave Research Corporation | Bracket and sleeve assembly |
US10520205B2 (en) | 2013-03-13 | 2019-12-31 | Digi International Inc. | Thermostat |
US10418833B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with cascaded frequency response optimization |
US9595070B2 (en) | 2013-03-15 | 2017-03-14 | Google Inc. | Systems, apparatus and methods for managing demand-response programs and events |
US9618227B2 (en) | 2013-03-15 | 2017-04-11 | Emerson Electric Co. | Energy management based on location |
WO2014145062A1 (en) | 2013-03-15 | 2014-09-18 | Honeywell International Inc. | Electrostatic discharge connector and method for an electronic device |
US9125049B2 (en) | 2013-03-15 | 2015-09-01 | Oplink Communications, Inc. | Configuring secure wireless networks |
US9430044B2 (en) | 2013-03-15 | 2016-08-30 | Lutron Electronics Co., Inc. | Gesture-based load control |
US9684316B2 (en) | 2013-04-05 | 2017-06-20 | Emerson Electric Co. | Controlling current for power stealing in climate control systems |
US10775814B2 (en) | 2013-04-17 | 2020-09-15 | Google Llc | Selective carrying out of scheduled control operations by an intelligent controller |
NL2010662C2 (en) | 2013-04-18 | 2014-10-21 | Bosch Gmbh Robert | Remote maintenance. |
NL2010658C2 (en) | 2013-04-18 | 2014-10-21 | Bosch Gmbh Robert | Thermostat for a hvac. |
US9298197B2 (en) | 2013-04-19 | 2016-03-29 | Google Inc. | Automated adjustment of an HVAC schedule for resource conservation |
US9122283B2 (en) | 2013-04-19 | 2015-09-01 | Emerson Electric Co. | Battery power management in a thermostat with a wireless transceiver |
US9405303B2 (en) | 2013-04-22 | 2016-08-02 | Emerson Electric Co. | Power stealing for a wireless-enabled thermostat |
CN104111673B (en) | 2013-04-22 | 2016-09-21 | 艾默生电气公司 | Controller and control execution method for environmental control system |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US9696735B2 (en) | 2013-04-26 | 2017-07-04 | Google Inc. | Context adaptive cool-to-dry feature for HVAC controller |
US9360229B2 (en) | 2013-04-26 | 2016-06-07 | Google Inc. | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
US8884772B1 (en) | 2013-04-30 | 2014-11-11 | Globestar, Inc. | Building evacuation system with positive acknowledgment |
US10852025B2 (en) | 2013-04-30 | 2020-12-01 | Ademco Inc. | HVAC controller with fixed segment display having fixed segment icons and animation |
US10145579B2 (en) | 2013-05-01 | 2018-12-04 | Honeywell International Inc. | Devices and methods for interacting with a control system that is connected to a network |
US9677776B2 (en) | 2013-05-02 | 2017-06-13 | Eric Douglass Clifton | Wireless wall thermostat |
US9014686B2 (en) | 2013-05-06 | 2015-04-21 | Emerson Electric Co. | Provisioning a wireless-capable device for a wireless network |
US20140376747A1 (en) * | 2013-06-20 | 2014-12-25 | Qmotion Incorporated | Voice control of lights and motorized window coverings |
US9531704B2 (en) | 2013-06-25 | 2016-12-27 | Google Inc. | Efficient network layer for IPv6 protocol |
US9191209B2 (en) | 2013-06-25 | 2015-11-17 | Google Inc. | Efficient communication for devices of a home network |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
WO2015009757A2 (en) | 2013-07-15 | 2015-01-22 | Ingersoll-Rand Company | Dealer portal device enrollment |
US20150025693A1 (en) | 2013-07-22 | 2015-01-22 | International Business Machines Corporation | System and method of temperature control |
KR102158208B1 (en) * | 2013-07-26 | 2020-10-23 | 엘지전자 주식회사 | Electronic device and control method for the same |
US9577432B2 (en) * | 2013-08-09 | 2017-02-21 | The Boeing Company | Advanced energy monitoring and control in a complex system |
EP3036594B1 (en) | 2013-08-21 | 2021-05-26 | Ademco Inc. | Devices and methods for interacting with an hvac controller |
US10030878B2 (en) | 2013-08-21 | 2018-07-24 | Honeywell International Inc. | User interaction with building controller device using a remote server and a duplex connection |
US9890967B2 (en) | 2013-08-28 | 2018-02-13 | Trane International Inc. | Systems and methods for HVAC and irrigation control |
US9689584B2 (en) | 2013-08-29 | 2017-06-27 | Emerson Electric Co. | Optimizing communication modes in wireless-enabled climate control system controllers |
US10025463B2 (en) | 2013-09-18 | 2018-07-17 | Vivint, Inc. | Systems and methods for home automation scene control |
US20150081106A1 (en) | 2013-09-18 | 2015-03-19 | Trane International Inc. | Systems and Methods for HVAC and Irrigation Control |
WO2015039178A1 (en) | 2013-09-20 | 2015-03-26 | Planet Intellectual Property Enterprises Pty Ltd | Thermostat gesture control |
US20150088442A1 (en) | 2013-09-20 | 2015-03-26 | Panduit Corp. | Systems and methods for utility usage monitoring and management |
CA2864722C (en) | 2013-09-23 | 2019-07-30 | Emerson Electric Co. | Energy management based on occupancy and occupant activity level |
CA2926423C (en) | 2013-10-07 | 2022-05-24 | Google Inc. | Automated crowdsourced power outage identification and staggering of hvac system restarts |
CA2926811C (en) | 2013-10-07 | 2023-03-21 | Google Inc. | Smart-home hazard detector providing context specific features and/or pre-alarm configurations |
CN105793782B (en) | 2013-10-14 | 2019-12-17 | 特灵国际有限公司 | System and method for configuring a calendar |
DE102013017204B4 (en) | 2013-10-16 | 2023-06-29 | tado GmbH | Retrofit set for heating control |
CN203643766U (en) | 2013-10-25 | 2014-06-11 | 艾默生电气公司 | Controller used in environment control system |
US9857091B2 (en) | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US10563876B2 (en) | 2013-11-22 | 2020-02-18 | Ademco Inc. | Setup routine to facilitate user setup of an HVAC controller |
US20150145653A1 (en) | 2013-11-25 | 2015-05-28 | Invensense, Inc. | Device control using a wearable device |
CA2873008C (en) | 2013-12-03 | 2017-02-14 | Emerson Electric Co. | Providing wireless network authentication data to climate control system devices |
WO2015085222A1 (en) | 2013-12-06 | 2015-06-11 | ICM Controls Corporation | Controller with dynamically indicated input devices |
US9696701B2 (en) | 2013-12-07 | 2017-07-04 | Svv Technology Innovations, Inc. | Radio frequency occupancy sensing load control |
US20150159893A1 (en) | 2013-12-11 | 2015-06-11 | International Business Machines Corporation | Intelligent thermostat control system |
US20150159895A1 (en) | 2013-12-11 | 2015-06-11 | Honeywell International Inc. | Building automation system with user defined lifestyle macros |
US20150167995A1 (en) | 2013-12-12 | 2015-06-18 | Google Inc. | Safe sandbox mode for a home device |
US20150168003A1 (en) | 2013-12-18 | 2015-06-18 | Google Inc. | Systems and methods for signature-based thermostat control |
US20150168002A1 (en) | 2013-12-18 | 2015-06-18 | Google Inc. | Systems and methods for determining or modifying a temperature program based on occupant activity |
US9377210B2 (en) | 2013-12-19 | 2016-06-28 | Emerson Electric Co. | HVAC communication bus decoders and corresponding methods |
EP3087326A1 (en) | 2013-12-26 | 2016-11-02 | Schneider Electric Buildings, LLC | System and method for controlling an environment |
CN203907883U (en) * | 2014-01-13 | 2014-10-29 | 广东艾科技术股份有限公司 | Indoor temperature controller |
US20150198346A1 (en) | 2014-01-15 | 2015-07-16 | Girish Vedpathak | Hvac control system and method of controlling an hvac system |
US10024565B2 (en) | 2014-01-20 | 2018-07-17 | Emerson Electric Co. | Facilitating scheduling of comfort controllers |
US20150204561A1 (en) | 2014-01-20 | 2015-07-23 | Innosys, Inc. | Control System With Mobile Sensors |
ES2621566T3 (en) | 2014-01-20 | 2017-07-04 | Irsap Spa | Method to provide a visual indication of the room temperature set on an electronic thermostat and a corresponding electronic thermostat |
US9568205B2 (en) | 2014-01-20 | 2017-02-14 | Emerson Electric Co. | Selectively connecting a climate control system controller with more than one destination server |
CN203705984U (en) * | 2014-01-26 | 2014-07-09 | 重庆市伟岸测器制造股份有限公司 | Wall-mounted temperature controller |
US9817375B2 (en) | 2014-02-26 | 2017-11-14 | Board Of Trustees Of The University Of Alabama | Systems and methods for modeling energy consumption and creating demand response strategies using learning-based approaches |
EP3572888A1 (en) | 2014-02-26 | 2019-11-27 | Zen Ecosystems IP Pty Ltd | User interface for a consumer product system |
WO2015127566A1 (en) | 2014-02-28 | 2015-09-03 | Appareils Connectés Casa Ltée | Thermostat unit and associated system and method |
US20150256355A1 (en) | 2014-03-07 | 2015-09-10 | Robert J. Pera | Wall-mounted interactive sensing and audio-visual node devices for networked living and work spaces |
US9835352B2 (en) | 2014-03-19 | 2017-12-05 | Opower, Inc. | Method for saving energy efficient setpoints |
US20150277463A1 (en) | 2014-03-25 | 2015-10-01 | Honeywell International Inc. | System for communication, optimization and demand control for an appliance |
US20150280935A1 (en) | 2014-03-27 | 2015-10-01 | Braeburn Systems, Llc | Thermostat code input system and method therefor |
US9581342B2 (en) | 2014-03-28 | 2017-02-28 | Google Inc. | Mounting stand for multi-sensing environmental control device |
US9568201B2 (en) | 2014-03-28 | 2017-02-14 | Google Inc. | Environmental control system retrofittable with multiple types of boiler-based heating systems |
US9791839B2 (en) | 2014-03-28 | 2017-10-17 | Google Inc. | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
US9609462B2 (en) | 2014-03-28 | 2017-03-28 | Google Inc. | Facilitating radio frequency communications among environmental control system components |
US9836084B2 (en) | 2014-03-28 | 2017-12-05 | Intel Corporation | Inferred undocking for hybrid tablet computer |
US9672728B2 (en) | 2014-04-07 | 2017-06-06 | Google Inc. | Smart hazard detector drills |
US20150292764A1 (en) | 2014-04-10 | 2015-10-15 | Trane International Inc. | Reconfigurable network controller |
US9857238B2 (en) | 2014-04-18 | 2018-01-02 | Google Inc. | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
US9918180B2 (en) | 2014-04-28 | 2018-03-13 | Johnson Controls Technology Company | Systems and methods for detecting and using occupant location in a building management system |
US20150316286A1 (en) | 2014-04-30 | 2015-11-05 | Carrier Corporation | System and method of operating an hvac controller based on a third party calendar event |
US10386820B2 (en) | 2014-05-01 | 2019-08-20 | Johnson Controls Technology Company | Incorporating a demand charge in central plant optimization |
US9282654B2 (en) | 2014-05-06 | 2016-03-08 | Honeywell International Inc. | HVAC controller with air flow barrier |
US9571986B2 (en) | 2014-05-07 | 2017-02-14 | Johnson Controls Technology Company | Systems and methods for detecting and using equipment location in a building management system |
US20150332150A1 (en) | 2014-05-13 | 2015-11-19 | Carrier Corporation | Method to determine relay wiring required |
US9989944B2 (en) | 2014-05-21 | 2018-06-05 | Portable Comfort Corporation LLC | Temperature control voting system |
US9939165B2 (en) | 2014-05-29 | 2018-04-10 | Honeywell International Inc. | Wireless thermostat with dual stage failsafe circuits |
US10170123B2 (en) | 2014-05-30 | 2019-01-01 | Apple Inc. | Intelligent assistant for home automation |
US10107515B2 (en) | 2014-06-05 | 2018-10-23 | Honeywell International Inc. | HVAC controller with proximity sensor |
US10510343B2 (en) | 2014-06-11 | 2019-12-17 | Ademco Inc. | Speech recognition methods, devices, and systems |
US10761704B2 (en) | 2014-06-16 | 2020-09-01 | Braeburn Systems Llc | Graphical highlight for programming a control |
US20150362926A1 (en) | 2014-06-16 | 2015-12-17 | Carrier Corporation | Information exchange using near field communications in hvac system |
US9639098B2 (en) | 2014-06-17 | 2017-05-02 | Magnum Energy Solutions, LLC | Thermostat and messaging device and methods thereof |
US9891602B2 (en) | 2014-06-18 | 2018-02-13 | International Controls and Measurments Corporation | DC thermostat with latching relay repulsing |
US20150370272A1 (en) | 2014-06-23 | 2015-12-24 | Google Inc. | Intelligent configuration of a smart environment based on arrival time |
CN204145050U (en) | 2014-07-02 | 2015-02-04 | 艾默生电气公司 | The controller used in environmental control system |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US10024564B2 (en) | 2014-07-15 | 2018-07-17 | Opower, Inc. | Thermostat eco-mode |
US9768599B2 (en) | 2014-07-17 | 2017-09-19 | Honeywell International Inc. | Separable wallbox device and memory |
CN204116988U (en) * | 2014-07-25 | 2015-01-21 | 艾默生电气公司 | Temperature controller |
US9887542B2 (en) | 2014-08-04 | 2018-02-06 | Honeywell International Inc. | Power broker module |
US10691083B2 (en) | 2014-08-08 | 2020-06-23 | Ademco Inc. | Thermostat system for remote reading, setting, and control of devices |
DE102014111662A1 (en) | 2014-08-14 | 2016-02-18 | Xpertec Gmbh | Thermostatic unit and method for automatically controlling the room temperature |
US20160054792A1 (en) | 2014-08-22 | 2016-02-25 | Google Inc. | Radar-Based Biometric Recognition |
US10338904B2 (en) | 2014-08-25 | 2019-07-02 | Schneider Electric Buildings, Llc | Specialized app development and deployment system and method |
US20160061471A1 (en) | 2014-08-26 | 2016-03-03 | Carrier Corporation | Hvac controller assembly |
US20160069582A1 (en) | 2014-09-08 | 2016-03-10 | Trane International Inc. | HVAC System with Motion Sensor |
WO2016038374A1 (en) | 2014-09-11 | 2016-03-17 | Alertme.Com Ltd | System for connecting and controlling multiple devices |
CN104284485A (en) * | 2014-09-26 | 2015-01-14 | 生迪光电科技股份有限公司 | Intelligent lighting device and system and intelligent lighting control method |
US10730687B2 (en) | 2014-10-16 | 2020-08-04 | RxCap Inc. | Intelligent medicine dispenser |
WO2016069635A1 (en) * | 2014-10-28 | 2016-05-06 | Airadvice For Homes, Inc. | Indoor air quality sense and control system |
US9851119B2 (en) | 2014-11-17 | 2017-12-26 | Vivint, Inc. | HVAC workload and cost logic |
US9761096B2 (en) | 2014-12-18 | 2017-09-12 | Hand Held Products, Inc. | Active emergency exit systems for buildings |
US10571414B2 (en) | 2015-01-30 | 2020-02-25 | Schneider Electric USA, Inc. | Interior volume thermal modeling and control apparatuses, methods and systems |
JP6529609B2 (en) | 2015-05-04 | 2019-06-12 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Attachable touch thermostat using transparent screen technology |
USD763707S1 (en) | 2015-05-04 | 2016-08-16 | Johnson Controls Technology Company | Thermostat with transparent display screen |
CN107787469A (en) | 2015-05-04 | 2018-03-09 | 江森自控科技公司 | Multifunctional household control system with control system maincenter and distance sensor |
US9909777B2 (en) | 2015-08-26 | 2018-03-06 | Google Llc | Thermostat with multiple sensing systems including presence detection systems integrated therein |
US9353965B1 (en) | 2015-08-26 | 2016-05-31 | Google Inc. | Automated display adjustment for smart-home device based on viewer location or other sensed viewer-related parameters |
US20170074536A1 (en) | 2015-09-11 | 2017-03-16 | Johnson Controls Technology Company | Thermostat with near field communication features |
WO2017044903A1 (en) | 2015-09-11 | 2017-03-16 | Johnson Controls Technology Company | Thermostat with occupancy detection, nfc communication, and user interface features |
US10461951B2 (en) | 2015-10-07 | 2019-10-29 | Trane International Inc. | HVAC thermostat with fuel control |
US11210617B2 (en) | 2015-10-08 | 2021-12-28 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs |
US10554170B2 (en) | 2015-10-08 | 2020-02-04 | Con Edison Battery Storage, Llc | Photovoltaic energy system with solar intensity prediction |
US10742055B2 (en) | 2015-10-08 | 2020-08-11 | Con Edison Battery Storage, Llc | Renewable energy system with simultaneous ramp rate control and frequency regulation |
US10389136B2 (en) | 2015-10-08 | 2019-08-20 | Con Edison Battery Storage, Llc | Photovoltaic energy system with value function optimization |
US10222083B2 (en) | 2015-10-08 | 2019-03-05 | Johnson Controls Technology Company | Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs |
US10283968B2 (en) | 2015-10-08 | 2019-05-07 | Con Edison Battery Storage, Llc | Power control system with power setpoint adjustment based on POI power limits |
US10197632B2 (en) | 2015-10-08 | 2019-02-05 | Taurus Des, Llc | Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal |
US10222427B2 (en) | 2015-10-08 | 2019-03-05 | Con Edison Battery Storage, Llc | Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue |
US10564610B2 (en) | 2015-10-08 | 2020-02-18 | Con Edison Battery Storage, Llc | Photovoltaic energy system with preemptive ramp rate control |
US10190793B2 (en) | 2015-10-08 | 2019-01-29 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities |
US10250039B2 (en) | 2015-10-08 | 2019-04-02 | Con Edison Battery Storage, Llc | Energy storage controller with battery life model |
US10418832B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
US10700541B2 (en) | 2015-10-08 | 2020-06-30 | Con Edison Battery Storage, Llc | Power control system with battery power setpoint optimization using one-step-ahead prediction |
US10187471B2 (en) | 2016-10-28 | 2019-01-22 | Johnson Controls Technology Company | Thermostat with direction display |
US10020956B2 (en) | 2016-10-28 | 2018-07-10 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10310477B2 (en) | 2015-10-28 | 2019-06-04 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
US20170123391A1 (en) | 2015-10-28 | 2017-05-04 | Johnson Controls Technology Company | Multi-function thermostat with classroom features |
USD790369S1 (en) * | 2015-12-11 | 2017-06-27 | Johnson Controls Technology Company | Thermostat |
USD810591S1 (en) | 2015-12-11 | 2018-02-20 | Johnson Controls Technology Company | Thermostat |
US20170295058A1 (en) | 2016-04-12 | 2017-10-12 | Johnson Controls Technology Company | Devices and methods for network integration of an hvac device |
US10402360B2 (en) | 2016-06-10 | 2019-09-03 | Johnson Controls Technology Company | Building management system with automatic equipment discovery and equipment model distribution |
USD814321S1 (en) | 2016-09-02 | 2018-04-03 | Johnson Controls Technology Company | Thermostat |
US20180087795A1 (en) | 2016-09-23 | 2018-03-29 | Ecofactor, Inc. | Multi-function thermostat |
-
2016
- 2016-05-04 CN CN201680037294.2A patent/CN107787469A/en active Pending
- 2016-05-04 US US15/146,134 patent/US10907844B2/en active Active
- 2016-05-04 US US15/146,749 patent/US20160327301A1/en not_active Abandoned
- 2016-05-04 WO PCT/US2016/030836 patent/WO2016179321A1/en active Application Filing
- 2016-05-04 KR KR1020177034888A patent/KR102125516B1/en active IP Right Grant
- 2016-05-04 WO PCT/US2016/030829 patent/WO2016179315A1/en active Application Filing
- 2016-05-04 US US15/146,763 patent/US9890971B2/en active Active
- 2016-05-04 WO PCT/US2016/030827 patent/WO2016179314A1/en active Application Filing
- 2016-05-04 EP EP16722769.3A patent/EP3292452B1/en active Active
- 2016-05-04 JP JP2017557196A patent/JP2018524534A/en active Pending
- 2016-05-04 US US15/146,202 patent/US20160327299A1/en not_active Abandoned
- 2016-05-04 NZ NZ737663A patent/NZ737663A/en unknown
- 2016-05-04 CN CN201680037771.5A patent/CN107810368A/en active Pending
- 2016-05-04 EP EP16723885.6A patent/EP3292454A1/en not_active Withdrawn
- 2016-05-04 WO PCT/US2016/030837 patent/WO2016179322A1/en active Application Filing
- 2016-05-04 CN CN201680037724.0A patent/CN107810369B/en active Active
- 2016-05-04 EP EP16723884.9A patent/EP3292453B1/en active Active
- 2016-05-04 US US15/146,649 patent/US9964328B2/en active Active
- 2016-05-04 EP EP16722768.5A patent/EP3292451A1/en not_active Withdrawn
- 2016-05-04 AU AU2016257459A patent/AU2016257459B2/en not_active Expired - Fee Related
- 2016-05-04 WO PCT/US2016/030835 patent/WO2016179320A1/en active Application Filing
- 2016-05-04 AU AU2016257458A patent/AU2016257458B9/en active Active
- 2016-05-04 EP EP16723886.4A patent/EP3292455B1/en active Active
- 2016-05-04 CN CN201680038067.1A patent/CN107710099B/en not_active Expired - Fee Related
- 2016-05-04 CN CN201680038068.6A patent/CN107850907B/en active Active
-
2018
- 2018-01-05 US US15/862,860 patent/US10627126B2/en active Active
- 2018-04-24 US US15/961,488 patent/US10808958B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107850907B (en) | User control device with cantilevered display | |
US9612032B2 (en) | User friendly interface for control unit | |
US9282654B2 (en) | HVAC controller with air flow barrier | |
US20150112456A1 (en) | Modular wall module platform for a building control system | |
US10239381B2 (en) | Vehicle roof fan | |
US20180187912A1 (en) | Hvac controller | |
CN113994138A (en) | Edge lit light kit for ceiling fan | |
US10119694B2 (en) | Door integrated lighted mirror system | |
JP6075647B2 (en) | Equipment control device | |
EP3618588B1 (en) | User interface module for a building control system with an interchangeable mounting base | |
CA2902518A1 (en) | Integrated cover plate and sensor system | |
CN202748684U (en) | Hidden all-digital humiture monitor | |
US20060030257A1 (en) | Integral environmental monitor | |
US20160274451A1 (en) | Multi-direction image projecting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |