CN107850564B - 用于在离子流体中侦测的系统及方法 - Google Patents
用于在离子流体中侦测的系统及方法 Download PDFInfo
- Publication number
- CN107850564B CN107850564B CN201680024582.4A CN201680024582A CN107850564B CN 107850564 B CN107850564 B CN 107850564B CN 201680024582 A CN201680024582 A CN 201680024582A CN 107850564 B CN107850564 B CN 107850564B
- Authority
- CN
- China
- Prior art keywords
- electrode
- grid
- field effect
- effect transistor
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4145—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/72—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
- G01N33/721—Haemoglobin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0636—Integrated biosensor, microarrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/069—Absorbents; Gels to retain a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
- B01L2400/088—Passive control of flow resistance by specific surface properties
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Electrochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Clinical Laboratory Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
Abstract
本发明提供一种用以侦测靶标(324)的系统(300)及方法,用于在离子流体中侦测,其中,电化学式延伸栅极晶体管(electrochemical extended‑gate transistor;EET)系统包括:场效应晶体管(field effect transistor;FET)(310),其具有栅极(312)、源极(316)以及漏极(314);恒电位仪(330),其具有工作电极(332)、对电极(334)以及参考电极(336);其中,该工作电极(332)与侦测区(320)耦接,且该对电极(334)与该栅极(312)耦接;其中,该侦测区(320)、该栅极(312)以及该参考电极(336)置于离子流体(302)中;其中,该恒电位仪(330)经配置,以电化学方法在该离子流体(302)中产生氧化还原反应,进而侦测该靶标(324)。
Description
技术领域
本发明涉及场效应晶体管式(field effect transistor-based;FET-based)生物感测器,尤其是涉及利用电化学方法改善在高离子流体中的侦测极限及灵敏度的场效应晶体管式生物感测器。
背景技术
在诊断中,确定血液或血清样本中所含有的物质(例如蛋白质或某些特定靶标)是重要的。例如,如图1(A)所示,在一般的场效应晶体管式生物感测器100中,为了侦测特定生物标记(biomarker)154,栅极150上会被修饰抗体或某些识别元件152。当生物标记154被识别元件152捕获时,生物标记154的电荷将积累于栅极表面上,以在栅极150上形成电位,进而在提供电压源110的情况下,透过侦测流经源极140与漏极130之间的基板120的电流(也就是IDS),可确定生物标记的浓度。
不过,如果测试样本具有高离子强度,则由生物标记的电荷导致的电位将被样本中的离子中和。如此,一旦栅极表面与所捕获的生物标记之间的距离(r)超过特定长度(如图1(B)),也就是德拜长度(Debye length)(λ),样本中的离子会遮罩所捕获生物标记的电位。被遮罩的电位可能降低流过源极140与漏极130之间的基板120的电流,进而使系统不能够提供用来侦测生物标记的浓度所需的侦测极限及灵敏度。
因此,传统的场效应晶体管生物感测器不能够提供用来侦测高离子流体中的目标生物标记所需的侦测极限及灵敏度(离子强度为~150mM;如表1)。图2进一步显示在100mM磷酸缓冲溶液(phosphate buffer solution;PBS)(离子强度为~400mM;如表1)与0.1mMPBS(离子强度为~0.4mM;如表1)中传统延伸式栅极场效应晶体管(extended-gate fieldeffect transistor;EGFET)的侦测结果的比较。因此,由于德拜长度的降低,高离子流体中的侦测极限较低离子流体中的侦测极限差。请参照表1,在100mM PBS中,德拜长度可进一步降低至~0.48nm,该德拜长度小于血红蛋白的直径(~5nm,Biol Proced Online 2009,11:32-51)。因此,血红蛋白所载电荷不足以在延伸式栅极场效应晶体管的栅极上产生电位而引发相对应的IDS以进行侦测。
文献中已公布了用于此类侦测的各种方法。例如,关于如图1(B)所示的高离子流体中的样本,部分方法是透过稀释该测试样本,以达到低离子强度状态来延长德拜长度。不过,以此方式,测量条件将大幅地被限制且无法用于实际应用中,例如对低浓度的目标生物标记作进一步稀释而导致的限制。在另一种方法中,为移除测试样本中的离子,测试样本必须通过多个复杂的前处理过程,这些过程将消耗更多的时间和成本。电化学(electrochemical;EC)系统可透过侦测电化学信号来作为解决德拜长度问题的解决方案。不过,当靶标浓度低时,传统电化学系统的灵敏度不足。
因此,业界需要克服这些传统技术上的问题。
发明内容
本发明提供电化学延伸式栅极场效应晶体管式系统,也称为电化学式延伸栅极晶体管(electrochemical extended-gate transistor;EET)系统,其能够避免德拜长度的问题并可直接用以侦测高离子流体中的靶标(例如,生物标记)。此外,本发明应用电化学方法于电化学式延伸栅极晶体管系统中,进而可透过侦测在离子流体中因氧化还原反应而产生的电化学信号以确定靶标的浓度。
根据本发明所提供的用以侦测靶标的电化学式延伸栅极晶体管系统,该电化学式延伸栅极晶体管系统包括:场效应晶体管(field effect transistor;FET),其具有栅极、源极以及漏极;恒电位仪,其具有工作电极、对电极以及参考电极;其中,该工作电极与侦测区耦接,且该对电极与该栅极耦接;其中,该侦测区、该栅极以及该参考电极置于离子流体中;其中,该恒电位仪经配置,以电化学方法在该离子流体中产生氧化还原反应,进而侦测该靶标。
在一实施例中,该场效应晶体管包括与其耦接的读取单元,用以量化信号。
在一实施例中,该场效应晶体管可为n-MOS、p-MOS场效应晶体管或具有类似功能的任意元件。
在一实施例中,形成该工作电极、对电极以及参考电极的物质包括至少一种从以下群组所选的物质:金、银、铂、钯、碳、铟锡氧化物(indium tin oxide;ITO)玻璃、任意导电油墨、或其任意组合。
在一实施例中,该离子流体可为气态或液态。
在一实施例中,该离子流体可为电解液,例如PBS、血液、血清、尿液、唾液、汗液,或离子强度与生理环境近似的任意溶液。
在一实施例中,该靶标包括至少一种从以下群组所选的物质:小分子、蛋白质、酶、抗原、抗体、核酸、DNA、RNA、miRNA、适合体(aptamer)、醣脂、配位基、外泌体(exosome)或任意可用于感测应用的生物标记。
在一实施例中,以对该靶标具有亲和力或专一性的识别元件修饰该侦测区。
在一实施例中,该识别元件可为对该靶标具有亲和力或专一性的任意分子。
在一实施例中,该靶标可涉及电化学(electrochemical;EC)活动。
而且,本发明还提供一种用以侦测靶标的方法,包括:提供具有栅极、源极及漏极的场效应晶体管;提供具有工作电极、对电极及参考电极的恒电位仪,其中,该工作电极与侦测区耦接,其中,该对电极与该栅极耦接,其中,该侦测区、该栅极以及该参考电极置于离子流体中;以及执行由该恒电位仪所驱动的电化学方法,以在该离子流体中产生氧化还原反应,进而侦测该靶标。
在本发明中,该电化学方法包括:伏安法、安培法、电导法、阻抗法,或任意传统电化学方法。
附图说明
图1(A)及1(B)为绘示传统的场效应晶体管式生物感测器,以及离子强度与德拜长度之间的关系;
图2为使用传统延伸式栅极场效应晶体管系统于100mM PBS及0.1mM PBS中侦测血红蛋白的结果;
图3为根据本发明一实施例的电化学式延伸栅极晶体管系统的示意图,其中,箭头为范例方向,以说明氧化还原反应的方向;
图4为根据本发明一实施例的电化学式延伸栅极晶体管系统的示意图,其中,向该电化学式延伸栅极晶体管系统引入识别元件及能量传递介质(mediator);
图5(A)为根据本发明一实施例,由传统延伸式栅极场效应晶体管系统侦测血红蛋白的侦测时间与标准化电流比的关系图;
图5(B)为根据本发明一实施例,由传统延伸式栅极场效应晶体管系统侦测血红蛋白的血红蛋白浓度与标准化电流比的关系图;
图5(C)为根据本发明一实施例,由电化学式延伸栅极晶体管系统侦测血红蛋白的侦测时间与标准化电流比的关系图;
图5(D)为根据本发明一实施例,由电化学式延伸栅极晶体管系统侦测血红蛋白的血红蛋白浓度与标准化电流比的关系图;
图6(A)为根据本发明一实施例,由传统电化学系统侦测H2O2的侦测时间与标准化电流比的关系图;
图6(B)为根据本发明一实施例,由传统电化学系统侦测H2O2的H2O2浓度与标准化电流比的关系图;
图6(C)为根据本发明一实施例,由电化学式延伸栅极晶体管系统侦测H2O2的侦测时间与标准化电流比的关系图;
图6(D)为根据本发明一实施例,由电化学式延伸栅极晶体管系统侦测H2O2的H2O2浓度与标准化电流比的关系图;
图7为本发明的电化学式延伸栅极晶体管系统与传统延伸式栅极场效应晶体管及电化学系统的产业价值的比较图。
符号说明
100 一般的场效应晶体管式生物感测器
110 电压源 120 基板
130 漏极 140 源极
150 栅极 152 识别元件
154 生物标记
300 电化学式延伸栅极晶体管系统
302 离子流体 310 场效应晶体管
312 栅极 314 漏极
316 源极 320 侦测区
324 靶标 330 恒电位仪
332 工作电极 334 对电极
336 参考电极 340 读取单元
400 电化学式延伸栅极晶体管系统
402 离子流体 404 能量传递介质
410 场效应晶体管 412 栅极
414 漏极 416 源极
420 侦测区 422 识别元件
424 靶标 430 恒电位仪
432 工作电极 434 对电极
436 参考电极 440 读取单元。
具体实施方式
以下的具体实施例用以说明本发明的揭露内容,在阅读本说明书的揭露内容以后,本领域技术人员能轻易地理解其优点及功效。
须知,本说明书所附图式所绘示的结构、比例、尺寸等,仅为配合说明书所揭示的内容,以便本领域技术人员得以理解及阅读,而非意图将本发明限制于特定条件之中,故不具有技术上的实质意义。任何结构的修改、比例关系的改变,或尺寸的调整,在不影响本说明书所能产生的功效及所能达成的目的下,均应包含在本说明书所揭露的范围内。在无实质变更技术内容的情况下,其相对关系的改变或调整,也当被视为本发明可实施的范畴内。
图3为根据本发明一实施例的电化学式延伸栅极晶体管系统的示意图。系统300包括:场效应晶体管(FET)310,其具有栅极312、源极316以及漏极314;恒电位仪330,其具有工作电极332、对电极334以及参考电极336;其中,该工作电极332与侦测区320耦接,且该对电极334与该栅极312耦接;其中,该侦测区320、该栅极312以及该参考电极336被设置于离子流体302中;其中,恒电位仪330被用以在离子流体302中产生氧化还原反应,进而以电化学方法侦测靶标324。
图3说明了根据本发明一实施例的电化学式延伸栅极晶体管系统的侦测机制。为侦测靶标,电化学式延伸栅极晶体管系统300可包括电化学(EC)方法,且工作电极332与对电极334之间的电压差将驱动离子流体302中的靶标324进行氧化还原。在此方法中,场效应晶体管310的栅极电压将因此被对电极334的电压所控制,以引发漏极-源极间的电流(IDS),该电流可被读取单元340所侦测。因此,靶标324的浓度得以读取单元340所侦测的IDS来表示。此外,某些靶标324或许具有特定的电化学特性,当恒电位仪330执行适当的电化学方法时,靶标324可产生相应的法拉第电流并在施加特定电位时呈现一对氧化还原峰值。更可取地,可利用对靶标324具有专一性的识别元件(图3未显示)对电化学式延伸栅极晶体管系统300的侦测区320进行修饰。当更多的识别元件与靶标324结合时,靶标324的特征信号(如在氧化还原电位的峰电流)也将被测量。此外,该信号可进一步由场效应晶体管310放大,进而透过与场效应晶体管310耦接的读取单元340来计算并获得靶标324的浓度。
图4显示根据本发明另一实施例的电化学式延伸栅极晶体管系统400。以下,在该整个实施例中,以相似的号码表示类似的元件,并省略其重复的描述。在此实施例中,是利用对靶标424具有专一性的识别元件422对电化学式延伸栅极晶体管系统400的侦测区420进行修饰,且靶标424不具有电化学活性。由于靶标424不能够产生足够的氧化还原电流以进行靶标的侦测,因此,在此实施例中,于离子流体402中添加额外能量传递介质404,以促进氧化还原反应所产生的电流。能量传递介质404可为本技术领域中通常使用的任何一种能量传递介质,例如但不限于铁氰化钾、二茂铁,以及四硫富瓦烯(tetrathiafulvalene;TTF)。当实施电化学方法时,可驱使所添加的能量传递介质404产生氧化还原电流。以此方式,当更多的识别元件422与靶标424结合时,侦测区420的阻抗将会改变,同时,由能量传递介质404产生的氧化还原电流也会随之改变。以此方式,靶标424的浓度可透过读取单元440计算得知。
依据本发明的一实施例,提供一种利用电化学式延伸栅极晶体管系统300侦测靶标324的方法并于图3说明。该方法包括:提供具有栅极312、源极316及漏极314的场效应晶体管(FET)310;提供具有工作电极332、对电极334及参考电极336的恒电位仪330;其中,该工作电极332与侦测区320耦接,其中,该对电极334与该栅极312耦接,其中,该侦测区320、该栅极312以及该参考电极336被设置于离子流体302中;以及执行由恒电位仪330所驱动的电化学方法,得以在离子流体302中产生氧化还原反应,进而侦测靶标324。
本发明透过实施例的示例来说明细节。不过,本发明的诠释不应当被限制于以下实施例的阐述。
实施例1:
以下实验的实施可说明电化学式延伸栅极晶体管系统即使在生理离子强度环境中也能提供优越的感测性能(例如侦测极限及反应的信号大小)。在此实施例中,靶标为血红蛋白。恒电位仪为CHI6192E(美国德州奥斯汀CHI公司),但也可使用其它传统的恒电位仪或类似仪器,而其工作电极、对电极以及参考电极分别与碳电极、碳电极以及Ag/AgCl电极电性耦接。在该实施例中,可对该些电极施加任意适当的前处理,例如利用氧电浆、乙醇或去离子水清洗。另外,本领域技术人员应当理解,在本技术领域中,PBS通常用以模拟生理环境。本实施例的离子流体为100mM PBS,其利用100mM Na2HPO4及100mM NaH2PO4配制,且pH值为7.4。
之后,使用电化学式延伸栅极晶体管系统测量从0.01μg/ml至100μg/ml的血红蛋白溶液浓度。在此测量过程中,采用安培法,并将工作电极与参考电极之间的电压差设为-0.4V,以驱动相对应的氧化还原反应。
作为对照组,是使用传统的延伸式栅极场效应晶体管系统侦测血红蛋白。延伸式栅极场效应晶体管系统的配置及侦测条件与上述电化学式延伸栅极晶体管系统的配置及侦测条件相同。在延伸式栅极场效应晶体管系统中也使用源极测量单元,但源极测量单元仅用以提供相对于参考电极的电位及测量信号。
由传统延伸式栅极场效应晶体管系统及本发明的电化学式延伸栅极晶体管系统侦测的测量结果显示于图5。在图5(A)及5(C),x轴是指测量时间,而在图5(B)及5(D),x轴是指血红蛋白的浓度。y轴是指电流比,ΔIDS(漏极-源极电流的变化)/I0(在没有血红蛋白的PBS中所侦测的电流)。y轴所示的电流比(ΔIDS/I0)用以说明经标准化的侦测结果,以使本领域技术人员容易理解本发明所带来的优点及功效。
图5(A)及5(B)清楚地显示出,当血红蛋白的浓度等于或低于1μg/ml时,使用延伸式栅极场效应晶体管系统测量,无法观察到信号。另外,传统延伸式栅极场效应晶体管系统在100μg/ml血红蛋白中的侦测信号(参照电流比)仅比没有血红蛋白的侦测信号高2%至3%。
反之,根据图5(C)及5(D),该图说明了电流比与血红蛋白浓度之间的关联性。此外,电化学式延伸栅极晶体管系统的侦测极限比延伸式栅极场效应晶体管系统的侦测极限至少改善30倍,而且侦测范围为自100μg/ml的血红蛋白延伸至~0.3μg/ml的血红蛋白。再者,当血红蛋白的浓度增加10倍时,所侦测的信号比(ΔIDS/I0)为以线性关系增加~3%。
实施例2:
以下实验的实施可说明与传统电化学系统相比,电化学式延伸栅极晶体管系统提供优越的感测性能。在此实施例中,感测靶标为H2O2。在该实施例中使用市售的电极试片(DEP-ER-P,日本BioDevice公司),其中,该电极试片的工作电极、对电极以及参考电极分别由金、碳以及Ag/AgCl制成。恒电位仪为CHI6192E(美国德州奥斯汀CHI公司)。此实施例中的离子流体为PBS(100mM Na2HPO4及100mM NaH2PO4;pH 7.4)。在测量前,使用乙醇及去离子水清洗该电极试片,并使用氮气干燥之。
之后,使用电化学式延伸栅极晶体管系统测量从浓度1nM至100μM的H2O2溶液。在此测量过程中,采用安培法,并将工作电极与参考电极之间的电压差设为0.25V,以驱动相对应的氧化还原反应。电化学系统的侦测环境与前述电化学式延伸栅极晶体管系统的侦测环境相似。
由传统电化学系统及本发明的电化学式延伸栅极晶体管系统所侦测的测量结果显示于图6。在图6(A)及6(B),ΔICW表示对电极与工作电极间的电流变化。结果显示,当H2O2的浓度等于或低于1μM时,所侦测的信号为不可识别的。更具体而言,侦测极限为10μM。
反之,根据图6(C)及6(D),该图结果说明了电流比与H2O2浓度之间的关联性。此外,电化学式延伸栅极晶体管系统的侦测极限比电化学系统的侦测极限至少改善100倍,且侦测范围被扩大为100μM至0.1μM H2O2。
以上的说明及实施例清楚地指出本发明的电化学式延伸栅极晶体管系统所能带来的优点及功效。更具体地说,本发明的电化学式延伸栅极晶体管系统可透过该系统内的场效应晶体管的配置,进一步放大其所侦测到的信号。如表2中所示,本发明显示,本发明的电化学式延伸栅极晶体管系统不仅可改善在高离子流体中延伸式栅极场效应晶体管的德拜长度限制,也可增加电化学量测在较低浓度的情况下的灵敏度。另外,透过使用能量传递介质,无论靶标是否具有电化学活性,本发明的电化学式延伸栅极晶体管系统都可测量该靶标的浓度,进而在侦测方面提供更多的弹性。综上所述,本发明成功地提供电化学式延伸栅极晶体管侦测系统,该系统在高离子流体中提供了优越的灵敏度并且表现出色。如图7所示,相较于延伸式栅极场效应晶体管系统及电化学系统,本发明在感测应用方面具有更高的价值。
本发明仅透过实施例的示例来说明,以显示本发明的原理及功效,而非意图限制本发明。本领域技术人员可对本发明作多种变更及修改而不背离本发明的精神及范围。因此,本发明的权利保护范围─权利要求范围列于本文中。所以,本发明的范围应由所附的权利要求范围定义。
Claims (18)
1.一种用以侦测标的的系统,其特征为,该系统包括:
场效应晶体管(FET),其具有栅极、源极以及漏极,其中,该场效应晶体管为延伸式栅极场效应晶体管;
恒电位仪,其具有工作电极、对电极以及参考电极;
其中,该工作电极与侦测区耦接且不直接与该栅极耦接且藉由离子流体与延伸式栅极耦接,且该对电极与该延伸式栅极耦接;
其中,该侦测区、该延伸式栅极以及该参考电极置于该离子流体中;
其中,该恒电位仪经配置,以电化学方法在该离子流体中产生氧化还原反应,进而侦测标的;
其中,该场效应晶体管的栅极电压由该对电极的电压所控制,且该对电极的该电压根据该标的的浓度而变化。
2.根据权利要求1所述的系统,其特征为,该场效应晶体管包括与其耦接的读取单元,以量化量测信号。
3.根据权利要求1所述的系统,其特征为,该标的涉及电化学活动。
4.根据权利要求1所述的系统,其特征为,该标的包括至少一种从以下群组所选的物质:小分子、蛋白质、核酸、及醣脂、以及其任意组合。
5.根据权利要求1所述的系统,其特征为,该离子流体为液态。
6.根据权利要求5所述的系统,其特征为,该液态的离子流体为电解液。
7.根据权利要求1所述的系统,其特征为,该离子流体包括能量传递介质。
8.根据权利要求1所述的系统,其特征为,以对该标的具有亲和力或专一性的识别元件修饰该侦测区。
9.根据权利要求1所述的系统,其特征为,该电化学方法为至少一种从以下群组所选的方法,该群组由伏安法、安培法、电导法、阻抗法、以及其任意组合所组成。
10.一种用以侦测标的的方法,其特征为,该方法包括:
提供具有栅极、源极及漏极的场效应晶体管(FET),其中,该场效应晶体管为延伸式栅极场效应晶体管;
提供具有工作电极、对电极及参考电极的恒电位仪,其中,该工作电极与侦测区耦接且不直接与该栅极耦接且藉由离子流体与延伸式栅极耦接,其中,该对电极与该延伸式栅极耦接,其中,该侦测区、该延伸式栅极以及该参考电极置于该离子流体中;
执行由该恒电位仪所驱动的电化学方法,在该离子流体中产生氧化还原反应,进而侦测该标的;以及
其中,该场效应晶体管的栅极电压由该对电极的电压所控制,且该对电极的该电压根据该标的的浓度而变化。
11.根据权利要求10所述的方法,其特征为,该方法进一步包括透过与该场效应晶体管耦接的读取单元,量化由该标的因氧化还原反应而产生的信号。
12.根据权利要求10所述的方法,其特征为,该标的涉及电化学活动。
13.根据权利要求10所述的方法,其特征为,该标的包括至少一种由以下群组所选的物质:小分子、蛋白质、核酸、及醣脂、以及其任意组合。
14.根据权利要求10所述的方法,其特征为,该离子流体为液态。
15.根据权利要求14所述的方法,其特征为,该液态的离子流体为电解液。
16.根据权利要求10所述的方法,其特征为,该离子流体还包括能量传递介质。
17.根据权利要求10所述的方法,其特征为,以对该标的具有亲和力或专一性的识别元件修饰该侦测区。
18.根据权利要求10所述的方法,其特征为,该电化学方法为至少一种从以下群组所选的方法,该群组由伏安法、安培法、电导法、阻抗法、以及其任意组合所组成。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562155150P | 2015-04-30 | 2015-04-30 | |
US62/155,150 | 2015-04-30 | ||
PCT/CN2016/080679 WO2016173542A1 (en) | 2015-04-30 | 2016-04-29 | System and method for detection in ion fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107850564A CN107850564A (zh) | 2018-03-27 |
CN107850564B true CN107850564B (zh) | 2019-07-16 |
Family
ID=57198120
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680024582.4A Active CN107850564B (zh) | 2015-04-30 | 2016-04-29 | 用于在离子流体中侦测的系统及方法 |
CN201680024573.5A Pending CN107709990A (zh) | 2015-04-30 | 2016-04-29 | 用于侦测生物标记的系统及方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680024573.5A Pending CN107709990A (zh) | 2015-04-30 | 2016-04-29 | 用于侦测生物标记的系统及方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9884320B2 (zh) |
EP (1) | EP3274700A4 (zh) |
JP (1) | JP2018515792A (zh) |
CN (2) | CN107850564B (zh) |
TW (2) | TWI635907B (zh) |
WO (2) | WO2016173542A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170070648A (ko) | 2015-12-14 | 2017-06-22 | 엘지전자 주식회사 | 이온발생장치, 그 제조방법 및 공기조화기 |
US11480567B2 (en) * | 2017-02-15 | 2022-10-25 | New Jersey Institute Of Technology | Enhanced sensitivity and specificity for point-of-care (POC) micro biochip |
WO2018153919A1 (en) | 2017-02-22 | 2018-08-30 | Roche Diagnostics Gmbh | Analyte detector for detecting at least one analyte in at least one fluid sample |
TWI671397B (zh) * | 2017-07-14 | 2019-09-11 | 國立中興大學 | 粒線體萃取裝置 |
CN108828046A (zh) * | 2018-04-23 | 2018-11-16 | 海南聚能科技创新研究院有限公司 | 一种cod实时检测仪 |
WO2019231811A1 (en) * | 2018-05-30 | 2019-12-05 | Dreamwell, Ltd. | Monitoring methods and cushioning structures |
KR102345695B1 (ko) * | 2020-04-13 | 2021-12-31 | 한국전자기술연구원 | Fet 소자와 확장 게이트 전극을 이용한 바이오센서 및 그 동작방법 |
CN113005021B (zh) * | 2020-06-17 | 2023-12-08 | 山东大学 | 一种用于外泌体裂解和检测的微流控芯片及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200521432A (en) * | 2003-12-18 | 2005-07-01 | Univ Chung Yuan Christian | The ion sensor of extended-gate ion sensitive field effect transistor (EGFET) used to be as potassium ion and sodium ion sensor |
CN101430303A (zh) * | 2007-11-07 | 2009-05-13 | 中国科学院电子学研究所 | 一种单层功能膜脲酶生物传感器芯片及制备方法 |
CN101915799A (zh) * | 2010-07-15 | 2010-12-15 | 长沙理工大学 | 一种用于dna分子检测的延长栅场效应晶体管传感芯片 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200051A (en) * | 1988-11-14 | 1993-04-06 | I-Stat Corporation | Wholly microfabricated biosensors and process for the manufacture and use thereof |
US20060263888A1 (en) * | 2000-06-02 | 2006-11-23 | Honeywell International Inc. | Differential white blood count on a disposable card |
US20040126814A1 (en) * | 2000-08-21 | 2004-07-01 | Singh Waheguru Pal | Sensor having molecularly imprinted polymers |
US20040018611A1 (en) * | 2002-07-23 | 2004-01-29 | Ward Michael Dennis | Microfluidic devices for high gradient magnetic separation |
TWI281500B (en) * | 2003-12-31 | 2007-05-21 | Univ Nat Yunlin Sci & Tech | Penicillin g biosensor, systems comprising the same, and measurement using the systems |
WO2005084374A2 (en) | 2004-03-03 | 2005-09-15 | The General Hospital Corporation | Magnetic device for isolation of cells and biomolecules in a microfluidic environment |
WO2006052891A1 (en) | 2004-11-09 | 2006-05-18 | The Regents Of The University Of California | Analyte identification using electronic devices |
CN1786710B (zh) | 2004-12-06 | 2011-12-14 | 财团法人工业技术研究院 | 检体分析微流体芯片及其方法 |
JP4081477B2 (ja) * | 2005-03-29 | 2008-04-23 | 株式会社日立製作所 | 生体分子検出装置及びそれを用いた生体分子検出方法 |
US20070000778A1 (en) * | 2005-06-30 | 2007-01-04 | Chung Yuan Christian University | Multi-parameter sensor with readout circuit |
EP1949098A2 (en) * | 2005-11-09 | 2008-07-30 | Koninklijke Philips Electronics N.V. | Device for testing a fluid |
US20070122819A1 (en) * | 2005-11-25 | 2007-05-31 | Industrial Technology Research Institute | Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same |
TWI302197B (en) * | 2006-01-04 | 2008-10-21 | Univ Nat Yunlin Sci & Tech | Reference ph sensor, the preparation and application thereof |
KR100773550B1 (ko) | 2006-04-03 | 2007-11-07 | 삼성전자주식회사 | 생분자의 고정 없이 전계 효과 트랜지스터를 이용하여생분자를 검출하는 방법 |
WO2009002580A2 (en) * | 2007-04-02 | 2008-12-31 | Boston Medical Center Corporation | Method for bacterial lysis |
US8465634B2 (en) * | 2007-05-23 | 2013-06-18 | Arizona Board Of Regents | Systems and methods for integrated electrochemical and electrical detection |
CN101256167B (zh) * | 2008-04-17 | 2011-11-23 | 重庆大学 | 微阵列生物传感器的读出电路 |
WO2010009415A1 (en) | 2008-07-18 | 2010-01-21 | Canon U.S. Life Sciences, Inc. | Methods and systems for microfluidic dna sample preparation |
KR101140049B1 (ko) * | 2010-03-23 | 2012-05-02 | 서울대학교산학협력단 | 항 신생혈관생성인자 압타머로 기능화된 극미세 전도성 고분자 나노재료를 활용한 고감응성 전계효과 트랜지스터 암진단용 바이오센서의 제조. |
KR101287162B1 (ko) * | 2010-03-31 | 2013-07-17 | 서울대학교산학협력단 | 기준전위 조절 장치 및 이를 구비하는 측정 장치 |
WO2012040493A2 (en) * | 2010-09-22 | 2012-03-29 | California Institute Of Technology | A lateral flow microfluidic assaying device and related method |
US9518953B2 (en) * | 2011-09-07 | 2016-12-13 | Technion Research And Development Foundation Ltd. | Ion sensitive detector |
JP5447716B1 (ja) | 2013-04-30 | 2014-03-19 | 国立大学法人 東京大学 | バイオセンサ及び分子識別部材 |
-
2016
- 2016-04-29 WO PCT/CN2016/080679 patent/WO2016173542A1/en unknown
- 2016-04-29 US US15/141,987 patent/US9884320B2/en active Active
- 2016-04-29 CN CN201680024582.4A patent/CN107850564B/zh active Active
- 2016-04-29 EP EP16785970.1A patent/EP3274700A4/en not_active Withdrawn
- 2016-04-29 TW TW105113440A patent/TWI635907B/zh active
- 2016-04-29 TW TW105113438A patent/TWI631331B/zh active
- 2016-04-29 WO PCT/CN2016/080693 patent/WO2016173547A1/en active Application Filing
- 2016-04-29 US US15/141,978 patent/US10562027B2/en active Active
- 2016-04-29 CN CN201680024573.5A patent/CN107709990A/zh active Pending
- 2016-04-29 JP JP2018507764A patent/JP2018515792A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200521432A (en) * | 2003-12-18 | 2005-07-01 | Univ Chung Yuan Christian | The ion sensor of extended-gate ion sensitive field effect transistor (EGFET) used to be as potassium ion and sodium ion sensor |
CN101430303A (zh) * | 2007-11-07 | 2009-05-13 | 中国科学院电子学研究所 | 一种单层功能膜脲酶生物传感器芯片及制备方法 |
CN101915799A (zh) * | 2010-07-15 | 2010-12-15 | 长沙理工大学 | 一种用于dna分子检测的延长栅场效应晶体管传感芯片 |
Non-Patent Citations (2)
Title |
---|
Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit;Kazuo Nakazato;《PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES》;20140328;第372卷(第2012期);全文 * |
Study on extended gate field effect transistor with tin oxide sensing membrane;Chi Lilun等;《MATERIALS CHEMISTRY AND PHYSICS》;20000214;第63卷(第1期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107850564A (zh) | 2018-03-27 |
WO2016173547A1 (en) | 2016-11-03 |
TW201711750A (zh) | 2017-04-01 |
US20160318018A1 (en) | 2016-11-03 |
TWI635907B (zh) | 2018-09-21 |
US20160320332A1 (en) | 2016-11-03 |
EP3274700A4 (en) | 2018-10-03 |
US9884320B2 (en) | 2018-02-06 |
TW201706598A (zh) | 2017-02-16 |
US10562027B2 (en) | 2020-02-18 |
EP3274700A1 (en) | 2018-01-31 |
CN107709990A (zh) | 2018-02-16 |
TWI631331B (zh) | 2018-08-01 |
JP2018515792A (ja) | 2018-06-14 |
WO2016173542A1 (en) | 2016-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107850564B (zh) | 用于在离子流体中侦测的系统及方法 | |
CN110337586B (zh) | 用于检测至少一种流体样品中的至少一种分析物的分析物检测器 | |
Koncki | Recent developments in potentiometric biosensors for biomedical analysis | |
Guan et al. | Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors | |
Alatraktchi et al. | Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections | |
Viet et al. | Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropinhormone | |
Deng et al. | Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection | |
JP4751302B2 (ja) | 電位差式センサ及び分析用素子 | |
Darch et al. | Quantifying microbial chatter: scanning electrochemical microscopy as a tool to study interactions in biofilms | |
Santarino et al. | Protein reducing agents dithiothreitol and tris (2-carboxyethyl) phosphine anodic oxidation | |
Chen et al. | A one-step electrochemical sensor for rapid detection of potassium ion based on structure-switching aptamer | |
Thiruppathi et al. | A disposable electrochemical sensor designed to estimate glycated hemoglobin (HbA1c) level in whole blood | |
Zhu et al. | Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors | |
US8702957B2 (en) | Electrochemical detection of silica species | |
Wang et al. | Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer | |
Garg et al. | Current advancement and progress in BioFET: a review | |
Sismaet et al. | Electrochemical probes of microbial community behavior | |
CN105784814A (zh) | 一种基于浓差电池原理的传感器 | |
Gardner et al. | Development of a microelectrode array sensing platform for combination electrochemical and spectrochemical aqueous ion testing | |
Sołoducho et al. | Electrochemical and optical biosensors in medical applications | |
Bahramipur et al. | Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator | |
CN105675876A (zh) | 一种Ficolin-3电化学免疫传感器及其制备与应用 | |
Liang et al. | Low-potential determination of hydrogen peroxide, uric acid and uricase based on highly selective oxidation of p-hydroxyphenylboronic acid by hydrogen peroxide | |
Anand Raj et al. | Research insights on the development of biosensors | |
Magar et al. | Nanoelectrochemical Biosensors: Principles, Architectures Applications, and Future Directions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |